not sure if the subject entirely conveys what I'm trying to achieve, but let me explain:
We are building an application that uses Oracle as storage backend. Each year, last years dataset will be "Archived", and a new instance created and populated from scratch.
What are the options to do this within the same schema?
Keep version information on a record level (we presume this will be too slow for our use-case).
Keep version information on a table level, so for each new version, we will re-create all the tables but with a new version prefix. (We like this solution, since we can do it all in code).
?
Is there not something like partitions/personalities/namespaces available that will allow us to achieve this in Oracle?
My oracle experience is rather limited, any assistance will be greatly appreciated!
The RDBMS conceptual model is not very good at maintaining temporal versions of data. So it is not just Oracle which is lacking in this regard.
I am unclear why you think keeping version information at the record level will be too slow. Too slow in creating a new version? Or too slow where it comes to data retrieval during regular operations?
Here is how you could do it. Given a table CUSTOMERS with a business key of CUSTOMER_REF I might normally build it like this (I am using abbreviated syntax rather than best practice for reasons of space):
create table customers
( id number not null primary key
, customer_ref number not null unique key
, name varchar2(30) not null )
/
The versioned equivalent would look like this:
create table customers
( id number not null primary key
, customer_ref number not null
, version_number number
, name varchar2(30) not null
, constraint whatever unique (customer_ref, version_number) )
/
This works by keeping the current version of VERSION_NUMBER null, and only populating it at archival time. Any lookup is going to have to include and version_number is null. This will be a bit of a pain and you may need to include the column in any additional indexes you build.
Obviously maintaining all versions of the records in the same table will increase the size of your tables, which might have an effect on performance. Oracle's Partitioning option can definitely help here. It also would give you a neat way of creating next year's set of data. However, it is a chargeable extra on top of the Enterprise License, so it is an expensive option. Find out more..
The most time consuming aspect of this will be managing foreign key relationships in the new version of the table. Presuming you choose to use synthetic primary keys, the archival process will have to generate new IDs and then painstakingly cascade them to their dependent records in the new versions of referencing foreign keys.
Thinking about this makes discreet tables for each version seem very attractive. For ease of use I would keep the current version un-prefixed, so that archiving becomes a process simply of
create table customers_n as select * from customers;
You might want to avoid downtime while creating the versioned tables. In that case you could use materialized views to capture the tables' state during the run-up to the archival switchover. When the clock strikes twelve you can switch off the refresh. (caveat: this is thinking on the fly, I have never done anything like this so try before you buy.)
One pertinent advantage of multiple tables (and Partitioning) is that you can move the archived records to a READ ONLY tablespace. This not only preserves them from unwanted change, it also means you can exclude them from subsequent backups.
edit
I notice you have commented that the archived data can occasionbally be amended. In taht case moving it to READ ONLY tablespaces is not a go-er.
The only thing I wil add to what APC said is regarding your asking for "namespaces".
A namespace in Oracle is a schema, whereby you can have the same object name(s) in each schema.
Of course this all depends on how your app must access multiple versions, but I would lean towards a different schema for each year before I would use some sort of naming convention to maintain versions of tables in the same schema. The reason is, eventually you will have a nightmares. At least with different schemas, all DDL can be the same, all references to objects will be the same, and tools like ER modellers and query tools will work within the context of that schema. Data models change, so at some point you may need to run some compare tools, and if all your tables are named funky with some sort of version postfix, that won't work well.
Add a schema can be copied / moved with export or data pump quickly using the fromuser/touser or remap_schema options, so you won't need much code, except to do any cleanup of last years data out of the new version.
I find schemas are very useful as "containers" and most apps I host only have schema level privileges, so I'm guaranteed the app can be easily and quickly moved from instance to instance, or multiple copies of the app can be hosted side-by-side on the same instance.
Might the schema change between years. For example, in 2010 you have fifteen columns but in 2011 you add a sixteenth.
If so, will the same application work on both 2010 and 2011 data.
If the schema is static, I'd go for table with a 'YEAR' column and use VPD/RLS/FGAC to apply a YEAR = '2010' predicate.
I'd only worry about partitioning if performance was a problem.
1) Interval partition it by year and some date field in the row.
