Position elements without overlap - algorithm

I have a number of rectangular elements that I want to position in a 2D space. I calculate an ideal position for each element. Now my problem is that many elements overlap as very often the ideal positions are concentrated in one region. I want to avoid overlap as much as possible (doesn't have to be perfect, though). How can I do this?
I've heard physics simulations are suitable for this - is that correct? And can anyone provide an example/tutorial?
By the way: I'm using XNA, if you know any .NET library that does exactly this job - tell me!

One way the physics engine can be used:
Put positive electric charges (or some kind of repulsive force) on each rectangles and simulate the forces and movements. Also, as Eyal was kind enough to point out, you also need some attractive forces to keep them from drifting away. This can be modelled by springs (again as Eyal points out). They will hopefully end up in some sort of equilibrium which might involve non-overlapping rectangles.
I believe similar ideas (force based heuristics) are used in determining nice looking layouts of graphs (the nodes and edges one).
Disclaimer: I haven't used this myself.
Hope that helps!

Box2D is a widly used (free) physics library that can achieve the needed task: Link

The algorithm that you are looking for is linear interpolation. XNA has its own lerp function.

Related

Indefinitely move objects around randomly without collision

I have an application where I need to move a number of objects around on the screen in a random fashion and they can not bump into each other. I'm looking for an algorithm that will allow me to generate the paths that don't create collisions and can continue for an indefinite time (i.e.: the objects keep moving around until a user driven event removes them from the program).
I'm not a game programmer but I think this looks like an AI problem and you guys probably solve it with your eyes closed. From what I've read A* seems to be the recommended 'basic idea' but I don't really want to invest a lot of time into it without some confirmation.
Can anyone shed some light on an approach? Anti-gravity movement maybe?
This is to be implemented on iOS, if that is important
New paths need to be generated at the end of each path
There is no visible 'grid'. Movement is completely free in 2D space
The objects are insects that walk around the screen until they are killed
A* is an algorithm to find the shortest path between a start and a goal configuration (in terms of whatever you define as short: common are e.g. euclidean distance, cost or time, angular distance...). Your insects seem not to have a specific goal, they don't even need a shortest path. I would certainly not go for A*. (By the way, since you are having a dynamic environment, D* would have been an idea - still it's meant to find a path from A to B).
I would tackle the problem as follows:
Random Paths and following them
For the random paths I see two methods. The first would be a simple random walk (click here to see a nice 2D animation with explanations), which can suffer from jittering and doesn't look too nice. The second one needs a little bit more detailed explanations.
For each insect generate four random points around them, maybe starting on a sinusoid. With a spline interpolation generate a smooth curve between those points. Take care of having C1 (in 2D) or C2 (in 3D) continuity. (Suggestion: Hermite splines)
With Catmull-Rom splines you can find your configurations while moving along the curve.
An application of a similar approach can be found in this blog post about procedural racetracks, also a more technical (but still not too technical) explanation can be found in these old slides (pdf) from a computer animations course.
When an insect starts moving, it can constantly move between the second and third point, when you always remove the first and append a new point when the insect reaches the third, thus making that the second point.
If third point is reached
Remove first
Append new point
Recalculate spline
End if
For a smoother curve add more points in total and move somewhere in the middle, the principle stays the same. (Personally I only used this in fixed environments, it should work in dynamic ones as well though.)
This can, if your random point generation is good (maybe you can use an approach similar to the one provided in the above linked blog post, or have a look at algorithms on the PCG Wiki), lead to smooth paths all over the screen.
Avoid other insects
To avoid other insects, three different methods come to my mind.
Bug algorithms
Braitenberg vehicles
An application of potential fields
For the potential fields I recommend reading this paper about dynamic motion planning (pdf). It's from robotics, but fairly easy to apply to your problem as well. You can just use the robots next spline point as the goal and set its velocity to 0 to apply this approach. However, it might be a bit too much for your simple game.
A discussion of Braitenberg vehicles can be found here (pdf). The original idea was more of a technical method (drive towards or away from a light source depending on how your motor is coupled with the photo receptor) and is often used to show how we apply emotional concepts like fear and attraction to other objects. The "fear" behaviour is an approach used for obstacle avoidance in robotics as well.
The third and probably simplest method are bug algorithms (pdf). I always have problems with the boundary following, which is a bit tricky. But to avoid another insect, these algorithms - no matter which one you use (I suggest Bug 1 or Tangent Bug) - should do the trick. They are very simple: Move towards your goal (in this application with the catmull-rom splines) until you have an obstacle in front. If the obstacle is close, change the insect's state to "obstacle avoidance" and run your bug algorithm. If you give both "colliding" insects the same turn direction, they will automatically go around each other and follow their original path.
As a variation you could just let them turn and recalculate a new spline from that point on.
Conclusion
Path finding and random path generation are different things. You have to experiment around what looks best for your insects. A* is definitely meant for finding shortest paths, not for creating random paths and following them.
You cannot plan the trajectories ahead of time for an indefinite duration !
I suggest a simpler approach where you just predict the next collision (knowing the positions and speeds of the objects allows you to tell if they will collide and when), and resolve it by changing the speed or direction of either objects (bounce before objects touch).
Make sure to redo a check for collisions in case you created an even earlier collision !
The real challenge in your case is to efficiently predict collisions among numerous objects, a priori an O(N²) task. You will accelerate that by superimposing a coarse grid on the play field and look at objects in neighboring cells only.
It may also be possible to maintain a list of object pairs that "might interfere in some future" (i.e. considering their distance and relative speed) and keep it updated. Checking that a pair may leave the list is relatively easy; efficiently checking for new pairs needing to enter the list is not.
Look at this and this Which described an AI program to auto - play Mario game.
So in this link, what the author did was using a A* star algorithm to guide Mario Get to the right border of the screen as fast as possible. Avoid being hurt.
So the idea is for each time frame, he will have an Environment which described the current position of other objects in the scene and for each action (up, down left, right and do nothing) , he calculate its cost function and made a decision of the next movement based on this.
Source: http://www.quora.com/What-are-the-coolest-algorithms
For A* you would need a 2D-Grid even if it is not visible. If I get your idea right you could do the following.
Implement a pathfinding (e.g. A*) then just generate random destination points on the screen and calculate the path. Once your insect reaches the destination, generate another destination point/grid-cell and proceed until the insect dies.
As I see it A* would only make sence if you have obstacles on the screen the insect should navigate around, otherwise it would be enough to just calculate a straight vector path and maybe handle collision with other insects/objects.
Note: I implemented A* once, later I found out that Lee's Algorithm
pretty much does the same but was easier to implement.
Consider a Hamiltonian cycle - the idea is a route that visits all the positions on a grid once (and only once). If you construct the cycle in advance (i.e. precalculate it), and set your insects off with some offset between them, they will never collide, simply because the path never intersects itself.
Also, for bonus points, Hamiltonian paths tend to 'wiggle about', and because it's a loop you can predict (and precalculate) the path into the indefinite future.
You can always use the nodes of the grid as knot points for a spline to smooth the movement, or even randomly shift all the points away from their strict 2d grid positions, until you have the desired motion.
Example Hamiltonian cycle from Wikimedia:
On a side note, if you want to generate such a path, consider constructing a loop through many points and just moving the points around in such a manner that they never intersect an existing edge. With some encouragement to move into gaps and away from each other, they should settle into some long, never-intersecting path. Store the result and use for your loop.

