Loose coupling among objects within oracle schema - oracle

I am building an information service that manages Suppliers.
The suppliers are used by our billing system, tender system and sales system.
Though 60% of the attributes of supplier are unique to each system, there are still 40% attributes of Supplier that are shared across the systems.
My objective is to build a flexible system, so that change to one individual system's data, should not impact other systems. For example, if i need to make certain tables offline for upgrading them, it should not impact rest of the systems that need supplier information.
What is the best way of achieving this? Should all the different context specific attributes live in one schema, but deployed on different table spaces?
Also, the read and update may happen more for one set of attributes than the other. How should i logically represent them via one model, but deploy them in such a fashion that they can evolve independently?
Thank you.

First, tablespaces are a means of controlling the storage characteristics of segments, they won't help wrt avoiding impact from changes.
I recommend you create separate child tables for each set of attributes, each with a 1:1 referential integrity constraint to a parent table. e.g.
SUPPLIERS (supplier_id PK, common attributes...)
SUPPLIER_BILLING_INFO (supplier_id PK, billing attributes...) + FK to SUPPLIERS
SUPPLIER_TENDER_INFO (supplier_id PK, tender attributes...) + FK to SUPPLIERS
SUPPLIER_SALES_INFO (supplier_id PK, sales attributes...) + FK to SUPPLIERS
Obviously they'll need to live in one instance. Whether you put them in one schema or in separate schemas is up to you.
Changes to one system should have no impact on other systems, as long as they don't all refer to all the tables (i.e. the Billing system should never access SUPPLIER_TENDER_INFO).

This sounds like a very difficult question that can't be easily answered here. But I can think of a few tricks that might help you with some of your issues. It is possible to make huge changes to your data and still keep the system online.
DBMS_REDEFINITION allows you to change your table structure while other people are still using the table (although it looks very complicated).
Partitioning also allows you to change part of your table without affecting other users. For example, you can truncate just one of the partitions of a table. Partitioning also allows you to use different physical structures for the same table. For example, one partition could use a tablespace with a small block size (good for writing), and another partition could use a tablespace with a larger block size (good for reading).

Related

Store summary data at master table, instead of deriving it

I am trying to prepare DB design for APEX application. Requirement is as follows.
In Departments IR page, users are asking below columns
Number of employees in each department (Department may or may not have employees)
Primary Location for Department (Department can have multiple addresses and addresses are stored in other table, along with primary flag)
Alternative Manager's Email Address for Department (alt_manager_id column, this is optional column and refers to employees table)
I can implement these requirements using either inline sub queries or using OUTER JIONs. But, these approaches will have performance impact as the data grows (like 100s of thousands of rows). So, my question is, is it ok to store these data directly at "Departments" table and update "Departments" table when child tables gets updated. Basically, I am trying to store summary data at master table, instead of deriving it as on when needed from child tables. Is this considered bad practice? Is it ok to implement such DB design?
Thank you
"Is this considered bad practice?"
Usually yes. There are several problems with maintaining summary detail information in a master record.
Your inserts into child tables (and deletes if you have them) now also have to take a lock on the master record, to increment the count. This adds complexity to what should be simple transactions.
It also has two performance hits: the additional overhead of maintaining the counts and the potential for sessions to hang in multi-user environments.
Note that you are adding a definite performance hit to your insert activity for a possible saving in the performance of aggregating queries.
The good practice is to just run the counts when you need the summaries. Tune the queries if you need to.
If you think you really are going to be querying the summary data often enough for the workload to be a problem you should consider building materialized views for the summary queries. Then, when you enable query rewrites, Oracle will transparently query the materialized view if it can satisfy the query rather than re-running the aggregations. This is a technique which is used a lot in data warehouses, but there's no reason not to use it in OLTP environments if you really have the data volumes to justify it. Find out more.
Generally, try the simplest thing which could work first. Only look to do something different (like building a materialized view for aggregations) when you know you have a demonstrable problem with performance.

