Ray tracing: Bresenham's vs Siddon's algorithm - raytracing

I'm developping a tool for radiotherapy inverse planning based in a pencil-beam approach. An important step in these methods (particularly in dose calculation) is a ray-tracing from many sources and one of the most used algorithms is Siddon's one (here there is a nice short description http://on-demand.gputechconf.com/gtc/2014/poster/pdf/P4218_CT_reconstruction_iterative_algebraic.pdf). Now, I will try to simplify my question:
The input data is a CT image (a 3D matrix with values) and some source positions around the image. You can imagine a cube and many points around, all at same distance but different orientation angles, where the radiation rays come from. Each ray will go through the volume and a value is assigned to each voxel according to the distance from the source. The advantage of Siddon's algorithm is that the length is calculated on-time during the iterative process of the ray-tracing. However, I know that Bresenham's algorithm is an efficient way to evaluate the path from one point to another in a matrix. Thus, the length from the source to a specific voxel could be easily calculated as the euclidean distance two points, even during Bresenham's iterative process.
So then, knowing that both are methods quite old already and efficient, there is a definitive advantage of using Siddon instead of Bresenham? Maybe I'm missing an important detail here but it is weird to me that in these dose calculation procedures Bresenham is not really an option and always Siddon appears as the gold standard.
Thanks for any comment or reply!
Good day.

It seems to me that in most applications involving medical ray tracing, you want not only the distance from a source to a particular voxel, but also the intersection lengths of that path with every single voxel on its way. Now, Bresenham gives you the voxels on that path, but not the intersection lengths, while Siddon does.

Related

Finding correspondence of edges for image matching

I have a challenging problem to solve. The Figure shows green lines, that are derived from an image and the red lines are the edges derived from another image. Both the images are taken from the same camera, so the intrinsic parameters are same. Only, the exterior parameters are different, i.e. there is a slight rotation and translation while taking the 2nd image. As it can be seen in the figure, the two sets of lines are pretty close. My task is to find correspondence between the edges derived from the 1st image and the edges derived from the second image.
I have gone through a few sources, that mention taking corresponding the nearest line segment, by calculating Euclidean distances between the endpoints of an edge of image 1 to the edges of image 2. However, this method is not acceptable for my case, as there are edges in image 1, near to other edges in image 2 that are not corresponding, and this will lead to a huge number of mismatches.
After a bit of more research, few more sources referred to Hausdorff distance. I believe that this could really be a solution to my problem and the paper
"Rucklidge, William J. "Efficiently locating objects using the
Hausdorff distance." International Journal of Computer Vision 24.3
(1997): 251-270."
seemed to be really interesting.
If, I got it correct the paper formulated a function for calculating translation of model edges to image edges. However, while implementation in MATLAB, I'm completely lost, where to begin. I will be much obliged if I can be directed to a pseudocode of the same algorithm or MATLAB implementation of the same.
Additionally, I am aware of
"Apply Hausdorff distance to tile image classification" link
and
"Hausdorff regression"
However, still, I'm unsure how to minimise Hausdorff distance.
Note1: Computational cost is not of concern now, but faster algorithm is preferred
Note2: I am open to other algorithms and methods to solve this as long as there is a pseudocode available or an open implementation.
Have you considered MATLAB's image registration tools?
With imregister(https://www.mathworks.com/help/images/ref/imregister.html), you can just insert both images, 1 as reference, one as "moving" and it will register them together using an affine transform. The function call is just
[optimizer, metric] = imregconfig('monomodal');
output_registered = imregister(moving,fixed,'affine',optimizer,metric);
For better visualization, use the RegistrationEstimator command to open up a gui in which you can import the 2 images and play around with it to register your images. From there you can export code for future images.
Furthermore if you wish to account for non-rigid transforms there is imregdemons(https://www.mathworks.com/help/images/ref/imregdemons.html) which works much the same way.
You can compute the Hausdorff distance using Matlab's bwdist function. You would compute the distance transform of one image, evaluate it at the edge points of the other, and take the maximum value. (You can also take the sum instead, in which case it is called the chamfer distance.) For this problem you'll probably want the symmetric Hausdorff distance, so you would do the computation in both directions.
Both Hausdorff and chamfer distance measure the match quality of a particular alignment. To find the best registration you'll need to try multiple alignment transformations and evaluate them all looking for the best one. As suggested in another answer, you may find it easier to use registration existing tools than to write your own.