2) Add it at the end of each table and populate it with a sequence and trigger.
3) Then partition by interval year on this col.
Related
I'm an ETL developer that's currently being tasked with developing a type 2 SCD from existing historical data in a relational database. I'm perfectly capable of creating a type 2 SCD that's responsible for tracking future changes to the data, but I'm completely useless when it comes to the task at hand.
The relational model is in our ODS . Based on that relational model, I'm supposed to build flat records in our DW dimension. There are multiple attributes which need to be monitored for changes, each in specific related tables in the relational model. Historical changes must be kept on a daily basis, and if multiple changes to the same attribute occur on the same day, only the last subsists.
How can I tackle this? I'm lost. Thanks in advance.
P.S. we're talking tables with 20-30 million rows and multiple attributes that may change at any given time and therefore must result in a new record in the SCD.
This will indeed be painful. I'm assuming from your question that the tables containing the attribute values are currently varying independently (or you wouldn't need to ask the question).
If you have a table 'Table1' containing 'Key', 'Attribute1' and 'Effective From','Effective To' columns, then you can 'explode' that table into a virtual table in the form 'Key','Attribute1','Date', projecting out one row for every date where that attribute was current.
(Note that you probably don't want to do this as a ranged join against your date dimension, because this will be a Triangular Join (ie perform really badly), you probably need to explode the rows in an ETL tool/programmatically)
If you perform this process across multiple tables, you will have a set of tables giving you the full day-by-day snapshot of each attribute for every day that you care about. It's then fairly easy to join those tables based on 'FK' and 'Date' to give you the complete daily snapshot across all of the attribute values.
Then, of course, you need to run this though another process to collapse rows with the same Key, contiguous dates and all the same attribute values, ie 'unexplode' the rows, back into 'effective from','effective to' form. Note again, that this is fundamentally a row-by-row operation (or at very least a windowing function), and a set-based approach will perform very badly. Personally I'd just stream it all though some .net/java code to achieve this.
Given data volumes this will take a while, but should be achievable.
I have inherited a datababase with tables that lack primary keys. It's an OLTP database. One of the tables in question has ~300k records, and has no primary key implemented, even though examining the rest of the schema tells me one column is used AS a primary key, ie being replicated in another table, with identical name, etc. ie. This is not an 'end of line' table
This database also does not implement FKs.
My question is - is there ANY valid reason for a table (in Oracle for that matter) NOT to have a primary key?
I think PK is mandatory for almost all cases. Lots of reasons will exist but I'll treat some of them.
prevent to insert duplicate rows
rows will be referenced, so it must have a key for it
I saw very few cases make tables without PK (e.g. table for logs).
Not specific to Oracle but I recall reading about one such use-case where mysql was highly customized for a dam (electricity generation) project, I think. The input data from sensors were in the order 100-1000 per second or something. They were using timestamps for each record so didn't need a primary key (like with logs/logging mentioned in another answer here).
So good reasons would be:
Overhead, in the case of high frequency transactions
Necessity or Un-necessity in that case
"Uniqueness" maintained or inferred by application, not by db
In a normalized table, if every record needs to be unique and every field is referenced in other tables, then having a PK additionally adds an index overhead and if the PK would never actually be used in any SQL query (imho, I disagree with this but it's possible). But it should still have a unique index encompassing all the fields.
Bad reasons are infinite :-)
The most frequent bad reason which is actually responsible for the lack of a primary key is when DBs are designed by application/code-developers with little or no DB experience, who want to (or think they should) handle all data constraints in the application.
Any valid reason? I'd say "No"--I'm a database guy--but there are places that insist on using the database as a dumb data store. They usually implement all integrity "constraints" in application code.
Putting integrity constraints into application code isn't usually done to improve performance. In fact, if you built one database that enforces all the known constraints, and you built another with functionally identical constraints only in application code, the first one would almost certainly run rings around the second one.
Instead, application-level constraints usually hope to increase flexibility. (And, in the process, some of the known constraints are usually dropped, which appears to improve performance.) If it becomes inconvenient to enforce certain constraints in order to bulk load some scruffy data, an application programmer can just side-step the application-level constraints for a little while, then clean up the data when it's more convenient.
