Windows X Unix in USB communication - windows

inHi, this question is fast, but from my point of view its pretty hard. I have been messing with implementing USB device built from MCU. So I found project called V-USB which is software-emulated USB interface for Atmel MCUs. But this is not so important.
The question is, on their site, they say that using custom USB class, you can simply write host software on Unix, but you need driver DLL for Windows. The problem is, they dont explain why.
So, please, why? I dont know Unix based systems, but I thought that the very basics of different OS are the same becouse thay rise from the same hardware, and even Unix cannot do HW IO operations from user mode.
I know about libraries for USB communication like LibUSB and so, but I want to know the very reason why thay say that its easy on Unix. Thanks.
EDIT:
Thanks for answer, but can I have further question? How this everything is a file works? I mean, my vision of driver on Windows is a program running in kernel mode, thus allowed to access CPU IO ports, which either provides functions to OS by some standarts, to allow Windows to use it (for example HDD driver must be accessible from filesystem driver by standardised set of functions, to allow any HDD work the same).
With this all you have to do is call drivers via WinAPI function or directly call its functions. But USB implements new feature which is different classes. So there is main USB root driver to handle USB and calling right secondary drivers for right devices. Than there is the same procedure, you just call your USB driver.
But if in Unix everything is a file, how are handled different classes? I just cannot imahine how this works in some analogy to Windows way. Does that file represents the way to communicate with USB root driver?

Everything in UNIX is a file, which supports simple operations. No matter if you are communicating via a terminal or a via a usb device, everything is a stream of bytes to a file.
* read
* write
* lseek
* close

Related

Device interface over USB

I have an usb device (pole display), which i don't have driver for.
I installed generic usb driver and opened the port for sending(I use bulk transfer) data to device.
With usb monitoring software i see my data gets to device, but nothing much happens on device side.
The device commands(ESC/POS) work when transfered over (virtual) com port, but not over usb port.
Shouldn't device process commands the same way regardless connection type (com vs usb)?
How can i figure out what commands work with the device (for example, if i send some text, i want it to show on display)?
Any help is appreciated!
Look at the USB descriptors the device reports in order to determine its class. If it is a custom device and not a standard class then you'll likely not be able to work with it. There is a big difference between old RS-232 COM protocol and USB. USB devices can have multiple configurations and endpoints, each responding to data in different ways. Many classes exist and are pretty standard (CDC-ACM is typically used for virtual serial ports.) However, it's not uncommon for device manufacturers to include OEM specific configurations and endpoints which can be used for their own custom interfaces, firmware loading, etc.
Is there any initialization data transmitted through the COM port when connecting the device? The device surely can treat COM and USB different, but another possible thing that goes wrong is that the device needs to hear some sort of "I'm going to start sending commands"-signal from you first, and that signal may be different between COM and USB.
So what I would recommend is first (if you have not done that yet) see what data is sent to initialize the COM connection, and if that doesn't have an obvious USB counterpart, connect it to a PC where you do have drivers (assuming that is available somewhere and somehow, which is possible if e.g. you ask this due to OS incompatibility) and see how the connection is initialized there.
If the first doesn't work and the second is unavailable to you, then I'm afraid there's little I can do to help you, since it's usually not visible for you what commands the device wants to hear other than by guesswork, documentation, or comparing to similar devices where you do have that data available.