What "boundary conditions" can make a rectangle "look" like a circle?

I am solving a fourth order non-linear partial differential equation in time and space (t, x) on a square domain with periodic or free boundary conditions with MATHEMATICA.
WITHOUT using conformal mapping, what boundary conditions at the edge or corner could I use to make the square domain "seem" like a circular domain for my non-linear partial differential equation which is cartesian?
The options I would NOT like to use are:
Conformal mapping
changing my equation to polar/cylindrical coordinates?
This is something I am pursuing purely out of interest just in case someone screams bloody murder if misconstrued as a homework problem! :P
That question was asked on the time people found out that the world was spherical. They wanted to make rectangular maps of the surface of the world...
It is not possible.
The reason why is not possible is because the sphere has an intrinsic curvature, while the cube/parallelepiped has not. It can be shown that for two elements with different intrinsic curvatures, their surfaces cannot be mapped while either keeping constant infinitesimal distances, either the distance between two points is given by the euclidean distance.
The easiest way to understand this problem is to pick some rectangular piece of paper and try to make a sphere of it without locally stretch it or compress it (you can fold). You can't. On the other hand, you can make a cylinder surface, because the cylinder has also no intrinsic curvature.
In maps, normally people use one of the two options:
approximate the local surface of the sphere by a tangent plane and make a rectangle out of it. (a local map of some region)
make world maps but implement some curved lines everywhere identifying that the measuring distances must be made according to those lines.
This is also the main reason why when traveling from Europe to North America the airplanes seems to make a curve always trying to pass near canada. If we measured the distance from the rectangular map, we see that they should go on a strait line to minimize the distance. However, because we are mapping two different intrinsic curvatures, the real distance must be measured in a different way (and not via a strait line).
For 2D (in fact for nD) the same reasoning applies.

Algorithms to normalize finger touch data (reduce the number of points)

I'm working on an app that lets users select regions by finger painting on top of a map. The points then get converted to a latitude/longitude and get uploaded to a server.
The touch screen is delivering way too many points to be uploaded over 3G. Even small regions can accumulate up to ~500 points.
I would like to smooth this touch data (approximate it within some tolerance). The accuracy of drawing does not really matter much as long as the general area of the region is the same.
Are there any well known algorithms to do this? Is this work for a Kalman filter?
There is the Ramer–Douglas–Peucker algorithm (wikipedia).
The purpose of the algorithm is, given
a curve composed of line segments, to
find a similar curve with fewer
points. The algorithm defines
'dissimilar' based on the maximum
distance between the original curve
and the simplified curve. The
simplified curve consists of a subset
of the points that defined the
original curve.
You probably don't need anything too exotic to dramatically cut down your data.
Consider something as simple as this:
Construct some sort of error metric. An easy one would be a normalized sum of the distances from the omitted points to the line that was approximating them. Decide what a tolerable error using this metric is.
Then starting from the first point construct the longest line segment that falls within the tolerable error range. Repeat this process until you have converted the entire path into a polyline.
This will not give you the globally optimal approximation but it will probably be good enough.
If you want the approximation to be more "curvey" you might consider using splines or bezier curves rather than straight line segments.
You want to subdivide the surface into a grid with a quadtree or a space-filling-curve. A sfc reduce the 2d complexity to a 1d complexity. You want to look for Nick's hilbert curve quadtree spatial index blog.
I was going to do something this in an app, but was intending on generating a path from the points on-the-fly. I was going to use a technique mentioned in this Point Sequence Interpolation thread

Algorithm for simplifying 3d surface?

