Calculating total number of spanning trees containing a particular set of edges - algorithm

I have tried the following approach:
First I do edge contraction for all the edges in the given set of edges to form a modified graph.
Then I calculate the total number of spanning trees, using the matrix tree theorem, from the modified graph.
I want to know if this method is correct and if there are some other better methods.

Let G be a graph, let e be an edge, and let G/e be the same graph with e contracted. Then,
Proposition: There is a bijection between the spanning trees of G that contain e, and the spanning trees of G/e.
This proposition is not hard to prove; you're better off understanding the proof yourself instead of just asking other people whether it's true. Obviously if you have a spanning T tree of G that contains e, then T/e is a spanning tree of G/e. The thing to think through is that you can also go backwards.
And, as Adam points out, you have to be careful to properly handle graphs with parallel edges and graphs with edges from a vertex to itself.

I don't know if it's correct or not, but you'll have to be careful of the fact that edge contraction can lead to parallel edges. You'll have to make sure that trees differing only by which parallel edge is used are counted as being distinct.

Related

Minimum Spanning Tree with only 2 equal edges

Assume you have an undirected-weighted graph G, with different edges weighs but for only two edges: w(e1)=w(e2)
I have to prove that G has at most one minimum spanning tree which includes e1.
Also I have to prove that G has at most one minimum spanning tree which doesnt include e1.
I only need a solution for the first one and will solve the second one alone.
Thanks
For solving part 1:
Consider the graph you get by removing e1 from G (and possibly one of it's vertices, if it's now not connected to the rest of the graph), let's call it G'.
In this graph (G') , all the edge weights are different.
Now suppose G has more than 1 MST which includes e1 - they would both be different MSTs for G'.
Now the trick is that there's a theorem that in this kind of graph (all edges are different), the MST is unique. see the proof(s) here.
edit: You can probably just take the proof from the link and edit it slightly for your case.

Graph Has Two / Three Different Minimal Spanning Trees ?

I'm trying to find an efficient method of detecting whether a given graph G has two different minimal spanning trees. I'm also trying to find a method to check whether it has 3 different minimal spanning trees. The naive solution that I've though about is running Kruskal's algorithm once and finding the total weight of the minimal spanning tree. Later , removing an edge from the graph and running Kruskal's algorithm again and checking if the weight of the new tree is the weight of the original minimal spanning tree , and so for each edge in the graph. The runtime is O(|V||E|log|V|) which is not good at all, and I think there's a better way to do it.
Any suggestion would be helpful,
thanks in advance
You can modify Kruskal's algorithm to do this.
First, sort the edges by weight. Then, for each weight in ascending order, filter out all irrelevant edges. The relevant edges form a graph on the connected components of the minimum-spanning-forest-so-far. You can count the number of spanning trees in this graph. Take the product over all weights and you've counted the total number of minimum spanning trees in the graph.
You recover the same running time as Kruskal's algorithm if you only care about the one-tree, two-trees, and three-or-more-trees cases. I think you wind up doing a determinant calculation or something to enumerate spanning trees in general, so you likely wind up with an O(MM(n)) worst-case in general.
Suppose you have a MST T0 of a graph. Now, if we can get another MST T1, it must have at least one edge E different from the original MST. Throw away E from T1, now the graph is separated into two components. However, in T0, these two components must be connected, so there will be another edge across this two components that has exactly the same weight as E (or we could substitute the one with more weight with the other one and get a smaller ST). This means substitute this other edge with E will give you another MST.
What this implies is if there are more than one MSTs, we can always change just a single edge from a MST and get another MST. So if you are checking for each edge, try to substitute the edge with the ones with the same weight and if you get another ST it is a MST, you will get a faster algorithm.
Suppose G is a graph with n vertices and m edges; that the weight of any edge e is W(e); and that P is a minimal-weight spanning tree on G, weighing Cost(W,P).
Let δ = minimal positive difference between any two edge weights. (If all the edge weights are the same, then δ is indeterminate; but in this case, any ST is an MST so it doesn't matter.) Take ε such that δ > n·ε > 0.
Create a new weight function U() with U(e)=W(e)+ε when e is in P, else U(e)=W(e). Compute Q, an MST of G under U. If Cost(U,Q) < Cost(U,P) then Q≠P. But Cost(W,Q) = Cost(W,P) by construction of δ and ε. Hence P and Q are distinct MSTs of G under W. If Cost(U,Q) ≥ Cost(U,P) then Q=P and distinct MSTs of G under W do not exist.
The method above determines if there are at least two distinct MSTs, in time O(h(n,m)) if O(h(n,m)) bounds the time to find an MST of G.
I don't know if a similar method can treat whether three (or more) distinct MSTs exist; simple extensions of it fall to simple counterexamples.

How to remove cycles in an unweighted directed graph, such that the number of edges is maximised?