Managing many companies with Oracle

My company is storing its data in an Oracle database.
It offers services to several other companies, each of them having thousands of customers placing orders.
For historical reasons, all of the data are in the same schema and, for example, all orders are in the same table, say ORDERS.
It now has performance problems and I'd like to take this opportunity to manage two goals :
eradicate performance problems
separate companies data for security concerns.
My initial thought was to use one schema for each company we serve :
schema A with a table named ORDERS containing all of the orders of company A customers
schema B with a table named ORDERS containing all of the orders of company B customers
etc. ...
but we have another concern : we also have some "super-companies" which also can manage data for many companies. For exemple : "supercompany" managing orders for both companies A and B.
With this approach, is there any mean to manage these "supercompany" ? I thought declaring another schema (let's say SUPERCOMPANY) having a synonym which refer to the union of ORDERS tables from A and B but :
Is there any performance problem having a synonym referencing a union ? Are tables' indexes used ?
How about INSERT ? How to target the appropriate table if "supercompany" wants to add an order for a customer which belong to company A ?
Should we better use another solution, like still having one big database and having schemas referecing appropriate partition of the big table ORDERS ? (I don't even know if this is possible)
schema DB containing data with huge ORDERS table, partitionned by company.
schema A having a synonym referencing DB.ORDERS#partitionA
schema B having a synonym referencing DB.ORDERS#partitionB
schema SUPERCOMPANY having a synonym referencing DB.ORDERS or DB.ORDERS#partitionA and ORDERS#partitionB
It doesn't sound good to me because we shouldn't directly target partitions, are we ?
I still have hope and I'm sure Oracle has solutions for such problems since it is a major player for relational databases.
What would be your approach ?
Thanks for your reading.
It sounds as though partitioning would be a good fit for you performance issue.
For the security issue you could look at Virtual Private Database which is designed for exactly this type of scenario. I don’t think you would even need synonyms (you’d probably need views if you went this route) as you would set up a policy such that depending on the user account you connected as, Oracle would apply the appropriate filter automatically to all affected queries.
You might look at using services too, to give more options for monitoring performance by company.

Why no primary key

I have inherited a datababase with tables that lack primary keys. It's an OLTP database. One of the tables in question has ~300k records, and has no primary key implemented, even though examining the rest of the schema tells me one column is used AS a primary key, ie being replicated in another table, with identical name, etc. ie. This is not an 'end of line' table
This database also does not implement FKs.
My question is - is there ANY valid reason for a table (in Oracle for that matter) NOT to have a primary key?
I think PK is mandatory for almost all cases. Lots of reasons will exist but I'll treat some of them.
prevent to insert duplicate rows
rows will be referenced, so it must have a key for it
I saw very few cases make tables without PK (e.g. table for logs).
Not specific to Oracle but I recall reading about one such use-case where mysql was highly customized for a dam (electricity generation) project, I think. The input data from sensors were in the order 100-1000 per second or something. They were using timestamps for each record so didn't need a primary key (like with logs/logging mentioned in another answer here).
So good reasons would be:
Overhead, in the case of high frequency transactions
Necessity or Un-necessity in that case
"Uniqueness" maintained or inferred by application, not by db
In a normalized table, if every record needs to be unique and every field is referenced in other tables, then having a PK additionally adds an index overhead and if the PK would never actually be used in any SQL query (imho, I disagree with this but it's possible). But it should still have a unique index encompassing all the fields.
Bad reasons are infinite :-)
The most frequent bad reason which is actually responsible for the lack of a primary key is when DBs are designed by application/code-developers with little or no DB experience, who want to (or think they should) handle all data constraints in the application.
Any valid reason? I'd say "No"--I'm a database guy--but there are places that insist on using the database as a dumb data store. They usually implement all integrity "constraints" in application code.
Putting integrity constraints into application code isn't usually done to improve performance. In fact, if you built one database that enforces all the known constraints, and you built another with functionally identical constraints only in application code, the first one would almost certainly run rings around the second one.
Instead, application-level constraints usually hope to increase flexibility. (And, in the process, some of the known constraints are usually dropped, which appears to improve performance.) If it becomes inconvenient to enforce certain constraints in order to bulk load some scruffy data, an application programmer can just side-step the application-level constraints for a little while, then clean up the data when it's more convenient.
I'm not a db expert but I remember a conversation with a friend who worked in the Oracle apps dept. who told me that this was done to handle emergencies. If there was a problem in some report being generated which you could fix by putting in a row, db level constraints often stand in your way. They generally implemented things like unique primary keys in the application rather than the database. It was inefficient but enough and for them and much more manageable in case of a disaster recovery scenario.
You need a primary key to enforce uniqueness for a subset of its columns (useful if you need to refer to individual rows). It also speeds up certain queries because of the index associated to it.
If you do not need that index, or that uniqueness constraint, then you may not need a primary key (the index does not come free).
An example that comes to mind are logging tables, that just record some data (that is never updated or queried for individual records).
There is a small overhead when inserting to a table with an index and you need an index if you have a primary key. Downside of course is that finding a row is very costly.

