What's a good way to generate random clusters and paths? - algorithm

I'm toying around with writing a random map generator, and am not quite sure how to randomly generate realistic landscapes. I'm working with these sorts of local-scale maps, which presents some interesting problems.
One of the simplest cases is the forest:
Sparse Medium Dense
Typical trees 50% 70% 80%
Massive trees — 10% 20%
Light undergrowth 50% 70% 50%
Heavy undergrowth — 20% 50%
Trees and undergrowth can exist in the same space, so an average sparse forest has 25% typical trees and light undergrowth, 25% typical trees, 25% light undergrowth, and 25% open space. Medium and dense forests will take a bit more thinking, but it's not where my problem lies either, as it's all evenly dispersed.
My problem lies in generating clusters and paths, while keeping the percentage constraints. Marshes are a good example of this:
Moor Swamp
Shallow bog 20% 40%
Deep bog 5% 20%
Light undergrowth 30% 20%
Heavy undergrowth 10% 20%
Deep bog squares are usually clustered together and surrounded by an irregular ring of shallow bog squares.
An additional map element, a hedgerow, may also be present, as well as a path of open ground, snaking through the bog. Both of these types of map elements (clusters and paths) present problems, as the total composition of the map should contain X% of the element, but it's not evenly distributed. Other elements, such as streams, ponds, and quicksand need either a cluster or path-type generation as well.
What technique can I use to generate realistic maps given these constraints?
I'm using C#, FYI (but this isn't a C#-specific question.)

Realistic "random" distribution is often done using Perlin Noise, which can be used to give a distribution with "clumps" like you mention. It works by summing/combining multiple layers of linearly interpolated values from random data points. Each layer (or "octave") has twice as many data points as the last, and confined to a narrower range of values. The result is "realistic" looking random texture.
Here is a beautiful demonstration of the theory behind Perlin Noise by Hugo Elias.
Here is the first thing I found on Perlin Noise in C#.
What you can do is generate a Perlin Noise image and set a "threshold", where anything above a value is "on" and everything below it is "off". What you will end up with is clumps where things are above the threshold, which look irregular and awesome. Simply assign the ones above the threshold to where you want your terrain feature to be.
Here is a demonstration if a program generating a Perlin Noise bitmap and then adjusting the cut-off threshold over time. A clear "clumping" is visible. It could be just what you wanted.
Notice that, with a high threshold, very few points are above it, and it's sparse. But as the threshold lowers, those points "grow" into clumps (by the nature of perlin noise), and some of these clumps will join eachother, and basically create something very natural and terrain-like.
Note that you could also set the "clump factor", or the tendency of features to clump, by setting the "turbulence" of your Perlin Noise function, which basically causes peaks and valleys of your PN function to be accentuated and closer together.
Now, where to set the threshold? The higher the threshold, the lower the percentage of the feature on the final map. The lower the threshold, the higher the percentage. You can mess around with them. You could probably get exact percentages by fiddling around with a little math (it seems that the distribution of values follows a Normal Distribution; I could be wrong). Tweak it until it's just right :)
EDIT As pointed out in the comments, you can find the exact percentage by creating a cumulative histogram (index of what % of the map is under a threshold) and pick the threshold that gives you the percent you need.
The coolest thing here is that you can create features that clump around certain other features (like your marsh features) trivially here -- just use the same Perlin Noise map twice -- the second time, lowering the threshold. The first one will be clumpy, and the second one will be clumpy around the same areas, but with the clumps enlarged (refer to the flash animation posted earlier).
As for other features like hedgerows, you could try modeling simple random walk lines that have a higher tendency to go straight than turn, and place them anywhere randomly on your perlin-based map.
samples
Here is a sample 50x50 tile Sparse Forest Map. The undergrowth is colored brown and the trees are colored blue (sorry) to make it clear which is which.
For this map I didn't make exact thresholds to match 50%; I only set the threshold at 50% of the maximum. Statistically, this will average out to exactly 50% every time. But it might not be exact enough for your purposes; see the earlier note for how to do this.
Here is a demo of your Marsh features (not including undergrowth, for clarity), with shallow marsh in grey and deep marsh in back:
This is just 50x50, so there are some artifacts from that, but you can see how easily you can make the shallow marsh "grow" from the deep marsh -- simply by adjusting the threshold on the same Perlin map. For this one, I eyeballed the threshold level to give the most eye-pleasing results, but for your own purposes, you could do what was mentioned before.
Here is a marsh map generated from the same Perlin Noise map, but on stretched out over 250x250 tiled map instead:

I've never done this sort of thing, but here are some thoughts.
You can obtain clusters by biasing random selection to locations on the grid that are close to existing elements of that type. Assign a default value of 1 to all squares. For squares with existing clustered elements, add clustering value to to adjacent squares (the higher the clustering value, the stronger the clustering will be). Then do random selection for the next element of that type on the probability distribution function of all the squares.
For paths, you could have a similar procedure, except that paths would be extended step-wise (probability of path is finite at squares next to the end of the path and zero everywhere else). Directional paths could be done by increasing the probability of selection in the direction of the path. Meandering paths could have a direction that changes over the course of random extension (new_direction = mf * old_direction + (1-mf) * rand_direction, where mf is a momentum factor between 0 and 1).

To expand on academicRobot's comments, you could start with a default marsh or forest seed in some of the grid cells and let them grow from the source using a correlated random number. For instance a bog might have eight adjacent grid cells each of which has a 90% probability of also being a bog, but a 10% probability of being something else. You can let the ecosytem form from the seed and adjust the correlation until you get something that looks right. Probably pretty easy to implement even in a spreadsheet.