USB linux gadget zero driver communicate with Windows host

I need to set up USB communication between a Windows 7 host and a Linux device for data transfer. I was able to compile the Linux kernel on the device to include the Gadget Zero driver in the kernel (not as a loadable module - Linux version 3.0.15). My project has some requirements, which also explains why I chose Gadget Zero:
1) On the Windows 7 host, a kernel mode driver must be used to communicate over the USB connection for sending and receiving bulk data. (speed is not important, not a lot of data at once).
2) On the linux device, no requirements on USB side except send and receive data easily over USB link. The data received will eventually be "unmarshalled" to call functions in another kernel module (and those responses packaged and sent back to the host).
3) Multiple linux devices will be connected to the host, so need easy way to enumerate connected devices and communicate with them.
So due to the requirements, I decided against the Gadget Serial. I'm having serious issues sending and receiving data over the virtual COM port in kernel mode (KMDF) in Win 7 host. WinUSB does not seem to want to open my attached device (I'm using KMDF windows USB driver from template in VS2012) Also, the gadget serial driver on the linux side, I cannot find the functions where the data is received and sent. Plus, any received data on the linux device seems to be echoed back to the host for some reason. (and to test this, I wrote a simple user-mode app in Windows, which is a no-no for my project).
Gadget Zero, it appears much simpler on the linux side. I can plug the USB cable to the Win7 host, and I can get the device to appear in the device manager. However, again I am having problems with getting communication going over the link. Gadget Zero has 2 bulk endpoints, so this shouldn't be an issue. Surely, someone has made data communication possible between a Windows host and a linux device using Gadget Zero? With Gadget Zero, it should be easy to enumerate the connected linux devices and communicate with them.
The trick is to keep the Windows side communication in kernel mode. Can someone point me in the right direction perhaps with Gadget Zero, Windows 7 KMDF, and some sample source code? I have a hard time believing no one has done this before because my internet searches don't turn up much. (and mostly user-mode solutions with Gadget Serial).
Thanks!
So you're writing a Win32 driver in which you want to communicate with your linuxed usb? I haven't written much win32 kernel code, but I believe I've seen a huge section in the doc, saying something like "This is how you make usb drivers"... That'd be it. In other words, when in kernel mode you have access to the full kernel usb layer. You don't need an existing driver or whatnot.
On the linux side you can use the serial gadget, in a different run mode. Only the default run mode, registers it self as VCP. There exist a more basic mode:
modprobe g_serial use_acm=0
Give it your own vendor id and you'll be able to attach your very own custom win32 driver. The 'multiple linux devices' will be handled by Windows. (Multiple instances of your driver, will be initiated.)
The echo you're seeing btw, is most likely a terminal feature. (The terminal mode on uarts will echo.) You have to disable it, when connecting. And now that you're at it, you also have to disable the xon/xoff, esc chars etc. (Standard legacy rubbish.)
And another thing. I'm not sure the gadget zero actually sends the data onto the line. It's meant for testing the gadget framework. (I could be mistaken though.)
Anyway, you've prolly solved this issue years ago. I'd be nice to know what you came up with.

Replace Windows USB Class Driver with a custom driver?

I wonder if anyone can help at all, a bit of a specialist problem this.
I have an application that needs to read and analyse a number of USB devices (not simultaneously, they are each run in seperate tests and could in theory be run on different machines).
Each of the USB devices is based on the USB HID class, and are manufactured by different companies, none of these USB devices are designed to be run on PC, but are meant for a different platform, however for the purposes of testing the devices the client has requested that the test application is run from a PC.
Some of the devices will start up, be recognised by windows which will initialise and start them correctly using the generic HID class driver built into windows, the devices will then start sending correct data packets of the data to be tested.
Some of the devices will start up, be recognised by windows which will try to start them but fail to fully to initialise them leaving them in a half initialised state. This is fine, as I can use my beagle protocol analyser to capture the initialisation packets from the genuine platform and then use the LibUSBDotNet library to replicate the remaining packets in the initialisation sequence and get them to start sending the packets correctly.
The problem I have is with one particular device (though there are some more I haven't tested yet so it's quite possible one of those may also exhibit the same problem). The issue is the the Windows HID class driver recognises the device and trys to initialise and start it, this works after a fashion and the device starts sending data.
The problem is that the data being sent is different to that which is sent to the genuine platform (containing only a subset of the full data). It's as though windows has initialised the device into a different mode.
When I capture the initialisation packets from both the PC and the genuine platform using my USB protocol analyser I see that Windows is sending some slightly different initialisation packets. Using LibUSBDotNet to resend the correct packets once Windows has already started the device seems to have no effect.
My problem is that I need to stop windows from trying to initialise the device using the standard HID class driver, I've tried removing the driver in Device Manager but it still initialises it (and the driver is magically reassigned in device manager). I've done some investigation and there are possible alternatives:
Create a specific driver which windows will assign to the particular VID/PID of the device but that does nothing, then I can use LibUSBDotNet to send the correct initialisation sequence to the device from within my own code.
Use something like WinUSB to create a proper driver for the device (or possibly to create a "dead" driver like 1.
Will a driver with a specific VID/PID defined be used by windows in preference to it's inbuilt USB HID class driver? If not then I would be wasting my time going down this route?
Note, my mac initialises the problem device correctly, and I've asked the question of the client whether the application can be developed for Mac and their answer was frustrating Windows only.
I've no experience in writing proper Windows drivers, though I have experience in talking to USB at a relatively low level (so that part doesn't worry too much). Can anyone suggest a good course of action (before I potentially waste weeks investigating how to write drivers for the PC only to find my selected course of action can't deliver what I required).
Any help or suggest much appreciated.
Thanks,
Rich
Added after trying suggestions below:
I tried using the LibUsbDotNet inf wizard to create the necessary files and install them and this appeared to work - certainly the device was now appearing in Device Manager as a libusb-win32 device - not HID device and the associated driver was libusb driver. Even after doing this the device still seems to become initialised and start sending the wrong type of data packets although now those packets are no longer handled by the class driver and are just lost.
I also came across Zadig which has a similar inf creation wizard for WinUSB and this had exactly the same result.
A colleague has suggested that it might not be windows itself that is switching the device into this mode, rather the device identifying that it is connected to a windows machine and switching itself into this mode. I suspect this is the case, in which case I am stuck - time to have another conversation with the client.
Many thanks for the help.
You're using libusb-win32 as a filter driver; that is, the HidUsb device driver is assigned and loaded for your device, but then the libusb-win32 driver is loaded on top and gives you unobstructed access to the hardware.
If you don't want a HidUsb (or any other class driver) to perform any communication "on your behalf", simply associate libusb-win32 as a device driver with your hardware. For this, you'd have to create an .INF file associating it with the VID/PID/Revision of each USB device. If I recall correctly, libusb-win32 even comes with a utility to generate such .INF files.
If you install this .INF file e.g. with PnpUtil.exe (available on Vista or higher), you might still run into issues where, although you're a better match than the generic HID driver, the HID driver is still selected.
The generic HID driver matches devices by their Compatible IDs (i.e. by a USB interface class) while you'd be matching by Hardware IDs (which have higher priority). However, Windows might give priority to other aspects, such as your driver being unsigned. Read: How Windows Selects Drivers
Luckily, even in that scenario, signing drivers with a self-generated certificate (use CertUtil.exe, MakeCat.exe and SignTool.exe) is not too difficult.

