__builtin_expect from GCC can be used by programmer to show which variants are expected to be very often and which are rare. But __builtin_expect have only "true" and "false" (0% or 100% probability)
For some big projects it is vary hard to get profile feedback (-fprofile-arcs), and sometimes programmer does know, what probability of branch he have in some point of program.
It is possible to give a hint to compiler that a branch have probability >0% and <100% ?
From here:
long __builtin_expect_with_probability
(long exp, long c, double probability) The function has the same semantics as __builtin_expect, but caller provides the expected probability that exp == c. Last argument, probability, is a floating-value in the inclusive range 0.0f and 1.0f. The probability argument must be constant floating-point expression.
Jesin pointed out in the comments, Clang 11 has it too.
True and false really mean that "the first variant is more likely" and "the second variant is more likely". There's no practical need for any values other than these. The compiler won't be able to use that information.
Non-determinism is not a desirable trait for compiler output, let alone language features. There is no real benefit to only partial optimization preferring one branch, and no compiler I'm aware of can do this.
Related
According to David Brumley's Control Flow Integrity & Software Fault Isolation (PPT slide),
in the below statements, x is always 8 due to the path to the x=7 is unrealizable even with the path sensitive analysis.
Why is that?
Is it because the analysis cannot determine the values of n, a, b, and c in advance during the analysis? Or is it because there's no solution that can be calculated by a computer?
if(a^n + b^n = c^n && n>2 && a>0 && b>0 && c>0)
x = 7; /unrealizable path/
else
x = 8;
In general, the task to determine which path in the program is taken, and which — not, is undecidable. It is quite possible that a particular expression, as in your example, can be proved to have a specific value. However, the words "in general" and "undecidable" say that you cannot write an algorithm that would be able to compute the value every time.
At this point the analysis algorithm can be optimistic or pessimistic. The optimistic one could pick 8 and be fine — it considers possible that at run-time x would get this value. It could also pick 7 — "who knows, maybe, x would be 7". But if the analysis is required to be sound, and it cannot determine the value of the condition, it should assume that the first branch could be taken during one execution, and the second branch could be taken during another execution, so x could be either 7 or 8.
In other words, there is a trade-off between soundness and precision. Or, actually, between soundness, precision, and decidability. The latter property tells if the analysis always terminates. Now, you have to pick what is needed:
Decidability — this is a common choice for compilers and code analyzers, because you would like to get an answer about your program in finite time. However, proof assistants could start some processes that could run up to the specified time limit, and if the limit is not set, forever: it's up to the user to stop it and to try something else.
Soundness — this is a common choice for compilers, because you would like to get the answer that matches the language specification. Code analyzers are more flexible. Many of them are unsound, but because of that they can find more potential issues in finite time, leaving the interpretation to the developer. I believe the example you mention talks about sound analysis.
Precision — this is a rare property. Compilers and code analyzer should be pessimistic, because otherwise some incorrect code could sneak in. But this might be parameterizable. E.g., if the compiler/analyzer supports constant propagation and folding, and all of the variables in the example are set to some known constants before the condition, it can figure out the exact value of x after it, and be completely precise.
Sometimes, writing a code, situations such
(double)Number1/(int)Number2 //division of a double type varible by a int one.
appears to me (and I think, to all of you more or less often) and I never knows what really happens if I rewrite (double) over (int).
(double)Number1/(double)Number2
Is the performace the same? And the precision? And the time taken to perform it... Changes? Does the compiler, in general case (if it is possible to say such thing), write the same binary file. i. e., exe file? Does the called ALU operator chang?
I believe that a formal answer would depends on architecture of machine, compiler and language and a lot of stuff more. But... In these cases, how to have a notion about what would happen in "my code" and what choice would be better (if there is an appreciable difference)?
Thank you all for your replies!
The precision can be different.
For example, if Number2 is originally a double, converting it to an int with (int)Number2 before the division can lose a lot of information both through truncating any bits after the binary point and by truncating any integral bits that don't fit in the int.
I seem to see people asking all the time around here questions about comparing floating-point numbers. The canonical answer is always: just see if the numbers are within some small number of each other…
So the question is this: Why would you ever need to know if two floating point numbers are equal to each other?
In all my years of coding I have never needed to do this (although I will admit that even I am not omniscient). From my point of view, if you are trying to use floating point numbers for and for some reason want to know if the numbers are equal, you should probably be using an integer type (or a decimal type in languages that support it). Am I just missing something?
A few reasons to compare floating-point numbers for equality are:
Testing software. Given software that should conform to a precise specification, exact results might be known or feasibly computable, so a test program would compare the subject software’s results to the expected results.