You could start reading links here. I remember looking at much better document. Will post it if I find it (it was also based on L-systems).
But that's on the general side; on the particular problem you face I guess you should model it in terms of
percentages
other rules (clusters and paths)
The point is that even though you don't know how to construct the map with given properties, if you are able to evaluate the properties (clustering ratio; path niceness) and score on them you can then brute force or do some other problem space transversal.
If you still want to do generative approach then you will have to examine generative rules a bit closer; here's an idea that I would pursue
create patterns of different terrains and terrain covers that have required properties of 'clusterness', 'pathness' or uniformity
create the patterns in such a way that the values for deep bog are not discreet, but assign probability value; after the pattern had been created you can normalize this probability in such a way that it will produce required percentage of cover
mix different patterns together

You might have some success for certain types of area with a Voronoi pattern. I've never seen it used to create maps but I have seen it used in a number of similar fields.

Related

Reserve-Step Algorithm / Anti-Banding Algorithm for Terrain?

I took the data from here (Nasa - Topography) and here (Nasa - Bathymetric) and used it to create a 3D model of the Earth's entire surface (both above and below water).
Here's what I got:
As you can see, it is super jagged.
The problem is that due to the fact that I'm using greyscale images, I only have 512 distinct levels to work with (256*2). When going from the ocean floor to the highest peak, you're obviously going to hit more than 512 distinct elevations. So it's basically an unwanted step-function.
Had they used all RGB channels this wouldn't be a problem, but then the image wouldn't be very "human-readable"
Smoothing in general is a possibility, but not a great possibility because it will lower the quality of cliffs, peaks, canyons, ect. drastically.
Here's the thing: we know that each pixel is within (maxHeight-minHeight)/512 (=maxoffset) of the actually correct value: as stated it has pretty much gone through an unwanted step function. Of course, mathematically a step function is irreversible - however, that doesn't stop us from trying!
Here are some of my thoughts on how this might work:
Find the average height of surrounding pixels, for some radius. Calculate the difference between this pixel's current value and the calculated average. Do nothing with this value yet.
While calculating this, store which pixel has the greatest difference.
Then, "normalize" all values such that this greatest difference is (maxHeight-minHeight)/512: the maxoffset: the max that a pixel could be off. Due to outliers, this "normalization" shouldn't be linear, but such that the average is 85% (or something) of this maxoffset.
Peaks (pixels that are higher than all surrounding pixels) and Basins (same idea except lower) get excluded from this process, as they'll be outliers and shouldn't change much anyhow (or undergo a process of their own).
That might not work. I could still use basic "average smoothing" except with the following rules:
No smoothing of peaks (pixels that are higher than all surrounding pixels), basins (same idea except lower), cliffs (this is way more difficult and may not happen - but the idea is to check if pixels have a drop on one side and roughly the same height pixels on the other side for some distance).
If the pixel has significantly more pixels around the same height than not, give greater weight to those nearly-same-height pixels.
I'm also looking into finding better "data", but I'm not confident that I will due to the fact that I require bathymetric data: most GPS APIs are Topography exclusive. In any case, this is an interesting problem nonetheless and I'm curious if are already some good algorithms.

Detecting weak blobs in a noise image

I have an image which may contain some blobs. The blobs can be any size, and some will yield a very strong signal, while others are very weak. In this question I will focus on the weak ones because they are the difficult ones to detect.
Here is an example with 4 blobs.
The blob at (480, 180) is the most difficult one to detect. By running a Gaussian filter followed by an opening operation increases the contrast a bit, but not a lot:
The tricky part of this problem is that the natural noise in the background will result in (many) pixels which have a stronger signal than the blob I want to detect. What makes the blob a blob is that it's either a large area with an average increase in intensity, (or a small area with a very strong increase in intensity (not relevant here)).
How can I include this spacial information in order to detect my blob?
It is obvious that I first needs to filter the image with a Gaussian and/or median filter in order to incorporate the nearby region of each pixel into each single pixel value. However, no amount of blurring is enough to make it easy to segment the blobs from the background.
EDIT: Regarding thresholding: Thresholding is very temping, but also problematic by itself. I do not have a region of "pure background" and the larger a blob is, the weaker the signal can be - while still being detectable.
I should also not that the typical image will not have any blobs at all, but just be pure background.
You could try a h-minima transform. It removes any minima under the height of h and increases the height of all other throughs by h. It's defined as the morphological reconstruction of an erosion increased by the height h. Here's the results with h = 35:
It should be a lot easier to manipulate. It also needs a input like segmentation. The difference is that this is more robust. Underestimating h by a relatively large number will only bring you back closer to the original problem image instead of failing completely.
You could try to characterize the background noise to get an estimate, assuming that whatever your application is would have a relatively constant amount of it.
Note that one blue dot between the two large bottom blobs. Even further processing is needed. You could try continuing with the morphology. Something that I have found to work in some 'ink-blot' segmentation cases like this is running through every connected component, calculating their convex hulls and finally the union of all the convex hulls in the image. It usually makes further morphological operations much easier and provides a good estimate for the label.
In my experience, if you can see your gaussian filter size (those little circles), then your filter width is too small. Although terribly expensive, try bumping up the radius on your gaussian, it should continue to improve your results up to its radius matching the radius of the smallest object you are trying to find.
Following that (heavy gaussian), I would do a peak search across the whole image. Cut out any peaks that are too low, and or have too little contrast to the nearest valley/ background.
Don't be afraid to split this into two isolated processing pipelines: ie one filtration and extraction for low contrast spread out blobs, and a completely different one to isolate high contrast spikes (much much easier to find). That being said, a high contrast spike "should" survive even a pretty aggressive filter. Another thing to keep in mind is iterative subtraction, if there are some blobs that can be found easily from the get go, pull them out of the image and then do a stretch (but be careful as you can make the image be whatever you want it to be with too much stretching)
Maybe try an iterative approach using thresholding and edge detection:
Start with a very high threshold (say 90% signal), then run a canny filter (or any binary edge filter you like) on the thresholded image. Count and store the number of pixels (edge pixels) generated.
Proceed to repeat this step for lower and lower thresholds. At a certain point you are going to see a massive spike in edges detected (ie your cool textured background). Then pull back the threshold a little higher and run closing and floodfill on your resulting edge image.

What type of smoothing to use?