How can I make a custom USB device show up in Windows as a COM Port?

I have developed a USB device that communicates with linux over a simple but proprietary interface and some custom Linux drivers. My goal is to port this to Windows without writing windows drivers. What I would like to do is find an open source or inbuilt class driver for windows that would look like a COM port in Windows. Then I would tailor the embedded software to match what ever protocol and descriptors the virtual COM port expects to see.
The idea would be that I could plug my device in to a Windows machine and a relatively high speed COM port would appear with out me having to develop Windows drivers for it.
I have been looking at the USB CDC (Communications Device Class) documentation and it looks promising, but I don't know which sub interface would be best to use so that it would show up as a COM port.
Has anyone here done any work like this before or could provide some insight?
Specifically:
Are there virtual COM drivers "built in" to windows or would I need a 3rd party driver.
Which CDC sub class should I use for simple RS232 emulation (No need for modem AT commands, etc)
Is there a better option to do what I am trying to do.
Thanks
There is a USB-to-serial driver built in to Windows that will do what you want. It is called usbser.sys:
http://support.microsoft.com/kb/837637
You will have to write an INF file and distribute that to your users, but that will not be too hard because it is only a few kilobytes of text and you can find examples online.
I'm not aware of any great documentation for this driver by Microsoft, so my advice would be to find some other device that uses it, such as Pololu Wixel, and copy what they did.
Here are the device descriptors we used and the special control tranfers we had to implement:
https://github.com/pololu/wixel-sdk/blob/master/libraries/src/usb_cdc_acm/usb_cdc_acm.c
You can see our INF file, wixel_serial.inf, by downloading the software and looking in the drivers folder:
http://www.pololu.com/docs/0J46/3.a
(There are other files in there that are not necessary for you.)
You can also look at the Arduino Uno because they use the same driver.
Whatever you do, please don't use our USB Vendor ID in your product! You need to get your own.
Update: In Windows 10, you don't need an INF file anymore because of the new usbser.inf driver that comes with Windows.
If you are using a UART you can easily interface it to a FTDI USB chip like http://www.ftdichip.com/Products/ICs/FT232R.htm or a Prolific like http://www.prolific.com.tw/eng/products.asp?id=59
For development, prototype and testing I have half dozen of these laying around http://www.pololu.com/catalog/product/391
I connect it directly to the UART pins on AVR and 8051 micros.