I'm not a db expert but I remember a conversation with a friend who worked in the Oracle apps dept. who told me that this was done to handle emergencies. If there was a problem in some report being generated which you could fix by putting in a row, db level constraints often stand in your way. They generally implemented things like unique primary keys in the application rather than the database. It was inefficient but enough and for them and much more manageable in case of a disaster recovery scenario.
You need a primary key to enforce uniqueness for a subset of its columns (useful if you need to refer to individual rows). It also speeds up certain queries because of the index associated to it.
If you do not need that index, or that uniqueness constraint, then you may not need a primary key (the index does not come free).
An example that comes to mind are logging tables, that just record some data (that is never updated or queried for individual records).
There is a small overhead when inserting to a table with an index and you need an index if you have a primary key. Downside of course is that finding a row is very costly.
I am developing an enterprise application with an Oracle backend. I am designing a core part of the DB architecture now and im having some questions on it.
First and most important thing is, most of my tables needs to preserve old data. For example
Consider a table with the fields
Contract No, Contract Name, Contract Person, Contract Email
I have a records like
12, xxx, yyy, xxx#zzz.ccc
and some one modifies it to
12, xxx, zzz, xxx#zzz.ccc
at any point of time i need to display the new record while still have copy of the old record.
So what i thought was to put a duplicate record of the old data and update the fields that was changed and have a flag to keep track of active records with something like "is active" as 1.
The downside is that this creates redundancy in the table and seems like a bad design. But any other model seems unnecessarily complex and this seems cleaner to me. Also i dont see any performance issues having a duplicate record too. So please let me know if this is ok or am i missing something here.
Some times where there is a one to many relationship my assumption is to have a mapping table where i map the multiple entity in individual records by repeating master ID and changing child ID in each record. Is this a right way to do it or is there a better way to do it.
Is there a book on database best practices.
Thanks.
The database im dealing with is Oracle 11g on a two node RAC cluster
Also i dont see any performance issues having a duplicate record too.
Assume you have a row that, over time, has 15 updates to it. If you don't store any temporal data (if you don't store different versions of the row), you end up storing one row. If you do store temporal data, you end up storing 15 rows.
You also need more indexes, because the id number is no longer sufficient to identify a single row.
If you have only relatively small tables, you probably won't see any performance difference. (There will be one, but it probably won't be noticeable to users.) But a table that has 10 million rows will perform differently than a table that has 150 million rows. (15 versions per row, times 10 million rows.)
Some times where there is a one to many relationship my assumption is
to have a mapping table where i map the multiple entity in individual
records by repeating master ID and changing child ID in each record.
Is this a right way to do it or is there a better way to do it.
You probably need to know which child rows belong to which parent rows. So you need more than a single master id for the key. The master id alone doesn't tell you which version of that row in the parent table applies to a given child row.
Is there a book on database best practices.
There are books on temporal databases. The first one that I know of is Snodgrass's Developing Time-Oriented Database Applications in SQL. It's available in several formats, and it's free. It's also kind of old, but the information in it is important to understand if you're going to be building a temporal database. Also, think about reading Date's book Temporal Data and the Relational Model.
Wikipedia has an article that summarizes the ideas behind temporal databases.
Is normalization completely mandatory.
That's a meaningless question. You will have different issues with tables normalized to 2NF than you'll have with tables normalized to 5NF or 6NF.
I would keep the old/history records in a separate table. Create an upd/del trigger to populate your audit/history table for you, and keep only the most current data in your main table.
See here for an example. Many other similar examples exists in SO.
I have a table with many rows.
For testing purpose my colleagues are also using same table. The problem is that some time he is deleting the row which I was testing and some time I.
So is there any way in oracle so I can make some specific rows to be read only so other should not delete and edit that?
Thanks.
There are a number of differnt ways to tackle this problem.
As Sun Tzu said, the best thing would be if you and your colleagues use data sets which do not collide.
For instance perhaps you could each have your own database instance, on local PCs; whether this will suit depends on a number of factors, not the least of which is your licensing arrangements with Oracle. Alternatively, you could have separate schemas in a shared database; depending on your application you may need to you synonyms or special connectioms.