Performing exact arithmetic. Carefully designed software can perform exact arithmetic with floating-point. At its simplest, this may simply be integer arithmetic. (On platforms which provide IEEE-754 64-bit double-precision floating-point but only 32-bit integer arithmetic, floating-point arithmetic can be used to perform 53-bit integer arithmetic.) Comparing for equality when performing exact arithmetic is the same as comparing for equality with integer operations.
Searching sorted or structured data. Floating-point values can be used as keys for searching, in which case testing for equality is necessary to determine that the sought item has been found. (There are issues if NaNs may be present, since they report false for any order test.)
Avoiding poles and discontinuities. Functions may have special behaviors at certain points, the most obvious of which is division. Software may need to test for these points and divert execution to alternate methods.
Note that only the last of these tests for equality when using floating-point arithmetic to approximate real arithmetic. (This list of examples is not complete, so I do not expect this is the only such use.) The first three are special situations. Usually when using floating-point arithmetic, one is approximating real arithmetic and working with mostly continuous functions. Continuous functions are “okay” for working with floating-point arithmetic because they transmit errors in “normal” ways. For example, if your calculations so far have produced some a' that approximates an ideal mathematical result a, and you have a b' that approximates an ideal mathematical result b, then the computed sum a'+b' will approximate a+b.
Discontinuous functions, on the other hand, can disrupt this behavior. For example, if we attempt to round a number to the nearest integer, what happens when a is 3.49? Our approximation a' might be 3.48 or 3.51. When the rounding is computed, the approximation may produce 3 or 4, turning a very small error into a very large error. When working with discontinuous functions in floating-point arithmetic, one has to be careful. For example, consider evaluating the quadratic formula, (−b±sqrt(b2−4ac))/(2a). If there is a slight error during the calculations for b2−4ac, the result might be negative, and then sqrt will return NaN. So software cannot simply use floating-point arithmetic as if it easily approximated real arithmetic. The programmer must understand floating-point arithmetic and be wary of the pitfalls, and these issues and their solutions can be specific to the particular software and application.
Testing for equality is a discontinuous function. It is a function f(a, b) that is 0 everywhere except along the line a=b. Since it is a discontinuous function, it can turn small errors into large errors—it can report as equal numbers that are unequal if computed with ideal mathematics, and it can report as unequal numbers that are equal if computed with ideal mathematics.
With this view, we can see testing for equality is a member of a general class of functions. It is not any more special than square root or division—it is continuous in most places but discontinuous in some, and so its use must be treated with care. That care is customized to each application.
I will relate one place where testing for equality was very useful. We implement some math library routines that are specified to be faithfully rounded. The best quality for a routine is that it is correctly rounded. Consider a function whose exact mathematical result (for a particular input x) is y. In some cases, y is exactly representable in the floating-point format, in which case a good routine will return y. Often, y is not exactly representable. In this case, it is between two numbers representable in the floating-point format, some numbers y0 and y1. If a routine is correctly rounded, it returns whichever of y0 and y1 is closer to y. (In case of a tie, it returns the one with an even low digit. Also, I am discussing only the round-to-nearest ties-to-even mode.)
If a routine is faithfully rounded, it is allowed to return either y0 or y1.
Now, here is the problem we wanted to solve: We have some version of a single-precision routine, say sin0, that we know is faithfully rounded. We have a new version, sin1, and we want to test whether it is faithfully rounded. We have multiple-precision software that can evaluate the mathematical sin function to great precision, so we can use that to check whether the results of sin1 are faithfully rounded. However, the multiple-precision software is slow, and we want to test all four billion inputs. sin0 and sin1 are both fast, but sin1 is allowed to have outputs different from sin0, because sin1 is only required to be faithfully rounded, not to be the same as sin0.
However, it happens that most of the sin1 results are the same as sin0. (This is partly a result of how math library routines are designed, using some extra precision to get a very close result before using a few final arithmetic operations to deliver the final result. That tends to get the correctly rounded result most of the time but sometimes slips to the next nearest value.) So what we can do is this:
For each input, calculate both sin0 and sin1.
Compare the results for equality.
If the results are equal, we are done. If they are not, use the extended precision software to test whether the sin1 result is faithfully rounded.
Again, this is a special case for using floating-point arithmetic. But it is one where testing for equality serves very well; the final test program runs in a few minutes instead of many hours.
The only time I needed, it was to check if the GPU was IEEE 754 compliant.
It was not.
Anyway I haven't used a comparison with a programming language. I just run the program on the CPU and on the GPU producing some binary output (no literals) and compared the outputs with a simple diff.
There are plenty possible reasons.
Since I know Squeak/Pharo Smalltalk better, here are a few trivial examples taken out of it (it relies on strict IEEE 754 model):
Float>>isFinite
"simple, byte-order independent test for rejecting Not-a-Number and (Negative)Infinity"
^(self - self) = 0.0
Float>>isInfinite
"Return true if the receiver is positive or negative infinity."
