Is there any applicable approach to find two disjoint spanning trees of an undirected graph or to check if a certain graph has two disjoint spanning trees
This is an example of Matroid union. Consider the graphic matroid where the basis are given by the spanning trees. Now the union of this matroid with itself is again a matroid. Your question is about the size of the basis of this matroid. (whether there exist a basis of size $2(|V|-1)$.
The canonical algorithm for this is Matroid partitioning algorithm. There exist an algorithm which does does the following: It maintains a set of edges with a partitioning into two forests. At each step given a new edge $e$, it decides whether there exist a reshuffling of the current partition into a new partition such that the new edge can be added to the set and the partition remains independent. And if not, it somehow will provide a certificate that it cannot.
For details look at a course in Comb. Optimization or the book by Schriver.
Not sure it helps much in the applicable side but Tutte [1961a] and Nash-Williams [1961] independently characterized graphs having k pairwise edge-disjoint spanning trees:
A graph G has k pairwise edge-disjoint spanning trees iff for every partition of the vertices of G into r sets, there are at least k(r-1) edges of G whose endpoints are in different sets of the partition.
Use k=2 and it may give you a lead for your needs.
According to A Note on Finding Minimum-Cost Edge-Disjoint Spanning Trees, this can be solved in O(k2n2) where k is the number of disjoint spanning trees, and n is the number of vertices.
Unfortunately, all but the first page of the article is behind a paywall.
Assuming that the desire is to find spanning trees with disjoint edge sets, what about:
Given a graph G determining the minimum spanning tree A of G.
Defining B = G - A by deleting all edges from G that also lie in A.
Checking if B is connected.
The nature of a minimum spanning tree somehow makes me intuitively believe that choosing it as one of the two spanning trees gives you maximum freedom in constructing the other (that hopefully turns out to be edge disjunctive).
What do You guys think?
edit
The above algorithm makes no sense as a spanning tree is a tree and therefore needs to be acyclic. But there is no guarantee that B = G - A is acyclic.
However, this observations (thx#Tormer) led me to another idea:
Given a graph G determine the minimum spanning tree A of G.
Define B = (V[G], E[G] \ E[A]) where V[G] describes the vertices of G and E[G] describes the edges of G (A respectively).
Determine, if B has a spanning tree.
It could very well be that the above algorithm fails although G indeed has two edge disjunctive spanning trees - just no one of them is G's minimum spanning tree. I can't judge this (now), so I'm asking for Your opinion if it's wise to always chose the minimum spanning tree as one of the two.
Related
I am studying about MST algorithms. I am curious to find the key differences between prims and boruvka's algorithm but the resources online don't have much to say about them other than their implementation and algorithm. If someone can explain, it would be great help. Thanks!
Both algorithms use the facts that
For every vertex v, there exists a minimum spanning tree T such that the cheapest edge incident to v belongs to T.
For every edge e, the (minimum) spanning trees that contain e are in natural one-to-one correspondence with the (minimum) spanning trees of the graph where e is contracted.
Prim and Borůvka exploit these facts in different ways. Prim chooses a root vertex r and repeatedly contracts the cheapest edge incident to r (the usual description avoids graph contraction but is equivalent to this) until only r remains. Borůvka repeatedly contracts all of the cheapest incident edges "in parallel" until there is exactly one vertex remaining.
You can create a variety of minimum spanning tree algorithms by mixing and matching contraction strategies.
First please note that this question is NOT asking about MST, instead, just all possible spanning trees.
So this is NOT the same as finding all minimal spanning trees or All minimum spanning trees implementation
I just need to generate all possible spanning trees from a graph.
I think the brute-force way is straight:
Suppose we have V nodes and E edges.
Get all edges of the graph
Get all possible combinations of V-1 out of E edges.
Filter out non-spanning-tree out of the combinations (for a spanning tree, all nodes inside one set of V-1 edges should appear exactly once)
But I think it is too slow when facing big graph.
Do we have a better way?
Set the weight of all edges to the same value, then use an algorithm to find all minimum spanning trees. Since all spanning trees have |V|-1 edges and all edge weights are equal, all spanning trees will be minimum spanning trees.
I've become interested in this question, and have yet to find a really satisfactory answer. However, I have found a number of references: Knuth's Algorithms S and S' in TAOCP Volume 4 Fascicle 4, a paper by Sorensen and Janssens, and GRAYSPAN, SPSPAN, and GRAYSPSPAN by Knuth. It's too bad none of them are implementations in a language I could use ... I guess I'll have to spend some time coding these ...
I'm trying to find an efficient method of detecting whether a given graph G has two different minimal spanning trees. I'm also trying to find a method to check whether it has 3 different minimal spanning trees. The naive solution that I've though about is running Kruskal's algorithm once and finding the total weight of the minimal spanning tree. Later , removing an edge from the graph and running Kruskal's algorithm again and checking if the weight of the new tree is the weight of the original minimal spanning tree , and so for each edge in the graph. The runtime is O(|V||E|log|V|) which is not good at all, and I think there's a better way to do it.