Is there some well-known algorithm which turns user's drawings into smoothed shapes?

My requirements:
A user should be able to draw something by hand. Then after he takes off his pen (or finger) an algorithm smooths and transforms it into some basic shapes.
To get started I want to transform a drawing into a rectangle which resembles the original as much as possible. (Naturally this won't work if the user intentionally draws something else.) Right now I'm calculating an average x and y position, and I'm distinguishing between horizontal and vertical lines. But it's not yet a rectangle but some kind of orthogonal lines.
I wondered if there is some well-known algorithm for that, because I saw it a few times at some touchscreen applications. Do you have some reading tip?
Update: Maybe a pattern recognition algorithm would help me. There are some phones which request the user to draw a pattern to unlock it's keys.
P.S.: I think this question is not related to a particular programming language, but if you're interested, I will build a web application with RaphaelGWT.
The Douglas-Peucker algorithm is used in geography (to simplify a GPS track for instance) I guess it could be used here as well.
Based on your description I guess you're looking for a vectorization algorithm. Here are some pointers that might help you:
https://en.wikipedia.org/wiki/Image_tracing
http://outliner.codeplex.com/ - open source vectorizer of the edges in the raster pictures.
http://code.google.com/p/shapelogic/wiki/vectorization - describes different vectorization algorithm implementations
http://cardhouse.com/computer/vector.htm
There are a lot of resources on vectorization algorithms, I'm sure you'll be able to find something that fits your needs. I don't know how complex these algorithms are to implement them, though,

Fastest method to search for a specified item on an image?