Another approach: everybody builds their own data sets, known as test fixtures. This is a good policy, because testing is only truly valid when it runs against a known state; if we make assumptions regarding the presence or absence of data how valid are our test results? The point is, the tests should clean up after themselves, removing any data created in fixtures and by the running of tests. With this tactic you need to agree ranges of IDs for each team member: they must only use records within their ranges for testing or development work.
I prefer these sorts of approach because they don't really change the way the application works (arguably except using different schemas and synonyms). More draconian methods are available.
If you have Enterprise Edition you can use Row Level Security to protect your records. This is a extension of the last point: you will need a mechanism for identifying your records, and some infrastructure to identify ownership within the session. But in addition to preventing other users rom deleting your data you can also prevent them inserting, updating or even viewing records which are with your range of IDs. Find out more.
A lighter solution is use a trigger as A B Cade suggests. You will still need to identifying your records and who is connected (because presumably from time-to-time you will still want to delete your records.
One last strategy: take your ball home. Get the table in the state you want it and make a data pump export. For extra vindictiveness you can truncate the table at this point. Then any time you want to use the table you run a data pump import. This will reset the table's state, wiping out any existing data. This is just an extreme version of test scripts creating their own data.
You can create a trigger that prevents deleting some specific rows.
CREATE OR REPLACE TRIGGER trg_dont_delete
BEFORE DELETE
ON <your_table_name>
FOR EACH ROW
BEGIN
IF :OLD.ID in (<IDs of rows you dont want to be deleted>) THEN
raise_application_error (-20001, 'Do not delete my records!!!');
END IF;
END;
Of course you can make it smarter - make the if statement rely on user, or get the records IDs from another table and so on
Oracle supports row level locking. you can prevent the others to delete the row, which one you are using. for knowing better check this link.
I need some help in auditing in Oracle. We have a database with many tables and we want to be able to audit every change made to any table in any field. So the things we want to have in this audit are:
user who modified
time of change occurred
old value and new value
so we started creating the trigger which was supposed to perform the audit for any table but then had issues...
As I mentioned before we have so many tables and we cannot go creating a trigger per each table. So the idea is creating a master trigger that can behaves dynamically for any table that fires the trigger. I was trying to do it but no lucky at all....it seems that Oracle restricts the trigger environment just for a table which is declared by code and not dynamically like we want to do.
Do you have any idea on how to do this or any other advice for solving this issue?
If you have 10g enterprise edition you should look at Oracle's Fine-Grained Auditing. It is definitely better than rolling your own.
But if you have a lesser version or for some reason FGA is not to your taste, here is how to do it. The key thing is: build a separate audit table for each application table.
I know this is not what you want to hear because it doesn't match the table structure you outlined above. But storing a row with OLD and NEW values for each column affected by an update is a really bad idea:
It doesn't scale ( a single update touching ten columns spawns ten inserts)
What about when you insert a record?
It is a complete pain to assemble the state of a record at any given time
So, have an audit table for each application table, with an identical structure. That means including the CHANGED_TIMESTAMP and CHANGED_USER on the application table, but that is not a bad thing.
Finally, and you know where this is leading, have a trigger on each table which inserts a whole record with just the :NEW values into the audit table. The trigger should fire on INSERT and UPDATE. This gives the complete history, it is easy enough to diff two versions of the record. For a DELETE you will insert an audit record with just the primary key populated and all other columns empty.
Your objection will be that you have too many tables and too many columns to implement all these objects. But it is simple enough to generate the table and trigger DDL statements from the data dictionary (user_tables, user_tab_columns).
You don't need write your own triggers.
Oracle ships with flexible and fine grained audit trail services. Have a look at this document (9i) as a starting point.
(Edit: Here's a link for 10g and 11g versions of the same document.)
You can audit so much that it can be like drinking from the firehose - and that can hurt the server performance at some point, or could leave you with so much audit information that you won't be able to extract meaningful information from it quickly, and/or you could end up eating up lots of disk space. Spend some time thinking about how much audit information you really need, and how long you might need to keep it around. To do so might require starting with a basic configuration, and then tailoring it down after you're able to get a sample of the kind of volume of audit trail data you're actually collecting.