Not sure if this may or may not be valid here on SO, but I was hoping someone can advise of the correct algorithm to use.
I have the following RAW data.
In the image you can see "steps". Essentially I wish to get these steps, but then get a moving average of all the data between. In the following image, you can see the moving average:
However you will notice that at the "steps", the moving average decreases the gradient where I wish to keep the high vertical gradient.
Is there any smoothing technique that will take into account a large vertical "offset", but smooth the other data?
Yup, I had to do something similar with images from a spacecraft.
Simple technique #1: use a median filter with a modest width - say about 5 samples, or 7. This provides an output value that is the median of the corresponding input value and several of its immediate neighbors on either side. It will get rid of those spikes, and do a good job preserving the step edges.
The median filter is provided in all number-crunching toolkits that I know of such as Matlab, Python/Numpy, IDL etc., and libraries for compiled languages such as C++, Java (though specific names don't come to mind right now...)
Technique #2, perhaps not quite as good: Use a Savitzky-Golay smoothing filter. This works by effectively making least-square polynomial fits to the data, at each output sample, using the corresponding input sample and a neighborhood of points (much like the median filter). The SG smoother is known for being fairly good at preserving peaks and sharp transistions.
The SG filter is usually provided by most signal processing and number crunching packages, but might not be as common as the median filter.
Technique #3, the most work and requiring the most experience and judgement: Go ahead and use a smoother - moving box average, Gaussian, whatever - but then create an output that blends between the original with the smoothed data. The blend, controlled by a new data series you create, varies from all-original (blending in 0% of the smoothed) to all-smoothed (100%).
To control the blending, start with an edge detector to detect the jumps. You may want to first median-filter the data to get rid of the spikes. Then broaden (dilation in image processing jargon) or smooth and renormalize the the edge detector's output, and flip it around so it gives 0.0 at and near the jumps, and 1.0 everywhere else. Perhaps you want a smooth transition joining them. It is an art to get this right, which depends on how the data will be used - for me, it's usually images to be viewed by Humans. An automated embedded control system might work best if tweaked differently.
The main advantage of this technique is you can plug in whatever kind of smoothing filter you like. It won't have any effect where the blend control value is zero. The main disadvantage is that the jumps, the small neighborhood defined by the manipulated edge detector output, will contain noise.
I recommend first detecting the steps and then smoothing each step individually.
You know how to do the smoothing, and edge/step detection is pretty easy also (see here, for example). A typical edge detection scheme is to smooth your data and then multiply/convolute/cross-corelate it with some filter (for example the array [-1,1] that will show you where the steps are). In a mathematical context this can be viewed as studying the derivative of your plot to find inflection points (for some of the filters).
An alternative "hackish" solution would be to do a moving average but exclude outliers from the smoothing. You can decide what an outlier is by using some threshold t. In other words, for each point p with value v, take x points surrounding it and find the subset of those points which are between v - t and v + t, and take the average of these points as the new value of p.