^ self = Infinity or: [self = NegativeInfinity]
Float>>predecessor
| ulp |
self isFinite ifFalse: [
(self isNaN or: [self negative]) ifTrue: [^self].
^Float fmax].
ulp := self ulp.
^self - (0.5 * ulp) = self
ifTrue: [self - ulp]
ifFalse: [self - (0.5 * ulp)]
I'm sure that you would find some more involved == if you open some libm implementation and check... Unfortunately, I don't know how to search == thru github web interface, but manually I found this example in julia libm (a variant of fdlibm)
https://github.com/JuliaLang/openlibm/blob/master/src/s_remquo.c
remquo(double x, double y, int *quo)
{
...
fixup:
INSERT_WORDS(x,hx,lx);
y = fabs(y);
if (y < 0x1p-1021) {
if (x+x>y || (x+x==y && (q & 1))) {
q++;
x-=y;
}
} else if (x>0.5*y || (x==0.5*y && (q & 1))) {
q++;
x-=y;
}
GET_HIGH_WORD(hx,x);
SET_HIGH_WORD(x,hx^sx);
q &= 0x7fffffff;
*quo = (sxy ? -q : q);
return x;
Here, the remainder function answer a result x between -y/2 and y/2. If it is exactly y/2, then there are 2 choices (a tie)... The == test in fixup is here to test the case of exact tie (resolved so as to always have an even quotient).
There are also a few ==zero tests, for example in __ieee754_logf (test for trivial case log(1)) or __ieee754_rem_pio2 (modulo pi/2 used for trigonometric functions).
Sometimes the value of a variable accessed within the control-flow of a program cannot possibly have any effect on a its output. For example:
global var_1
global var_2
start program hello(var_3, var_4)
if (var_2 < 0) then
save-log-to-disk (var_1, var_3, var_4)
end-if
return ("Hello " + var_3 + ", my name is " + var_1)
end program
Here only var_1 and var_3 have any influence on the output, while var_2 and var_4 are only used for side effects.
Do variables such as var_1 and var_3 have a name in dataflow-theory/compiler-theory?
Which static dataflow analysis techniques can be used to discover them?
References to academic literature on the subject would be particularly appreciated.
The problem that you stated is undecidable in general,
even for the following very narrow special case:
Given a single routine P(x), where x is a parameter of type integer. Is the output of P(x) independent of the value of x, i.e., does
P(0) = P(1) = P(2) = ...?
We can reduce the following still undecidable version of the halting problem to the question above: Given a Turing machine M(), does the program
never stop on the empty input?
I assume that we use a (Turing-complete) language in which we can build a "Turing machine simulator":
Given the program M(), construct this routine:
P(x):
if x == 0:
return 0
Run M() for x steps
if M() has terminated then:
return 1
else:
return 0
Now:
P(0) = P(1) = P(2) = ...
=>
M() does not terminate.
M() does terminate
=> P(x) = 1 for a sufficiently large x
=> P(x) != P(0) = 0
So, it is very difficult for a compiler to decide whether a variable actually does not influence the return value of a routine; in your example, the "side effect routine" might manipulate one of its values (or even loop infinitely, which would most definitely change the return value of the routine ;-)
Of course overapproximations are still possible. For example, one might conclude that a variable does not influence the return value if it does not appear in the routine body at all. You can also see some classical compiler analyses (like Expression Simplification, Constant propagation) having the side effect of eliminating appearances of such redundant variables.
Pachelbel has discussed the fact that you cannot do this perfectly. OK, I'm an engineer, I'm willing to accept some dirt in my answer.
The classic way to answer you question is to do dataflow tracing from program outputs back to program inputs. A dataflow is the connection of a program assignment (or sideeffect) to a variable value, to a place in the application that consumes that value.
If there is (transitive) dataflow from a program output that you care about (in your example, the printed text stream) to an input you supplied (var2), then that input "affects" the output. A variable that does not flow from the input to your desired output is useless from your point of view.
If you focus your attention only the computations involved in the dataflows, and display them, you get what is generally called a "program slice" . There are (very few) commercial tools that can show this to you.
Grammatech has a good reputation here for C and C++.
There are standard compiler algorithms for constructing such dataflow graphs; see any competent compiler book.
They all suffer from some limitation due to Turing's impossibility proofs as pointed out by Pachelbel. When you implement such a dataflow algorithm, there will be places that it cannot know the right answer; simply pick one.
If your algorithm chooses to answer "there is no dataflow" in certain places where it is not sure, then it may miss a valid dataflow and it might report that a variable does not affect the answer incorrectly. (This is called a "false negative"). This occasional error may be satisfactory if
the algorithm has some other nice properties, e.g, it runs really fast on a millions of code. (The trivial algorithm simply says "no dataflow" in all places, and it is really fast :)
If your algorithm chooses to answer "yes there is a dataflow", then it may claim that some variable affects the answer when it does not. (This is called a "false positive").