Any suggestion would be helpful,
thanks in advance
You can modify Kruskal's algorithm to do this.
First, sort the edges by weight. Then, for each weight in ascending order, filter out all irrelevant edges. The relevant edges form a graph on the connected components of the minimum-spanning-forest-so-far. You can count the number of spanning trees in this graph. Take the product over all weights and you've counted the total number of minimum spanning trees in the graph.
You recover the same running time as Kruskal's algorithm if you only care about the one-tree, two-trees, and three-or-more-trees cases. I think you wind up doing a determinant calculation or something to enumerate spanning trees in general, so you likely wind up with an O(MM(n)) worst-case in general.
Suppose you have a MST T0 of a graph. Now, if we can get another MST T1, it must have at least one edge E different from the original MST. Throw away E from T1, now the graph is separated into two components. However, in T0, these two components must be connected, so there will be another edge across this two components that has exactly the same weight as E (or we could substitute the one with more weight with the other one and get a smaller ST). This means substitute this other edge with E will give you another MST.
What this implies is if there are more than one MSTs, we can always change just a single edge from a MST and get another MST. So if you are checking for each edge, try to substitute the edge with the ones with the same weight and if you get another ST it is a MST, you will get a faster algorithm.
Suppose G is a graph with n vertices and m edges; that the weight of any edge e is W(e); and that P is a minimal-weight spanning tree on G, weighing Cost(W,P).
Let δ = minimal positive difference between any two edge weights. (If all the edge weights are the same, then δ is indeterminate; but in this case, any ST is an MST so it doesn't matter.) Take ε such that δ > n·ε > 0.
Create a new weight function U() with U(e)=W(e)+ε when e is in P, else U(e)=W(e). Compute Q, an MST of G under U. If Cost(U,Q) < Cost(U,P) then Q≠P. But Cost(W,Q) = Cost(W,P) by construction of δ and ε. Hence P and Q are distinct MSTs of G under W. If Cost(U,Q) ≥ Cost(U,P) then Q=P and distinct MSTs of G under W do not exist.
The method above determines if there are at least two distinct MSTs, in time O(h(n,m)) if O(h(n,m)) bounds the time to find an MST of G.
I don't know if a similar method can treat whether three (or more) distinct MSTs exist; simple extensions of it fall to simple counterexamples.
Let G be an unweighted directed graph containing cycles. I'm looking for an algorithm which finds/creates all acyclic graphs G', composed of all vertices in G and a subset of edges of G, just small enough to make G' acyclic.
More formal: The desired algorithm consumes G and creates a set of acyclic graphs S, where each graph G' in S satisfies following properties:
G' contains all vertices of G.
G' contains a subset of edges of G, such that G' is acyclic.
The number of edges of G' is maximised. Which means: There is no G'' satisfying properties 1 and 2, such that G'' contains more edges then G' and G'' is acyclic.
Background: The original graph G models a pairwise ordering between elements. This can't be exploited as an ordering over all elements due to cycles in the graph. The maximal acyclic graphs G' therefore should model a best-possible approximation to this ordering, trying to respect as much of the pairwise ordering relation as possible.
In a naive approach, one could remove all possible combinations of edges and check for acyclicity after each removal. In this case there is a strongly branching tree of variations meaning bad time and space complexity.
Note: The problem may be related to a spanning tree, and you could define the G' graphs as a kind of directed spanning tree. But keep in mind that in my scenario a pair of edges in G' may have the same starting or the same ending vertex. This conflicts with some definitions of directed spanning trees used in literature.
EDIT: Added intuitive description, background information and note related to spanning trees.
This problem is called Feedback Arc Set. Since it is NP-hard, it is unlikely that you will find a scalable fast algorithm. However, if your instances are small, then algorithms such as the one from the paper “On enumerating all minimal solutions of feedback problems” by B. Schwikowski and E. Speckenmeyer might work.
I have tried the following approach:
First I do edge contraction for all the edges in the given set of edges to form a modified graph.
Then I calculate the total number of spanning trees, using the matrix tree theorem, from the modified graph.
I want to know if this method is correct and if there are some other better methods.
Let G be a graph, let e be an edge, and let G/e be the same graph with e contracted. Then,
Proposition: There is a bijection between the spanning trees of G that contain e, and the spanning trees of G/e.
This proposition is not hard to prove; you're better off understanding the proof yourself instead of just asking other people whether it's true. Obviously if you have a spanning T tree of G that contains e, then T/e is a spanning tree of G/e. The thing to think through is that you can also go backwards.
And, as Adam points out, you have to be careful to properly handle graphs with parallel edges and graphs with edges from a vertex to itself.
I don't know if it's correct or not, but you'll have to be careful of the fact that edge contraction can lead to parallel edges. You'll have to make sure that trees differing only by which parallel edge is used are counted as being distinct.