I need to design a software where user can drag shapes in a window. The problem is that there might be thousands of shapes and there might be some restrictions, e.g. one shape cannot be over another shape.
So I actually need to know how to organize data storage and some algorithm to quickly determine if a shape can be placed in some particular position.
I think this problem was solved many times, but I don't know how to google it properly. Could you please provide me with some information on this topic?
Thanks!
A quadtree (2D, octree if 3D) is often used in collision detection. Idea is to recursively divide the space in squares/cubes and place the shapes into the correct squares/cubes. When you need to perform collision detection on a given shape, you can then test only the shapes in the same square/cube.
There are other structures, each having pros/cons depending on the constraints you have. If the other shapes are static, BSP Trees can be also a good structure.
Related
I hope that this is the correct place to ask this kind of question. I am developing a web app to design garden ponds and I need to calculate the shape and size of the foil needed to cover that pond. The pond will provided as a 3D model (threeJS). The shape of the pond will be relatively simple (think one or more rectangular boxes potentially with some stairs).
I am considering folding out the surface of the 3D model into a flat shape, but I do not know how to do that in a generic way. And even if a could od that it would not be the complete solution (but potentially it would be a starting point) I have been searching for a generic algorithm to do this, but so far have not found anything. Does anyone know of an algorithm that I could use for this, or at least something that I could start with.
Some additonal information:
this will be a browser based solution which should show the pool; one option would be ThreeJS since I am somewhat familiar with it
the foil that should cover the pond needs to watertight, so it needs to be one piece. That means that when your put it in the pool, it form rinkle, especially in the corners.
I have a lot of polygons. Ideally, all the polygons must not overlap one other, but they can be located adjacent to one another.
But practically, I would have to allow for slight polygon overlap ( defined by a certain tolerance) because all these polygons are obtained from user hand drawing input, which is not as machine-precised as I want them to be.
My question is, is there any software library components that:
Allows one to input a range of polygons
Check if the polygons are overlapped more than a prespecified tolerance
If yes, then stop, or else, continue
Create mesh in terms of coordinates and elements for the polygons by grouping common vertex and edges together?
More importantly, link back the mesh edges to the original polygon(s)'s edge?
Or is there anyone tackle this issue before?
This issue is a daily "bread" of GIS applications - this is what is exactly done there. We also learned that at a GIS course. Look into GIS systems how they address this issue. E.g. ArcGIS define so called topology rules and has some functions to check if the edited features are topologically correct. See http://webhelp.esri.com/arcgisdesktop/9.2/index.cfm?TopicName=Topology_rules
This is pretty long, only because the question is so big. I've tried to group my comments based on your bullet points.
Components to draw polygons
My guess is that you'll have limited success without providing more information - a component to draw polygons will be very much coupled to the language and UI paradigm you are using for the rest of your project, ie. code for a web component will look very different to a native component.
Perhaps an alternative is to separate this element of the process out from the rest of what you're trying to do. There are some absolutely fantastic pre-existing editors that you can use to create 2d and 3d polygons.
Inkscape is an example of a vector graphics editor that makes it easy to enter 2d polygons, and has the advantage of producing output SVG, which is reasonably easy to parse.
In three dimensions Blender is an open source editor that can be used to produce arbitrary geometries that can be exported to a number of formats.
If you can use a google-maps API (possibly in an native HTML rendering control), and you are interested in adding spatial points on a map overlay, you may be interested in related click-to-draw polygon question on stackoverflow. From past experience, other map APIs like OpenLayers support similar approaches.
Check whether polygons are overlapped
Thomas T made the point in his answer, that there are families of related predicates that can be used to address this and related queries. If you are literally just looking for overlaps and other set theoretic operations (union, intersection, set difference) in two dimensions you can use the General Polygon Clipper
You may also need to consider the slightly more generic problem when two polygons that don't overlap or share a vertex when they should. You can use a Minkowski sum to dilate (enlarge) two and three dimensional polygons to avoid such problems. The Computational Geometry Algorithms Library has robust implementations of these algorithms.
I think that it's more likely that you are really looking for a piece of software that can perform vertex welding, Christer Ericson's book Real-time Collision Detection includes extensive and very readable description of the basics in this field, and also on related issues of edge snapping, crack detection, T-junctions and more. However, even though code snippets are included for that book, I know of no ready made library that addresses these problems, in particular, no complete implementation is given for anything beyond basic vertex welding.
Obviously all 3D packages (blender, maya, max, rhino) all include built in software and tools to solve this problem.
Group polygons based on vertices
From past experience, this turned out to be one of the most time consuming parts of developing software to solve problems in this area. It requires reasonable understanding of graph theory and algorithms to traverse boundaries. It is worth relying upon a solid geometry or graph library to do the heavy lifting for you. In the past I've had success with igraph.
Link the updated polygons back to the originals.
Again, from past experience, this is just a case of careful bookkeeping, and some very careful design of your mesh classes up-front. I'd like to give more advice, but even after spending a big chunk of the last six months on this, I'm still struggling to find a "nice" way to do this.
Other Comments
If you're interacting with users, I would strongly recommend avoiding this issue where possible by using an editor that "snaps", rounding all user entered points onto a grid. This will hopefully significantly reduce the amount of work that you have to do.
Yes, you can use OGR. It has python bindings. Specifically, the Geometry class has an Intersects method. I don't fully understand what you want in points 4 and 5.