Image comparison - fast algorithm

I'm looking to create a base table of images and then compare any new images against that to determine if the new image is an exact (or close) duplicate of the base.
For example: if you want to reduce storage of the same image 100's of times, you could store one copy of it and provide reference links to it. When a new image is entered you want to compare to an existing image to make sure it's not a duplicate ... ideas?
One idea of mine was to reduce to a small thumbnail and then randomly pick 100 pixel locations and compare.
Below are three approaches to solving this problem (and there are many others).
The first is a standard approach in computer vision, keypoint matching. This may require some background knowledge to implement, and can be slow.
The second method uses only elementary image processing, and is potentially faster than the first approach, and is straightforward to implement. However, what it gains in understandability, it lacks in robustness -- matching fails on scaled, rotated, or discolored images.
The third method is both fast and robust, but is potentially the hardest to implement.
Keypoint Matching
Better than picking 100 random points is picking 100 important points. Certain parts of an image have more information than others (particularly at edges and corners), and these are the ones you'll want to use for smart image matching. Google "keypoint extraction" and "keypoint matching" and you'll find quite a few academic papers on the subject. These days, SIFT keypoints are arguably the most popular, since they can match images under different scales, rotations, and lighting. Some SIFT implementations can be found here.
One downside to keypoint matching is the running time of a naive implementation: O(n^2m), where n is the number of keypoints in each image, and m is the number of images in the database. Some clever algorithms might find the closest match faster, like quadtrees or binary space partitioning.
Alternative solution: Histogram method
Another less robust but potentially faster solution is to build feature histograms for each image, and choose the image with the histogram closest to the input image's histogram. I implemented this as an undergrad, and we used 3 color histograms (red, green, and blue), and two texture histograms, direction and scale. I'll give the details below, but I should note that this only worked well for matching images VERY similar to the database images. Re-scaled, rotated, or discolored images can fail with this method, but small changes like cropping won't break the algorithm
Computing the color histograms is straightforward -- just pick the range for your histogram buckets, and for each range, tally the number of pixels with a color in that range. For example, consider the "green" histogram, and suppose we choose 4 buckets for our histogram: 0-63, 64-127, 128-191, and 192-255. Then for each pixel, we look at the green value, and add a tally to the appropriate bucket. When we're done tallying, we divide each bucket total by the number of pixels in the entire image to get a normalized histogram for the green channel.
For the texture direction histogram, we started by performing edge detection on the image. Each edge point has a normal vector pointing in the direction perpendicular to the edge. We quantized the normal vector's angle into one of 6 buckets between 0 and PI (since edges have 180-degree symmetry, we converted angles between -PI and 0 to be between 0 and PI). After tallying up the number of edge points in each direction, we have an un-normalized histogram representing texture direction, which we normalized by dividing each bucket by the total number of edge points in the image.
To compute the texture scale histogram, for each edge point, we measured the distance to the next-closest edge point with the same direction. For example, if edge point A has a direction of 45 degrees, the algorithm walks in that direction until it finds another edge point with a direction of 45 degrees (or within a reasonable deviation). After computing this distance for each edge point, we dump those values into a histogram and normalize it by dividing by the total number of edge points.
Now you have 5 histograms for each image. To compare two images, you take the absolute value of the difference between each histogram bucket, and then sum these values. For example, to compare images A and B, we would compute
|A.green_histogram.bucket_1 - B.green_histogram.bucket_1|
for each bucket in the green histogram, and repeat for the other histograms, and then sum up all the results. The smaller the result, the better the match. Repeat for all images in the database, and the match with the smallest result wins. You'd probably want to have a threshold, above which the algorithm concludes that no match was found.
Third Choice - Keypoints + Decision Trees
A third approach that is probably much faster than the other two is using semantic texton forests (PDF). This involves extracting simple keypoints and using a collection decision trees to classify the image. This is faster than simple SIFT keypoint matching, because it avoids the costly matching process, and keypoints are much simpler than SIFT, so keypoint extraction is much faster. However, it preserves the SIFT method's invariance to rotation, scale, and lighting, an important feature that the histogram method lacked.
Update:
My mistake -- the Semantic Texton Forests paper isn't specifically about image matching, but rather region labeling. The original paper that does matching is this one: Keypoint Recognition using Randomized Trees. Also, the papers below continue to develop the ideas and represent the state of the art (c. 2010):
Fast Keypoint Recognition using Random Ferns - faster and more scalable than Lepetit 06
BRIEF: Binary Robust Independent Elementary Features - less robust but very fast -- I think the goal here is real-time matching on smart phones and other handhelds
The best method I know of is to use a Perceptual Hash. There appears to be a good open source implementation of such a hash available at:
http://phash.org/
The main idea is that each image is reduced down to a small hash code or 'fingerprint' by identifying salient features in the original image file and hashing a compact representation of those features (rather than hashing the image data directly). This means that the false positives rate is much reduced over a simplistic approach such as reducing images down to a tiny thumbprint sized image and comparing thumbprints.
phash offers several types of hash and can be used for images, audio or video.