Let G be an unweighted directed graph containing cycles. I'm looking for an algorithm which finds/creates all acyclic graphs G', composed of all vertices in G and a subset of edges of G, just small enough to make G' acyclic.
More formal: The desired algorithm consumes G and creates a set of acyclic graphs S, where each graph G' in S satisfies following properties:
G' contains all vertices of G.
G' contains a subset of edges of G, such that G' is acyclic.
The number of edges of G' is maximised. Which means: There is no G'' satisfying properties 1 and 2, such that G'' contains more edges then G' and G'' is acyclic.
Background: The original graph G models a pairwise ordering between elements. This can't be exploited as an ordering over all elements due to cycles in the graph. The maximal acyclic graphs G' therefore should model a best-possible approximation to this ordering, trying to respect as much of the pairwise ordering relation as possible.
In a naive approach, one could remove all possible combinations of edges and check for acyclicity after each removal. In this case there is a strongly branching tree of variations meaning bad time and space complexity.
Note: The problem may be related to a spanning tree, and you could define the G' graphs as a kind of directed spanning tree. But keep in mind that in my scenario a pair of edges in G' may have the same starting or the same ending vertex. This conflicts with some definitions of directed spanning trees used in literature.
EDIT: Added intuitive description, background information and note related to spanning trees.
This problem is called Feedback Arc Set. Since it is NP-hard, it is unlikely that you will find a scalable fast algorithm. However, if your instances are small, then algorithms such as the one from the paper “On enumerating all minimal solutions of feedback problems” by B. Schwikowski and E. Speckenmeyer might work.

Balanced spanning tree (T) from undirected graph

I have connected undirected graph.
I am looking for the way to construct the balanced spanning tree (T) of a graph
The specific about balanced spanning tree, I could define as follows:
If the root of the tree is r .All
nodes could be divided to the
levels.I.e all the nodes which
distance from the r (in T) is j are
in the level Lj,etc.
For each node w one can define for a
sub-tree T_w of T,such that w is its
root.
The goal is to define spanning tree
in such a way that for each level
Li,for every two nodes u and v in
level Li the number of nodes in the
T_u and T_v is maximally equivalent.
Does anybody can advice any algorithm/s for building such “relatively” balanced spanning tree?
Thank you in advance.
I am not sure about your expression "maximally equivalent."
This problem may not have a perfect solution, so the obvious thing is how much better can we do?
This problem in generality seems to be NP-Complete. Some greedy approaches might result in constant approx algorithms, if you are lucky.
This appears to be trivial. Let G be your graph. It is connected, so there is an edge between each pair of vertices. Using the definition, construct an arbitrary balanced spanning tree G' with the same number of vertices as G. Starting at r in G' and an arbitrarily chosen vertex of G, map each vertex in G' to a vertex in G. Delete all edges in G that don't have a corresponding edge in G'.
The resulting graph -- call it U for "updated G" -- by construction has the same number of vertices as G', and further by construction, an edge exists in U iff the corresponding edge exists in G'. Thus U=G' and it follows that U is a balanced spanning tree.
You want to construct your tree as an AVL tree.
You can find additional information and code used to implement it starting on page 12 of this PDF document.
This PowerPoint document has some pretty pictures to help explain what's going on and also includes a Java implementation of the AVL Tree data type.

How to find two disjoint spanning trees of an undirected graph

Is there any applicable approach to find two disjoint spanning trees of an undirected graph or to check if a certain graph has two disjoint spanning trees
This is an example of Matroid union. Consider the graphic matroid where the basis are given by the spanning trees. Now the union of this matroid with itself is again a matroid. Your question is about the size of the basis of this matroid. (whether there exist a basis of size $2(|V|-1)$.
The canonical algorithm for this is Matroid partitioning algorithm. There exist an algorithm which does does the following: It maintains a set of edges with a partitioning into two forests. At each step given a new edge $e$, it decides whether there exist a reshuffling of the current partition into a new partition such that the new edge can be added to the set and the partition remains independent. And if not, it somehow will provide a certificate that it cannot.
For details look at a course in Comb. Optimization or the book by Schriver.
Not sure it helps much in the applicable side but Tutte [1961a] and Nash-Williams [1961] independently characterized graphs having k pairwise edge-disjoint spanning trees:
A graph G has k pairwise edge-disjoint spanning trees iff for every partition of the vertices of G into r sets, there are at least k(r-1) edges of G whose endpoints are in different sets of the partition.
Use k=2 and it may give you a lead for your needs.
According to A Note on Finding Minimum-Cost Edge-Disjoint Spanning Trees, this can be solved in O(k2n2) where k is the number of disjoint spanning trees, and n is the number of vertices.
Unfortunately, all but the first page of the article is behind a paywall.
Assuming that the desire is to find spanning trees with disjoint edge sets, what about:
Given a graph G determining the minimum spanning tree A of G.
Defining B = G - A by deleting all edges from G that also lie in A.
Checking if B is connected.
The nature of a minimum spanning tree somehow makes me intuitively believe that choosing it as one of the two spanning trees gives you maximum freedom in constructing the other (that hopefully turns out to be edge disjunctive).
What do You guys think?
edit
The above algorithm makes no sense as a spanning tree is a tree and therefore needs to be acyclic. But there is no guarantee that B = G - A is acyclic.
However, this observations (thx#Tormer) led me to another idea:
Given a graph G determine the minimum spanning tree A of G.
Define B = (V[G], E[G] \ E[A]) where V[G] describes the vertices of G and E[G] describes the edges of G (A respectively).
Determine, if B has a spanning tree.
It could very well be that the above algorithm fails although G indeed has two edge disjunctive spanning trees - just no one of them is G's minimum spanning tree. I can't judge this (now), so I'm asking for Your opinion if it's wise to always chose the minimum spanning tree as one of the two.

Resources