Imagine we have a simple 2D drawing, filled it with lots of non-overlapping circles and only a few stars.
If we are to find all the stars among all these circles, I can think of very few methods. Brute force is one of them. Another one is possibly reduce the image size (to the optimal point where you can still distinguish the objects apart) and then apply brute force and map to the original image. The drawback of brute force is of course, it is very time consuming. I am looking for faster methods, possibly the fastest one.
What is the fastest image processing method to search for the specified item on a simple 2D image?
One typical way of looking for an object in an image is through cross correlation. Basically, you look for the position where the cross-correlation between a mask (the object you're attempting to find) and the image is the highest. That position is the likely location of the object you're trying to find.
For the sake of simplicity, I will refer to the object you're attempting to find as a star, but in general it can be any shape.
Some problems with the above approach:
The size of the mask has to match the size of the star. If you don't know the size of the star, then you will have to try different size masks. Image pyramids are more effective than just iteratively trying different size masks, but still require extra effort.
Similarly, the orientations of the mask and the star have to match. If they don't, the cross-correlation won't work.
For these reasons, the more you know about your problem, the simpler it becomes. This is the reason why people have asked you for more information in the comments. A general purpose solution doesn't really exist, to the best of my knowledge. Maybe someone more knowledgeable can correct me on this.
As you've mentioned, reducing the size of the image will help you reduce the computational time of your approach. In my opinion, it's hardly the core element of a solution -- it's just an optional optimization step.
If the shapes are easy to segment from the background, you might be able to compute distinguishing shape/color descriptors. Depending on your problem you could choose descriptors that are invariant to scale, translation or rotation (e.g. compactness, if it is unique to each shape). I do not know if this will be faster, though.
If you already know the exact shape and have an idea about the size, you might want to have a look at the Generalized Hough Transform, which is basically a formalized description of your "brute force algorithm"
As you list a property that the shapes are not overlapping then I assume an efficient algorithm would be able to
cut out all the shapes by scanning the image in some way (I can imagine relatively efficient and simple algorithm for convex shapes)
when you are left with cut out shapes you could use cross relation misha mentioned
You should describe the problem a bit better
can the shapes be rotated or scaled (or some other transform?)
is the background uniform colour
are the shapes uniform colour
are the shapes filled
Depending on the answer on the above questions you might have more less or more simple solutions.
Also, maybe this article might be interesting.
If the shapes are very regular maybe turning them into vectors could fit your needs nicely, but it might be an overkill, really depends what you want to do later.
Step 1: Thresholding - reduce the image to 1 bit (black or white) if the general image set permits it. [For the type of example you cite, my guess is thresholding would work nicely - leaving enough details to find objects].
Step 2: Optionally do some smoothing/noise removal.
Step 3: Use some clustering approach to gather the foreground objects.
Step 4: Use an appropriate heuristic to identify the objects.
The parameters in steps 1/2 will depend a lot on the type of images as well as experimentation/observation. 3 is usually straightforward if you have worked out 1/2 correctly. 4 will depend very much on the problem (for example, in your case identifying stars - which would depend on what is the actual shape of the stars expected in the images).

What is the fastest way of edge detection?