This post was the starting point of my solution, lots of good ideas here so I though I would share my results. The main insight is that I've found a way to get around the slowness of keypoint-based image matching by exploiting the speed of phash.
For the general solution, it's best to employ several strategies. Each algorithm is best suited for certain types of image transformations and you can take advantage of that.
At the top, the fastest algorithms; at the bottom the slowest (though more accurate). You might skip the slow ones if a good match is found at the faster level.
file-hash based (md5,sha1,etc) for exact duplicates
perceptual hashing (phash) for rescaled images
feature-based (SIFT) for modified images
I am having very good results with phash. The accuracy is good for rescaled images. It is not good for (perceptually) modified images (cropped, rotated, mirrored, etc). To deal with the hashing speed we must employ a disk cache/database to maintain the hashes for the haystack.
The really nice thing about phash is that once you build your hash database (which for me is about 1000 images/sec), the searches can be very, very fast, in particular when you can hold the entire hash database in memory. This is fairly practical since a hash is only 8 bytes.
For example, if you have 1 million images it would require an array of 1 million 64-bit hash values (8 MB). On some CPUs this fits in the L2/L3 cache! In practical usage I have seen a corei7 compare at over 1 Giga-hamm/sec, it is only a question of memory bandwidth to the CPU. A 1 Billion-image database is practical on a 64-bit CPU (8GB RAM needed) and searches will not exceed 1 second!
For modified/cropped images it would seem a transform-invariant feature/keypoint detector like SIFT is the way to go. SIFT will produce good keypoints that will detect crop/rotate/mirror etc. However the descriptor compare is very slow compared to hamming distance used by phash. This is a major limitation. There are a lot of compares to do, since there are maximum IxJxK descriptor compares to lookup one image (I=num haystack images, J=target keypoints per haystack image, K=target keypoints per needle image).
To get around the speed issue, I tried using phash around each found keypoint, using the feature size/radius to determine the sub-rectangle. The trick to making this work well, is to grow/shrink the radius to generate different sub-rect levels (on the needle image). Typically the first level (unscaled) will match however often it takes a few more. I'm not 100% sure why this works, but I can imagine it enables features that are too small for phash to work (phash scales images down to 32x32).
Another issue is that SIFT will not distribute the keypoints optimally. If there is a section of the image with a lot of edges the keypoints will cluster there and you won't get any in another area. I am using the GridAdaptedFeatureDetector in OpenCV to improve the distribution. Not sure what grid size is best, I am using a small grid (1x3 or 3x1 depending on image orientation).
You probably want to scale all the haystack images (and needle) to a smaller size prior to feature detection (I use 210px along maximum dimension). This will reduce noise in the image (always a problem for computer vision algorithms), also will focus detector on more prominent features.
For images of people, you might try face detection and use it to determine the image size to scale to and the grid size (for example largest face scaled to be 100px). The feature detector accounts for multiple scale levels (using pyramids) but there is a limitation to how many levels it will use (this is tunable of course).
The keypoint detector is probably working best when it returns less than the number of features you wanted. For example, if you ask for 400 and get 300 back, that's good. If you get 400 back every time, probably some good features had to be left out.
The needle image can have less keypoints than the haystack images and still get good results. Adding more doesn't necessarily get you huge gains, for example with J=400 and K=40 my hit rate is about 92%. With J=400 and K=400 the hit rate only goes up to 96%.
We can take advantage of the extreme speed of the hamming function to solve scaling, rotation, mirroring etc. A multiple-pass technique can be used. On each iteration, transform the sub-rectangles, re-hash, and run the search function again.
My company has about 24million images come in from manufacturers every month. I was looking for a fast solution to ensure that the images we upload to our catalog are new images.
I want to say that I have searched the internet far and wide to attempt to find an ideal solution. I even developed my own edge detection algorithm.
I have evaluated speed and accuracy of multiple models.
My images, which have white backgrounds, work extremely well with phashing. Like redcalx said, I recommend phash or ahash. DO NOT use MD5 Hashing or anyother cryptographic hashes. Unless, you want only EXACT image matches. Any resizing or manipulation that occurs between images will yield a different hash.
For phash/ahash, Check this out: imagehash
I wanted to extend *redcalx'*s post by posting my code and my accuracy.
What I do:
from PIL import Image
from PIL import ImageFilter
import imagehash
img1=Image.open(r"C:\yourlocation")
img2=Image.open(r"C:\yourlocation")
if img1.width<img2.width:
img2=img2.resize((img1.width,img1.height))
else:
img1=img1.resize((img2.width,img2.height))
img1=img1.filter(ImageFilter.BoxBlur(radius=3))
img2=img2.filter(ImageFilter.BoxBlur(radius=3))
phashvalue=imagehash.phash(img1)-imagehash.phash(img2)
ahashvalue=imagehash.average_hash(img1)-imagehash.average_hash(img2)
totalaccuracy=phashvalue+ahashvalue
Here are some of my results:
item1 item2 totalsimilarity
desk1 desk1 3
desk1 phone1 22
chair1 desk1 17
phone1 chair1 34
Hope this helps!
As cartman pointed out, you can use any kind of hash value for finding exact duplicates.
One starting point for finding close images could be here. This is a tool used by CG companies to check if revamped images are still showing essentially the same scene.
I have an idea, which can work and it most likely to be very fast.
You can sub-sample an image to say 80x60 resolution or comparable,
and convert it to grey scale (after subsampling it will be faster).
Process both images you want to compare.
Then run normalised sum of squared differences between two images (the query image and each from the db),
or even better Normalised Cross Correlation, which gives response closer to 1, if
both images are similar.
Then if images are similar you can proceed to more sophisticated techniques
to verify that it is the same images.
Obviously this algorithm is linear in terms of number of images in your database
so even though it is going to be very fast up to 10000 images per second on the modern hardware.