Database design: Same table structure but different table

My latest project deals with a lot of "staging" data.
Like when a customer registers, the data is stored in "customer_temp" table, and when he is verified, the data is moved to "customer" table.
Before I start shooting e-mails, go on a rampage on how I think this is wrong and you should just put a flag on the row, there is always a chance that I'm the idiot.
Can anybody explain to me why this is desirable?
Creating 2 tables with the same structure, populating a table (table 1), then moving the whole row to a different table (table 2) when certain events occur.
I can understand if table 2 will store archival, non seldom used data.
But I can't understand if table 2 stores live data that can changes constantly.
To recap:
Can anyone explain how wrong (or right) this seemingly counter-productive approach is?
If there is a significant difference between a "customer" and a "potential customer" in the business logic, separating them out in the database can make sense (you don't need to always remember to query by the flag, for example). In particular if the data stored for the two may diverge in the future.
It makes reporting somewhat easier and reduces the chances of treating both types of entities as the same one.
As you say, however, this does look redundant and would probably not be the way most people design the database.
There seems to be several explanations about why would you want "customer_temp".
As you noted would be for archival purposes. To allow analyzing data but in that case the historical data should be aggregated according to some interesting query. However it using live data does not sound plausible
As oded noted, there could be a certain business logic that differentiates between customer and potential customer.
Or it could be a security feature which requires logging all attempts to register a customer in addition to storing approved customers.
Any time I see a permenant table names "customer_temp" I see a red flag. This typically means that someone was working through a problem as they were going along and didn't think ahead about it.
As for the structure you describe there are some advantages. For example the tables could be indexed differently or placed on different File locations for performance.
But typically these advantages aren't worth the cost cost of keeping the structures in synch for changes (adding a column to different tables searching for two sets of dependencies etc. )
If you really need them to be treated differently then its better to handle that by adding a layer of abstraction with a view rather than creating two separate models.
I would have used a single table design, as you suggest. But I only know what you posted about the case. Before deciding that the designer was an idiot, I would want to know what other consequences, intended or unintended, may have followed from the two table design.
For, example, it may reduce contention between processes that are storing new potential customers and processes accessing the existing customer base. Or it may permit certain columns to be constrained to be not null in the customer table that are permitted to be null in the potential customer table. Or it may permit write access to the customer table to be tightly controlled, and unavailable to operations that originate from the web.
Or the original designer may simply not have seen the benefits you and I see in a single table design.