I have a set of 3d points that approximate a surface. Each point, however, are subject to some error. Furthermore, the set of points contain a lot more points than is actually needed to represent the underlying surface.
What I am looking for is an algorithm to create a new (much smaller) set of points representing a simplified, smoother version of the surface (pardon for not having a better definition than "simplified, smoother"). The underlying surface is not a mathematical one so I'm not hoping to fit the data set to some mathematical function.
Instead of dealing with it as a point cloud, I would recommend triangulating a mesh using Delaunay triangulation: http://en.wikipedia.org/wiki/Delaunay_triangulation
Then decimate the mesh. You can research decimation algorithms, but you can get pretty good quick and dirty results with an algorithm that just merges adjacent tris that have similar normals.
I think you are looking for 'Level of detail' algorithms.
A simple one to implement is to break your volume (surface) into some number of sub-volumes. From the points in each sub-volume, choose a representative point (such as the one closest to center, or the closest to the average, or the average etc). use these points to redraw your surface.
You can tweak the number of sub-volumes to increase/decrease detail on the fly.
I'd approach this by looking for vertices (points) that contribute little to the curvature of the surface. Find all the sides emerging from each vertex and take the dot products of pairs (?) of them. The points representing very shallow "hills" will subtend huge angles (near 180 degrees) and have small dot products.
Those vertices with the smallest numbers would then be candidates for removal. The vertices around them will then form a plane.
Or something like that.
Google for Hugues Hoppe and his "surface reconstruction" work.
Surface reconstruction is used to find a meshed surface to fit the point cloud; however, this method yields lots of triangles. You can then apply mesh a reduction technique to reduce the polygon count in a way to minimize error. As an example, you can look at OpenMesh's decimation methods.
OpenMesh
Hugues Hoppe
There exist several different techniques for point-based surface model simplification, including:
clustering;
particle simulation;
iterative simplification.
See the survey:
M. Pauly, M. Gross, and L. P. Kobbelt. Efficient simplification of point-
sampled surfaces. In Proceedings of the conference on Visualization’02,
pages 163–170, Washington, DC, 2002. IEEE.
unless you parametrise your surface in some way i'm not sure how you can decide which points carry similar information (and can thus be thrown away).
i guess you can choose a bunch of points at random to get rid of, but that doesn't sound like what you want to do.
maybe points near each other (for some definition of 'near') can be considered to contain similar information, and so reduced to single representatives for each such group.
could you give some more details?
It's simpler to simplify a point cloud without the constraints of mesh triangles and indices.
smoothing and simplification are different tasks though. To simplify the cloud you should first get rid of noise artefacts by making a profile of the kind of noise that you have, it's frequency and directional caracteristics and do a noise profile compared type reduction. good normal vectors are helfpul for that.
here is a document about 5-6 simplifications using delauney, voronoi, and k nearest neighbour maths:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.10.9640&rep=rep1&type=pdf
A later version from 2008:
http://www.wseas.us/e-library/transactions/research/2008/30-705.pdf
here is a recent c++ version:
https://github.com/tudelft3d/masbcpp/blob/master/src/simplify.cpp

Find a similarity of two vector shapes

Looking for any information/algorithms relating to comparing vector graphics. E.g. say there two point collections or vector files with two almost identical figures. I want to determine that a first figure is about 90% similar to the second one.
A common way to test for similarity is with image moments. Moments are intrinsically translationally invariant, and if the objects you compare might be scaled or rotated you can use moments that are invariant to these transformations, such as Hu moments.
Most of the programs I know would require rasterized versions of the vector objects; but the moments could be calculated directly from the vector graphics using a Green's Theorem approach, or a more simplistic approach that just identifies unique (unordered) vertex configurations would be to convert the Hu moment integrals to sums over the vertices -- in a physics analogy replacing the continuous object with equal point masses at each vertex.
There is a paper on a tool called VISTO that sorts vector graphics images (using moments, I think), which should certainly be useful for more details.
You could search for fingerprint matching algorithms. Fingerprints are usually converted to a set of points with their relative location to each other, which makes it basically the same problem as yours.
You could transform it to a non-vector graphic and then apply standard image analysis techniques like SIFT points, etc.

Resources