If you need invariance to rotation, then a dominant gradient can be computed
for this small image, and then the whole coordinate system can be rotated to canonical
orientation, this though, will be slower. And no, there is no invariance to scale here.
If you want something more general or using big databases (million of images), then
you need to look into image retrieval theory (loads of papers appeared in the last 5 years).
There are some pointers in other answers. But It might be overkill, and the suggest histogram approach will do the job. Though I would think combination of many different
fast approaches will be even better.
I believe that dropping the size of the image down to an almost icon size, say 48x48, then converting to greyscale, then taking the difference between pixels, or Delta, should work well. Because we're comparing the change in pixel color, rather than the actual pixel color, it won't matter if the image is slightly lighter or darker. Large changes will matter since pixels getting too light/dark will be lost. You can apply this across one row, or as many as you like to increase the accuracy. At most you'd have 47x47=2,209 subtractions to make in order to form a comparable Key.
Picking 100 random points could mean that similar (or occasionally even dissimilar) images would be marked as the same, which I assume is not what you want. MD5 hashes wouldn't work if the images were different formats (png, jpeg, etc), had different sizes, or had different metadata. Reducing all images to a smaller size is a good bet, doing a pixel-for- pixel comparison shouldn't take too long as long as you're using a good image library / fast language, and the size is small enough.
You could try making them tiny, then if they are the same perform another comparison on a larger size - could be a good combination of speed and accuracy...
What we loosely refer to as duplicates can be difficult for algorithms to discern.
Your duplicates can be either:
Exact Duplicates
Near-exact Duplicates. (minor edits of image etc)
perceptual Duplicates (same content, but different view, camera etc)
No1 & 2 are easier to solve. No 3. is very subjective and still a research topic.
I can offer a solution for No1 & 2.
Both solutions use the excellent image hash- hashing library: https://github.com/JohannesBuchner/imagehash
Exact duplicates
Exact duplicates can be found using a perceptual hashing measure.
The phash library is quite good at this. I routinely use it to clean
training data.
Usage (from github site) is as simple as:
from PIL import Image
import imagehash
# image_fns : List of training image files
img_hashes = {}
for img_fn in sorted(image_fns):
hash = imagehash.average_hash(Image.open(image_fn))
if hash in img_hashes:
print( '{} duplicate of {}'.format(image_fn, img_hashes[hash]) )
else:
img_hashes[hash] = image_fn
Near-Exact Duplicates
In this case you will have to set a threshold and compare the hash values for their distance from each
other. This has to be done by trial-and-error for your image content.
from PIL import Image
import imagehash
# image_fns : List of training image files
img_hashes = {}
epsilon = 50
for img_fn1, img_fn2 in zip(image_fns, image_fns[::-1]):
if image_fn1 == image_fn2:
continue
hash1 = imagehash.average_hash(Image.open(image_fn1))
hash2 = imagehash.average_hash(Image.open(image_fn2))
if hash1 - hash2 < epsilon:
print( '{} is near duplicate of {}'.format(image_fn1, image_fn2) )
If you have a large number of images, look into a Bloom filter, which uses multiple hashes for a probablistic but efficient result. If the number of images is not huge, then a cryptographic hash like md5 should be sufficient.
I think it's worth adding to this a phash solution I built that we've been using for a while now: Image::PHash. It is a Perl module, but the main parts are in C. It is several times faster than phash.org and has a few extra features for DCT-based phashes.
We had dozens of millions of images already indexed on a MySQL database, so I wanted something fast and also a way to use MySQL indices (which don't work with hamming distance), which led me to use "reduced" hashes for direct matches, the module doc discusses this.
It's quite simple to use:
use Image::PHash;
my $iph1 = Image::PHash->new('file1.jpg');
my $p1 = $iph1->pHash();
my $iph2 = Image::PHash->new('file2.jpg');
my $p2 = $iph2->pHash();
my $diff = Image::PHash::diff($p1, $p2);
I made a very simple solution in PHP for comparing images several years ago. It calculates a simple hash for each image, and then finds the difference. It works very nice for cropped or cropped with translation versions of the same image.
First I resize the image to a small size, like 24x24 or 36x36. Then I take each column of pixels and find average R,G,B values for this column.
After each column has its own three numbers, I do two passes: first on odd columns and second on even ones. The first pass sums all the processed cols and then divides by their number ( [1] + [2] + [5] + [N-1] / (N/2) ). The second pass works in another manner: ( [3] - [4] + [6] - [8] ... / (N/2) ).
So now I have two numbers. As I found out experimenting, the first one is a major one: if it's far from the values of another image, they are not similar from the human point of view at all.
So, the first one represents the average brightness of the image (again, you can pay most attention to green channel, then the red one, etc, but the default R->G->B order works just fine). The second number can be compared if the first two are very close, and it in fact represents the overall contrast of the image: if we have some black/white pattern or any contrast scene (lighted buildings in the city at night, for example) and if we are lucky, we will get huge numbers here if out positive members of sum are mostly bright, and negative ones are mostly dark, or vice versa. As I want my values to be always positive, I divide by 2 and shift by 127 here.
I wrote the code in PHP in 2017, and seems I lost the code. But I still have the screenshots:
The same image:
Black & White version:
Cropped version:
Another image, ranslated version:
Same color gamut as 4th, but another scene:
I tuned the difference thresholds so that the results are really nice. But as you can see, this simple algorithm cannot do anything good with simple scene translations.
On a side note I can notice that a modification can be written to make cropped copies from each of two images at 75-80 percent, 4 at the corners or 8 at the corners and middles of the edges, and then by comparing the cropped variants with another whole image just the same way; and if one of them gets a significantly better similarity score, then use its value instead of the default one).