I am thinking of implement a image processing based solution for industrial problem.
The image is consists of a Red rectangle. Inside that I will see a matrix of circles. The requirement is to count the number of circles under following constraints. (Real application : Count the number of bottles in a bottle casing. Any missing bottles???)
The time taken for the operation should be very low.
I need to detect the red rectangle as well. My objective is to count the
items in package and there are no
mechanism (sensors) to trigger the
camera. So camera will need to capture
the photos continuously but the
program should have a way to discard
the unnecessary images.
Processing should be realtime.
There may be a "noise" in image capturing. You may see ovals instead of circles.
My questions are as follows,
What is the best edge detection algorithm that matches with the given
scenario?
Are there any other mechanisms that I can use other than the edge
detection?
Is there a big impact between the language I use and the performance of
the system?
AHH - YOU HAVE NOW TOLD US THE BOTTLES ARE IN FIXED LOCATIONS!
IT IS AN INCREDIBLY EASIER PROBLEM.
All you have to do is look at each of the 12 spots and see if there is a black area there or not. Nothing could be easier.
You do not have to do any edge or shape detection AT ALL.
It's that easy.
You then pointed out that the box might be rotatated, things could be jiggled. That the box might be rotated a little (or even a lot, 0 to 360 each time) is very easily dealt with. The fact that the bottles are in "slots" (even if jiggled) massively changes the nature of the problem. You're main problem (which is easy) is waiting until each new red square (crate) is centered under the camera. I just realised you meant "matrix" literally and specifically in the sentence in your original questions. That changes everything totally, compared to finding a disordered jumble of circles. Finding whether or not a blob is "on" at one of 12 points, is a wildly different problem to "identifying circles in an image". Perhaps you could post an image to wrap up the question.
Finally I believe Kenny below has identified the best solution: blob analysis.
"Count the number of bottles in a bottle casing"...
Do the individual bottles sit in "slots"? ie, there are 4x3 = 12 holes, one for each bottle.
In other words, you "only" have to determine if there is, or is not, a bottle in each of the 12 holes.
Is that correct?
If so, your problem is incredibly easier than the more general problem of a pile of bottles "anywhere".
Quite simply, where do we see the bottles from? The top, sides, bottom, or? Do we always see the tops/bottoms, or are they mixed (ie, packed top-to-tail). These issues make huge, huge differences.
Surf/Sift = overkill in this case you certainly don't need it.
If you want real time speed (about 20fps+ on a 800x600 image) I recommend using Cuda to implement edge detection using a standard filter scheme like sobel, then implement binarization + image closure to make sure the edges of circles are not segmented apart.
The hardest part will be fitting circles. This is assuming you already got to the step where you have taken edges and made sure they are connected using image closure (morphology.) At this point I would proceed as follows:
run blob analysis/connected components to segment out circles that do not touch. If circles can touch the next step will be trickier
for each connected componet/blob fit a circle or rectangle using RANSAC which can run in realtime (as opposed to Hough Transform which I believe is very hard to run in real time.)
Step 2 will be much harder if you can not segment the connected components that form circles seperately, so some additional thought should be invested on how to guarantee that condition.
Good luck.
Edit
Having thought about it some more, I feel like RANSAC is ideal for the case where the circle connected components do touch. RANSAC should hypothetically fit the circle to only a part of the connected component (due to its ability to perform well in the case of mostly outlier points.) This means that you could add an extra check to see if the fitted circle encompasses the entire connected component and if it does not then rerun RANSAC on the portion of the connected component that was left out. Rinse and repeat as many times as necessary.
Also I realize that I say circle but you could just as easily fit an ellipse instead of circles using RANSAC.
Also, I'd like to comment that when I say CUDA is a good choice I mean CUDA is a good choice to implement the sobel filter + binirization + image closing on. Connected components and RANSAC are probably best left to the CPU, but you can try pushing them onto CUDA though I don't know how much of an advantage a GPU will give you for those 2 over a CPU.
For the circles, try the Hough transform.
other mechanisms: dunno
Compiled languages will possibly be faster.
SIFT should have a very good response to circular objects - it is patented, though. GLOHis a similar algorithm, but I do not know if there are any implementations readily available.
Actually, doing some more research, SURF is an improved version of SIFT with quite a few implementations available, check out the links on the wikipedia page.
Sum of colors + convex hull to detect boundary. You need, mostly, 4 corners of a rectangle, and not it's sides?
No motion, no second camera, a little choice - lot of math methods against a little input (color histograms, color distribution matrix). Dunno.
Java == high memory consumption, Lisp == high brain consumption, C++ == memory/cpu/speed/brain use optimum.
If the contrast is good, blob analysis is the algorithm for the job.

Position boxes like in Exposé

Does anyone know a way to locate rectangles to best fit a certain area? The rectangles can be scaled up to a certain limit, but they should keep their proportions.
I basically want to rebuild Mac OS' Exposé:
Picture
Thanks,
eWolf
The problem is NP Hard, but that is only for the optimal solution. What I guess you really want is a solution that just looks good.
So I suggest looking for algorithms that make data look good. Once I wanted to layout pictures for the DeepZoom Composer and I tried to recycle a graph drawing force-interaction based algorithm. http://en.wikipedia.org/wiki/Force-based_algorithms
It worked really well even for 600 hundred rectangles, you just have to play with the details of the simulation.
How the distance is calculated?
What functions do you use for the attraction and repulsion forces?
How much overlap are you going to accept?
The only problem I could not solve entirely, was that the rectangles formed a circle shape, rather then a big rectangle shape, which is natural when you are simulating physics. But you can work around that with carefully placed auxiliary force sources.

Resources