Oracle Data Versioning/Partitioning Strategies/Best Practices

not sure if the subject entirely conveys what I'm trying to achieve, but let me explain:
We are building an application that uses Oracle as storage backend. Each year, last years dataset will be "Archived", and a new instance created and populated from scratch.
What are the options to do this within the same schema?
Keep version information on a record level (we presume this will be too slow for our use-case).
Keep version information on a table level, so for each new version, we will re-create all the tables but with a new version prefix. (We like this solution, since we can do it all in code).
?
Is there not something like partitions/personalities/namespaces available that will allow us to achieve this in Oracle?
My oracle experience is rather limited, any assistance will be greatly appreciated!
The RDBMS conceptual model is not very good at maintaining temporal versions of data. So it is not just Oracle which is lacking in this regard.
I am unclear why you think keeping version information at the record level will be too slow. Too slow in creating a new version? Or too slow where it comes to data retrieval during regular operations?
Here is how you could do it. Given a table CUSTOMERS with a business key of CUSTOMER_REF I might normally build it like this (I am using abbreviated syntax rather than best practice for reasons of space):
create table customers
( id number not null primary key
, customer_ref number not null unique key
, name varchar2(30) not null )
/
The versioned equivalent would look like this:
create table customers
( id number not null primary key
, customer_ref number not null
, version_number number
, name varchar2(30) not null
, constraint whatever unique (customer_ref, version_number) )
/
This works by keeping the current version of VERSION_NUMBER null, and only populating it at archival time. Any lookup is going to have to include and version_number is null. This will be a bit of a pain and you may need to include the column in any additional indexes you build.
Obviously maintaining all versions of the records in the same table will increase the size of your tables, which might have an effect on performance. Oracle's Partitioning option can definitely help here. It also would give you a neat way of creating next year's set of data. However, it is a chargeable extra on top of the Enterprise License, so it is an expensive option. Find out more..
The most time consuming aspect of this will be managing foreign key relationships in the new version of the table. Presuming you choose to use synthetic primary keys, the archival process will have to generate new IDs and then painstakingly cascade them to their dependent records in the new versions of referencing foreign keys.
Thinking about this makes discreet tables for each version seem very attractive. For ease of use I would keep the current version un-prefixed, so that archiving becomes a process simply of
create table customers_n as select * from customers;
You might want to avoid downtime while creating the versioned tables. In that case you could use materialized views to capture the tables' state during the run-up to the archival switchover. When the clock strikes twelve you can switch off the refresh. (caveat: this is thinking on the fly, I have never done anything like this so try before you buy.)
One pertinent advantage of multiple tables (and Partitioning) is that you can move the archived records to a READ ONLY tablespace. This not only preserves them from unwanted change, it also means you can exclude them from subsequent backups.
edit
I notice you have commented that the archived data can occasionbally be amended. In taht case moving it to READ ONLY tablespaces is not a go-er.
The only thing I wil add to what APC said is regarding your asking for "namespaces".
A namespace in Oracle is a schema, whereby you can have the same object name(s) in each schema.
Of course this all depends on how your app must access multiple versions, but I would lean towards a different schema for each year before I would use some sort of naming convention to maintain versions of tables in the same schema. The reason is, eventually you will have a nightmares. At least with different schemas, all DDL can be the same, all references to objects will be the same, and tools like ER modellers and query tools will work within the context of that schema. Data models change, so at some point you may need to run some compare tools, and if all your tables are named funky with some sort of version postfix, that won't work well.
Add a schema can be copied / moved with export or data pump quickly using the fromuser/touser or remap_schema options, so you won't need much code, except to do any cleanup of last years data out of the new version.
I find schemas are very useful as "containers" and most apps I host only have schema level privileges, so I'm guaranteed the app can be easily and quickly moved from instance to instance, or multiple copies of the app can be hosted side-by-side on the same instance.
Might the schema change between years. For example, in 2010 you have fifteen columns but in 2011 you add a sixteenth.
If so, will the same application work on both 2010 and 2011 data.
If the schema is static, I'd go for table with a 'YEAR' column and use VPD/RLS/FGAC to apply a YEAR = '2010' predicate.
I'd only worry about partitioning if performance was a problem.
1) Interval partition it by year and some date field in the row.
2) Add it at the end of each table and populate it with a sequence and trigger.
3) Then partition by interval year on this col.

Resources