My requirements:
A user should be able to draw something by hand. Then after he takes off his pen (or finger) an algorithm smooths and transforms it into some basic shapes.
To get started I want to transform a drawing into a rectangle which resembles the original as much as possible. (Naturally this won't work if the user intentionally draws something else.) Right now I'm calculating an average x and y position, and I'm distinguishing between horizontal and vertical lines. But it's not yet a rectangle but some kind of orthogonal lines.
I wondered if there is some well-known algorithm for that, because I saw it a few times at some touchscreen applications. Do you have some reading tip?
Update: Maybe a pattern recognition algorithm would help me. There are some phones which request the user to draw a pattern to unlock it's keys.
P.S.: I think this question is not related to a particular programming language, but if you're interested, I will build a web application with RaphaelGWT.
The Douglas-Peucker algorithm is used in geography (to simplify a GPS track for instance) I guess it could be used here as well.
Based on your description I guess you're looking for a vectorization algorithm. Here are some pointers that might help you:
https://en.wikipedia.org/wiki/Image_tracing
http://outliner.codeplex.com/ - open source vectorizer of the edges in the raster pictures.
http://code.google.com/p/shapelogic/wiki/vectorization - describes different vectorization algorithm implementations
http://cardhouse.com/computer/vector.htm
There are a lot of resources on vectorization algorithms, I'm sure you'll be able to find something that fits your needs. I don't know how complex these algorithms are to implement them, though,
Imagine we have a simple 2D drawing, filled it with lots of non-overlapping circles and only a few stars.
If we are to find all the stars among all these circles, I can think of very few methods. Brute force is one of them. Another one is possibly reduce the image size (to the optimal point where you can still distinguish the objects apart) and then apply brute force and map to the original image. The drawback of brute force is of course, it is very time consuming. I am looking for faster methods, possibly the fastest one.
What is the fastest image processing method to search for the specified item on a simple 2D image?
One typical way of looking for an object in an image is through cross correlation. Basically, you look for the position where the cross-correlation between a mask (the object you're attempting to find) and the image is the highest. That position is the likely location of the object you're trying to find.
For the sake of simplicity, I will refer to the object you're attempting to find as a star, but in general it can be any shape.
Some problems with the above approach:
The size of the mask has to match the size of the star. If you don't know the size of the star, then you will have to try different size masks. Image pyramids are more effective than just iteratively trying different size masks, but still require extra effort.
Similarly, the orientations of the mask and the star have to match. If they don't, the cross-correlation won't work.
For these reasons, the more you know about your problem, the simpler it becomes. This is the reason why people have asked you for more information in the comments. A general purpose solution doesn't really exist, to the best of my knowledge. Maybe someone more knowledgeable can correct me on this.
As you've mentioned, reducing the size of the image will help you reduce the computational time of your approach. In my opinion, it's hardly the core element of a solution -- it's just an optional optimization step.
If the shapes are easy to segment from the background, you might be able to compute distinguishing shape/color descriptors. Depending on your problem you could choose descriptors that are invariant to scale, translation or rotation (e.g. compactness, if it is unique to each shape). I do not know if this will be faster, though.
If you already know the exact shape and have an idea about the size, you might want to have a look at the Generalized Hough Transform, which is basically a formalized description of your "brute force algorithm"
As you list a property that the shapes are not overlapping then I assume an efficient algorithm would be able to
cut out all the shapes by scanning the image in some way (I can imagine relatively efficient and simple algorithm for convex shapes)
when you are left with cut out shapes you could use cross relation misha mentioned
You should describe the problem a bit better
can the shapes be rotated or scaled (or some other transform?)
is the background uniform colour
are the shapes uniform colour
are the shapes filled
Depending on the answer on the above questions you might have more less or more simple solutions.
Also, maybe this article might be interesting.
If the shapes are very regular maybe turning them into vectors could fit your needs nicely, but it might be an overkill, really depends what you want to do later.
Step 1: Thresholding - reduce the image to 1 bit (black or white) if the general image set permits it. [For the type of example you cite, my guess is thresholding would work nicely - leaving enough details to find objects].
Step 2: Optionally do some smoothing/noise removal.
Step 3: Use some clustering approach to gather the foreground objects.
Step 4: Use an appropriate heuristic to identify the objects.
The parameters in steps 1/2 will depend a lot on the type of images as well as experimentation/observation. 3 is usually straightforward if you have worked out 1/2 correctly. 4 will depend very much on the problem (for example, in your case identifying stars - which would depend on what is the actual shape of the stars expected in the images).
Does anyone know a way to locate rectangles to best fit a certain area? The rectangles can be scaled up to a certain limit, but they should keep their proportions.
I basically want to rebuild Mac OS' Exposé:
Picture
Thanks,
eWolf
The problem is NP Hard, but that is only for the optimal solution. What I guess you really want is a solution that just looks good.
So I suggest looking for algorithms that make data look good. Once I wanted to layout pictures for the DeepZoom Composer and I tried to recycle a graph drawing force-interaction based algorithm. http://en.wikipedia.org/wiki/Force-based_algorithms
It worked really well even for 600 hundred rectangles, you just have to play with the details of the simulation.
How the distance is calculated?
What functions do you use for the attraction and repulsion forces?
How much overlap are you going to accept?
The only problem I could not solve entirely, was that the rectangles formed a circle shape, rather then a big rectangle shape, which is natural when you are simulating physics. But you can work around that with carefully placed auxiliary force sources.