Algorithm to compare two images

Given two different image files (in whatever format I choose), I need to write a program to predict the chance if one being the illegal copy of another. The author of the copy may do stuff like rotating, making negative, or adding trivial details (as well as changing the dimension of the image).
Do you know any algorithm to do this kind of job?
These are simply ideas I've had thinking about the problem, never tried it but I like thinking about problems like this!
Before you begin
Consider normalising the pictures, if one is a higher resolution than the other, consider the option that one of them is a compressed version of the other, therefore scaling the resolution down might provide more accurate results.
Consider scanning various prospective areas of the image that could represent zoomed portions of the image and various positions and rotations. It starts getting tricky if one of the images are a skewed version of another, these are the sort of limitations you should identify and compromise on.
Matlab is an excellent tool for testing and evaluating images.
Testing the algorithms
You should test (at the minimum) a large human analysed set of test data where matches are known beforehand. If for example in your test data you have 1,000 images where 5% of them match, you now have a reasonably reliable benchmark. An algorithm that finds 10% positives is not as good as one that finds 4% of positives in our test data. However, one algorithm may find all the matches, but also have a large 20% false positive rate, so there are several ways to rate your algorithms.
The test data should attempt to be designed to cover as many types of dynamics as possible that you would expect to find in the real world.
It is important to note that each algorithm to be useful must perform better than random guessing, otherwise it is useless to us!
You can then apply your software into the real world in a controlled way and start to analyse the results it produces. This is the sort of software project which can go on for infinitum, there are always tweaks and improvements you can make, it is important to bear that in mind when designing it as it is easy to fall into the trap of the never ending project.
Colour Buckets
With two pictures, scan each pixel and count the colours. For example you might have the 'buckets':
white
red
blue
green
black
(Obviously you would have a higher resolution of counters). Every time you find a 'red' pixel, you increment the red counter. Each bucket can be representative of spectrum of colours, the higher resolution the more accurate but you should experiment with an acceptable difference rate.
Once you have your totals, compare it to the totals for a second image. You might find that each image has a fairly unique footprint, enough to identify matches.
Edge detection
How about using Edge Detection.
(source: wikimedia.org)
With two similar pictures edge detection should provide you with a usable and fairly reliable unique footprint.
Take both pictures, and apply edge detection. Maybe measure the average thickness of the edges and then calculate the probability the image could be scaled, and rescale if necessary. Below is an example of an applied Gabor Filter (a type of edge detection) in various rotations.
Compare the pictures pixel for pixel, count the matches and the non matches. If they are within a certain threshold of error, you have a match. Otherwise, you could try reducing the resolution up to a certain point and see if the probability of a match improves.
Regions of Interest
Some images may have distinctive segments/regions of interest. These regions probably contrast highly with the rest of the image, and are a good item to search for in your other images to find matches. Take this image for example:
(source: meetthegimp.org)
The construction worker in blue is a region of interest and can be used as a search object. There are probably several ways you could extract properties/data from this region of interest and use them to search your data set.
If you have more than 2 regions of interest, you can measure the distances between them. Take this simplified example:
(source: per2000.eu)
We have 3 clear regions of interest. The distance between region 1 and 2 may be 200 pixels, between 1 and 3 400 pixels, and 2 and 3 200 pixels.
Search other images for similar regions of interest, normalise the distance values and see if you have potential matches. This technique could work well for rotated and scaled images. The more regions of interest you have, the probability of a match increases as each distance measurement matches.
It is important to think about the context of your data set. If for example your data set is modern art, then regions of interest would work quite well, as regions of interest were probably designed to be a fundamental part of the final image. If however you are dealing with images of construction sites, regions of interest may be interpreted by the illegal copier as ugly and may be cropped/edited out liberally. Keep in mind common features of your dataset, and attempt to exploit that knowledge.
Morphing
Morphing two images is the process of turning one image into the other through a set of steps:
Note, this is different to fading one image into another!
There are many software packages that can morph images. It's traditionaly used as a transitional effect, two images don't morph into something halfway usually, one extreme morphs into the other extreme as the final result.
Why could this be useful? Dependant on the morphing algorithm you use, there may be a relationship between similarity of images, and some parameters of the morphing algorithm.
In a grossly over simplified example, one algorithm might execute faster when there are less changes to be made. We then know there is a higher probability that these two images share properties with each other.
This technique could work well for rotated, distorted, skewed, zoomed, all types of copied images. Again this is just an idea I have had, it's not based on any researched academia as far as I am aware (I haven't look hard though), so it may be a lot of work for you with limited/no results.
Zipping
Ow's answer in this question is excellent, I remember reading about these sort of techniques studying AI. It is quite effective at comparing corpus lexicons.
One interesting optimisation when comparing corpuses is that you can remove words considered to be too common, for example 'The', 'A', 'And' etc. These words dilute our result, we want to work out how different the two corpus are so these can be removed before processing. Perhaps there are similar common signals in images that could be stripped before compression? It might be worth looking into.
Compression ratio is a very quick and reasonably effective way of determining how similar two sets of data are. Reading up about how compression works will give you a good idea why this could be so effective. For a fast to release algorithm this would probably be a good starting point.
Transparency
Again I am unsure how transparency data is stored for certain image types, gif png etc, but this will be extractable and would serve as an effective simplified cut out to compare with your data sets transparency.
Inverting Signals
An image is just a signal. If you play a noise from a speaker, and you play the opposite noise in another speaker in perfect sync at the exact same volume, they cancel each other out.
(source: themotorreport.com.au)
Invert on of the images, and add it onto your other image. Scale it/loop positions repetitively until you find a resulting image where enough of the pixels are white (or black? I'll refer to it as a neutral canvas) to provide you with a positive match, or partial match.
However, consider two images that are equal, except one of them has a brighten effect applied to it:
(source: mcburrz.com)
Inverting one of them, then adding it to the other will not result in a neutral canvas which is what we are aiming for. However, when comparing the pixels from both original images, we can definatly see a clear relationship between the two.
I haven't studied colour for some years now, and am unsure if the colour spectrum is on a linear scale, but if you determined the average factor of colour difference between both pictures, you can use this value to normalise the data before processing with this technique.
Tree Data structures
At first these don't seem to fit for the problem, but I think they could work.
You could think about extracting certain properties of an image (for example colour bins) and generate a huffman tree or similar data structure. You might be able to compare two trees for similarity. This wouldn't work well for photographic data for example with a large spectrum of colour, but cartoons or other reduced colour set images this might work.
This probably wouldn't work, but it's an idea. The trie datastructure is great at storing lexicons, for example a dictionarty. It's a prefix tree. Perhaps it's possible to build an image equivalent of a lexicon, (again I can only think of colours) to construct a trie. If you reduced say a 300x300 image into 5x5 squares, then decompose each 5x5 square into a sequence of colours you could construct a trie from the resulting data. If a 2x2 square contains:
FFFFFF|000000|FDFD44|FFFFFF
We have a fairly unique trie code that extends 24 levels, increasing/decreasing the levels (IE reducing/increasing the size of our sub square) may yield more accurate results.
Comparing trie trees should be reasonably easy, and could possible provide effective results.
More ideas
I stumbled accross an interesting paper breif about classification of satellite imagery, it outlines:
Texture measures considered are: cooccurrence matrices, gray-level differences, texture-tone analysis, features derived from the Fourier spectrum, and Gabor filters. Some Fourier features and some Gabor filters were found to be good choices, in particular when a single frequency band was used for classification.
It may be worth investigating those measurements in more detail, although some of them may not be relevant to your data set.
Other things to consider
There are probably a lot of papers on this sort of thing, so reading some of them should help although they can be very technical. It is an extremely difficult area in computing, with many fruitless hours of work spent by many people attempting to do similar things. Keeping it simple and building upon those ideas would be the best way to go. It should be a reasonably difficult challenge to create an algorithm with a better than random match rate, and to start improving on that really does start to get quite hard to achieve.