You get to decide which is more important; many people prefer false positives when looking for a problem, because then you have to at least look at possibilities detected by the tool. A false negative means it didn't report something you might care about. YMMV.
Here's a starting reference: http://en.wikipedia.org/wiki/Data-flow_analysis
Any of the books on that page will be pretty good. I have Muchnick's book and like it lot. See also this page: (http://en.wikipedia.org/wiki/Program_slicing)
You will discover that implementing this is pretty big effort, for any real langauge. You are probably better off finding a tool framework that does most or all this for you already.
I use the following algorithm: a variable is used if it is a parameter or it occurs anywhere in an expression, excluding as the LHS of an assignment. First, count the number of uses of all variables. Delete unused variables and assignments to unused variables. Repeat until no variables are deleted.
This algorithm only implements a subset of the OP's requirement, it is horribly inefficient because it requires multiple passes. A garbage collection may be faster but is harder to write: my algorithm only requires a list of variables with usage counts. Each pass is linear in the size of the program. The algorithm effectively does a limited kind of dataflow analysis by elimination of the tail of a flow ending in an assignment.
For my language the elimination of side effects in the RHS of an assignment to an unused variable is mandated by the language specification, it may not be suitable for other languages. Effectiveness is improved by running before inlining to reduce the cost of inlining unused function applications, then running it again afterwards which eliminates parameters of inlined functions.
Just as an example of the utility of the language specification, the library constructs a thread pool and assigns a pointer to it to a global variable. If the thread pool is not used, the assignment is deleted, and hence the construction of the thread pool elided.
IMHO compiler optimisations are almost invariably heuristics whose performance matters more than effectiveness achieving a theoretical goal (like removing unused variables). Simple reductions are useful not only because they're fast and easy to write, but because a programmer using a language who understand basics of the compiler operation can leverage this knowledge to help the compiler. The most well known example of this is probably the refactoring of recursive functions to place the recursion in tail position: a pointless exercise unless the programmer knows the compiler can do tail-recursion optimisation.
Recently I realized I have been doing too much branching without caring the negative impact on performance it had, therefore I have made up my mind to attempt to learn all about not branching. And here is a more extreme case, in attempt to make the code to have as little branch as possible.
Hence for the code
if(expression)
A = C; //A and C have to be the same type here obviously
expression can be A == B, or Q<=B, it could be anything that resolve to true or false, or i would like to think of it in term of the result being 1 or 0 here
I have come up with this non branching version
A += (expression)*(C-A); //Edited with thanks
So my question would be, is this a good solution that maximize efficiency?
If yes why and if not why?
Depends on the compiler, instruction set, optimizer, etc. When you use a boolean expression as an int value, e.g., (A == B) * C, the compiler has to do the compare, and the set some register to 0 or 1 based on the result. Some instruction sets might not have any way to do that other than branching. Generally speaking, it's better to write simple, straightforward code and let the optimizer figure it out, or find a different algorithm that branches less.
Jeez, no, don't do that!
Anyone who "penalize[s] [you] a lot for branching" would hopefully send you packing for using something that awful.
How is it awful, let me count the ways:
There's no guarantee you can multiply a quantity (e.g., C) by a boolean value (e.g., (A==B) yields true or false). Some languages will, some won't.
Anyone casually reading it is going observe a calculation, not an assignment statement.
You're replacing a comparison, and a conditional branch with two comparisons, two multiplications, a subtraction, and an addition. Seriously non-optimal.
It only works for integral numeric quantities. Try this with a wide variety of floating point numbers, or with an object, and if you're really lucky it will be rejected by the compiler/interpreter/whatever.
You should only ever consider doing this if you had analyzed the runtime properties of the program and determined that there is a frequent branch misprediction here, and that this is causing an actual performance problem. It makes the code much less clear, and its not obvious that it would be any faster in general (this is something you would also have to measure, under the circumstances you are interested in).
After doing research, I came to the conclusion that when there are bottleneck, it would be good to include timed profiler, as these kind of codes are usually not portable and are mainly used for optimization.
An exact example I had after reading the following question below
Why is it faster to process a sorted array than an unsorted array?
I tested my code on C++ using that, that my implementation was actually slower due to the extra arithmetics.
HOWEVER!
For this case below
if(expression) //branched version
A += C;
//OR
A += (expression)*(C); //non-branching version
The timing was as of such.
Branched Sorted list was approximately 2seconds.
Branched unsorted list was aproximately 10 seconds.
My implementation (whether sorted or unsorted) are both 3seconds.
This goes to show that in an unsorted area of bottleneck, when we have a trivial branching that can be simply replaced by a single multiplication.
It is probably more worthwhile to consider the implementation that I have suggested.
** Once again it is mainly for the areas that is deemed as the bottleneck **