Device drivers and Windows

I am trying to complete the picture of how the PC and the OS interacts together. And I am at point, where I am little out of guess when it comes to device drivers.
Please, don´t write things like its too complicated, or you don´t need to know when using high programming laguage and winapi functions. I want to know, it´s for study purposes.
So, the very basic structure of how OS and PC (by PC I mean of course HW) is how I see it is that all other than direct CPU commands, which can CPU do on itself (arithmetic operation, its registers access and memory access) must pass thru OS. Mainly becouse from ring level 3 you cannot use in and out intructions which are used for acesing other HW. I know that there is MMIO,but it must be set by port comunication first.
It was not like this all the time. Even I am bit young to remember MSDOS, I know you could access HW directly, becouse there ws no limitation, no ring mode. So you could to write string to diplay use wheather DOS function, or directly acess video card memory and write it by yourself.
But as OS developed, there is no longer this possibility. But it is fine, since OS now handles all the HW comunication, and frankly it more convinient and much more safe (I would say the only option) in multitasking environment. So nowdays you instead of using int instructions to use BIOS mapped function or DOS function you call dll which internally than handles everything you don´t need to know about.
I understand this. I also undrstand that device drivers is the piece of code that runs in ring level 0, so it can do all the HW interactions. But what I don´t understand is connection between OS and device driver. Let´s take a example - I want to make a sound card make a sound. So I call windows API to acess sound card, but what happens than? Does windows call device drivers to do so?
But if it does call device driver, does it mean, that all device drivers which can be called by winAPI function, must have routines named in some specific way? I mean, when I have new sound card, must its drivers have functions named same as the old one? So Windows can actually call the same function from its perspective? But if Windows have predefined sets of functions requored by device drivers, that it cannot use new drivers that doesent existed before last version of OS came out.
Please, help me understand this mess. I am really getting mad. Thanks.
A Windows device driver is a bit like a DLL: except that instead of an application dynamic linking/loading it, it's the O/S that dynamic links/loads it.
Registry entries tell the O/S what device drivers exist (so that the O/S knows which device drivers to dynamic-link/load).
The device drivers run in ring 0. In ring zero, they (device drivers) don't have access to (can't link to or use) Windows APIs: instead they have access to various NT kernel APIs.
But if it does call device driver, does it mean, that all device drivers which can be called by winAPI function, must have routines named in some specific way? I mean, when I have new sound card, must its drivers have functions named same as the old one? So Windows can actually call the same function from its perspective?
Basically yes. All the device drivers within a given type or class (e.g. all video drivers, or all disk drivers) have a similar API, which is invoked by the O/S (and/or invoked by higher-level drivers, for example disk drivers are used/invoked by file system drivers).
The Windows Device Driver Kit defines the various APIs and includes sample drivers for the various types of device.
But if Windows have predefined sets of functions requored by device drivers, that it cannot use new drivers that doesent existed before last version of OS came out.
The O/S is dynamic-linking to the device driver functions: because device driver APIs are predefined, device drivers are interchangeable as far as the O/S is concerned; new device drivers can be written, provided they support (are backward-compatible with) the standard device driver API.
The dynamic-linking mechanism is very similar to the way in which COM objects or C++ classes implement any predefined pure-abstract interface: a header file in the DDK declares the pure-abstract interface (like virtual functions), device drivers implement these functions, and the O/S loads the drivers and invokes these functions.
The basics:
Please note that this explanation is simplified and sometime only true for most cases and not all.
Most HW devices you will ever encounter will have these basic operations:
Write to memory(or Registers) on them.
Read from memory(or Registers) on them.
This is enough to control the HW, to give it the data it needs, and to get the data you want from it.
These memory areas are mapped by the BIOS and/or the OS to the Physical memory range on your PC (which may in turn be accessed by your driver.)
So we now have two operations READ and WRITE that the device driver knows to do.
In addition, the driver can read and write in a manner that does not involve the cpu. This is called Direct Memory Access (DMA) and usually performed by your HW.
The last type of operation is called INTERRUPTS and is meant for your HW to notify your driver of something that just happend. This is usually done by the HW interrupting the CPU and calling your driver to perform some operation in high priority. For example: an image is ready in the HW to be read by the driver.

Resources