Each method would probably need to be tested and tweaked thoroughly, if you have any information about the type of picture you will be checking as well, this would be useful. For example advertisements, many of them would have text in them, so doing text recognition would be an easy and probably very reliable way of finding matches especially when combined with other solutions. As mentioned earlier, attempt to exploit common properties of your data set.
Combining alternative measurements and techniques each that can have a weighted vote (dependant on their effectiveness) would be one way you could create a system that generates more accurate results.
If employing multiple algorithms, as mentioned at the begining of this answer, one may find all the positives but have a false positive rate of 20%, it would be of interest to study the properties/strengths/weaknesses of other algorithms as another algorithm may be effective in eliminating false positives returned from another.
Be careful to not fall into attempting to complete the never ending project, good luck!
Read the paper: Porikli, Fatih, Oncel Tuzel, and Peter Meer. “Covariance Tracking Using Model Update Based
on Means on Riemannian Manifolds”. (2006) IEEE Computer Vision and Pattern Recognition.
I was successfully able to detect overlapping regions in images captured from adjacent webcams using the technique presented in this paper. My covariance matrix was composed of Sobel, canny and SUSAN aspect/edge detection outputs, as well as the original greyscale pixels.
An idea:
use keypoint detectors to find scale- and transform- invariant descriptors of some points in the image (e.g. SIFT, SURF, GLOH, or LESH).
try to align keypoints with similar descriptors from both images (like in panorama stitching), allow for some image transforms if necessary (e.g. scale & rotate, or elastic stretching).
if many keypoints align well (exists such a transform, that keypoint alignment error is low; or transformation "energy" is low, etc.), you likely have similar images.
Step 2 is not trivial. In particular, you may need to use a smart algorithm to find the most similar keypoint on the other image. Point descriptors are usually very high-dimensional (like a hundred parameters), and there are many points to look through. kd-trees may be useful here, hash lookups don't work well.
Variants:
Detect edges or other features instead of points.
It is indeed much less simple than it seems :-) Nick's suggestion is a good one.
To get started, keep in mind that any worthwhile comparison method will essentially work by converting the images into a different form -- a form which makes it easier to pick similar features out. Usually, this stuff doesn't make for very light reading ...
One of the simplest examples I can think of is simply using the color space of each image. If two images have highly similar color distributions, then you can be reasonably sure that they show the same thing. At least, you can have enough certainty to flag it, or do more testing. Comparing images in color space will also resist things such as rotation, scaling, and some cropping. It won't, of course, resist heavy modification of the image or heavy recoloring (and even a simple hue shift will be somewhat tricky).
http://en.wikipedia.org/wiki/RGB_color_space
http://upvector.com/index.php?section=tutorials&subsection=tutorials/colorspace
Another example involves something called the Hough Transform. This transform essentially decomposes an image into a set of lines. You can then take some of the 'strongest' lines in each image and see if they line up. You can do some extra work to try and compensate for rotation and scaling too -- and in this case, since comparing a few lines is MUCH less computational work than doing the same to entire images -- it won't be so bad.
http://homepages.inf.ed.ac.uk/amos/hough.html
http://rkb.home.cern.ch/rkb/AN16pp/node122.html
http://en.wikipedia.org/wiki/Hough_transform
In the form described by you, the problem is tough. Do you consider copy, paste of part of the image into another larger image as a copy ? etc.
What we loosely refer to as duplicates can be difficult for algorithms to discern.
Your duplicates can be either:
Exact Duplicates
Near-exact Duplicates. (minor edits of image etc)
perceptual Duplicates (same content, but different view, camera etc)
No1 & 2 are easier to solve. No 3. is very subjective and still a research topic.
I can offer a solution for No1 & 2.
Both solutions use the excellent image hash- hashing library: https://github.com/JohannesBuchner/imagehash
Exact duplicates
Exact duplicates can be found using a perceptual hashing measure.
The phash library is quite good at this. I routinely use it to clean
training data.
Usage (from github site) is as simple as:
from PIL import Image
import imagehash
# image_fns : List of training image files
img_hashes = {}
for img_fn in sorted(image_fns):
hash = imagehash.average_hash(Image.open(image_fn))
if hash in img_hashes:
print( '{} duplicate of {}'.format(image_fn, img_hashes[hash]) )
else:
img_hashes[hash] = image_fn
Near-Exact Duplicates
In this case you will have to set a threshold and compare the hash values for their distance from each
other. This has to be done by trial-and-error for your image content.
from PIL import Image
import imagehash
# image_fns : List of training image files
img_hashes = {}
epsilon = 50
for img_fn1, img_fn2 in zip(image_fns, image_fns[::-1]):
if image_fn1 == image_fn2:
continue
hash1 = imagehash.average_hash(Image.open(image_fn1))
hash2 = imagehash.average_hash(Image.open(image_fn2))
if hash1 - hash2 < epsilon:
print( '{} is near duplicate of {}'.format(image_fn1, image_fn2) )
If you take a step-back, this is easier to solve if you watermark the master images.
You will need to use a watermarking scheme to embed a code into the image. To take a step back, as opposed to some of the low-level approaches (edge detection etc) suggested by some folks, a watermarking method is superior because:
It is resistant to Signal processing attacks
► Signal enhancement – sharpening, contrast, etc.
► Filtering – median, low pass, high pass, etc.
► Additive noise – Gaussian, uniform, etc.
► Lossy compression – JPEG, MPEG, etc.
It is resistant to Geometric attacks
► Affine transforms
► Data reduction – cropping, clipping, etc.
► Random local distortions
► Warping
Do some research on watermarking algorithms and you will be on the right path to solving your problem. (
Note: You can benchmark you method using the STIRMARK dataset. It is an accepted standard for this type of application.
This is just a suggestion, it might not work and I'm prepared to be called on this.
This will generate false positives, but hopefully not false negatives.
Resize both of the images so that they are the same size (I assume that the ratios of widths to lengths are the same in both images).
Compress a bitmap of both images with a lossless compression algorithm (e.g. gzip).
Find pairs of files that have similar file sizes. For instance, you could just sort every pair of files you have by how similar the file sizes are and retrieve the top X.
As I said, this will definitely generate false positives, but hopefully not false negatives. You can implement this in five minutes, whereas the Porikil et. al. would probably require extensive work.
I believe if you're willing to apply the approach to every possible orientation and to negative versions, a good start to image recognition (with good reliability) is to use eigenfaces: http://en.wikipedia.org/wiki/Eigenface
Another idea would be to transform both images into vectors of their components. A good way to do this is to create a vector that operates in x*y dimensions (x being the width of your image and y being the height), with the value for each dimension applying to the (x,y) pixel value. Then run a variant of K-Nearest Neighbours with two categories: match and no match. If it's sufficiently close to the original image it will fit in the match category, if not then it won't.
K Nearest Neighbours(KNN) can be found here, there are other good explanations of it on the web too: http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm
The benefits of KNN is that the more variants you're comparing to the original image, the more accurate the algorithm becomes. The downside is you need a catalogue of images to train the system first.
If you're willing to consider a different approach altogether to detecting illegal copies of your images, you could consider watermarking. (from 1.4)
...inserts copyright information into the digital object without the loss of quality. Whenever the copyright of a digital object is in question, this information is extracted to identify the rightful owner. It is also possible to encode the identity of the original buyer along with the identity of the copyright holder, which allows tracing of any unauthorized copies.
While it's also a complex field, there are techniques that allow the watermark information to persist through gross image alteration: (from 1.9)
... any signal transform of reasonable strength cannot remove the watermark. Hence a pirate willing to remove the watermark will not succeed unless they debase the document too much to be of commercial interest.
of course, the faq calls implementing this approach: "...very challenging" but if you succeed with it, you get a high confidence of whether the image is a copy or not, rather than a percentage likelihood.
If you're running Linux I would suggest two tools:
align_image_stack from package hugin-tools - is a commandline program that can automatically correct rotation, scaling, and other distortions (it's mostly intended for compositing HDR photography, but works for video frames and other documents too). More information: http://hugin.sourceforge.net/docs/manual/Align_image_stack.html
compare from package imagemagick - a program that can find and count the amount of different pixels in two images. Here's a neat tutorial: http://www.imagemagick.org/Usage/compare/ uising the -fuzz N% you can increase the error tolerance. The higher the N the higher the error tolerance to still count two pixels as the same.
align_image_stack should correct any offset so the compare command will actually have a chance of detecting same pixels.

Resources