Simple data structure for the Othello board game? - algorithm

I've done my program ages ago here as a uni project, at least it works to some extent (you may try the Monkey and Novice level:) ).
I'd like to redesign and re-implement it, so to practice on data structure and algorithm.
In my previous project, min-max search and alpha-beta pruning was the missing part, as well as a lack of opening dictionary.
Because the game board is symmetric both horizontally and vertically, I need a better data structure than my previous approach:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 11 12 13 14 15 16 17 18 -1
-1 21 22 23 24 25 26 27 28 -1
-1 31 32 33 34 35 36 37 38 -1
. . . . . .
In this way, one can easily calculate the adjacent positions given any cell value like this:
x-11 x-10 x-9
x-1 x x+1
x+9 x+10 x+11
Those -1s are acting like "walls" to prevent wrong calculation.
The biggest issue is it doesn't take any consideration of symmetric/orientation, i.e., same opening like parallel opening would have 4 corresponding opening cases in database, one for each orientation.
Any good suggestion? I am also considering to try ruby as to have a quicker calculation speed than PHP (just for min-max alpha-beta pruning, in case I will program it to look n steps ahead).
Many thanks for the suggestions in advance.

When you hash a position to store or lookup in your database, takes hashes of all eight symmetric positions, and store or lookup only the smallest of the eight. Thus all symmetric positions hash to the same value.
This reduces the size of your database by 8 but multiplies the cost of hashing by 8. Is this a good trade-off? It depends on how big your database is and how often you do database lookups.

After you move to C/C++ :-) consider representing the game board as "bit-boards" e.g. two 64-bit-vectors e.g. for white and black e.g. struct Board { unsigned long white, black };
With care you can then avoid array indexing to test piece positions, and in fact can search in parallel for all up-captures, up-right-captures, etc. from a position using a series of bit logical operators, shifts, and masks, and no loops (!). Much faster.
This representation idea is orthogonal to your questino of opening book symmetries though.
Happy hacking.

The problem is easy to deal with if you seperate the presentation of the board from the internal representation. Once the opening move is made, you get parallel, diagional, or perpendicular opening. Each one of them can be in any of the 4 orientations. Rotate the internal board representation, until it is aligned with your opening book. Then simply take the rotation into account when drawing the board.
In regard to play, you need to look into Mobility Theory. Take a look at Hugo Calendars book on the topic. Also Nick Buro has written a bit about his program Logistello. A FAQ

As that parallel opening only applies for the very first move, I would just make the first move fixed.
If you really want speed, I'd recommend C++.
I would also imagine checking the space is on the board is faster than checking if the space contains a -1.

Related

33 * 33 bit using 16 bit DSPs

I want to write a vhdl/verilog code to multiply 2 33 vector using 16 bit dsps.
I really don't understand the mechanism of splitting the 2 33 vector into smaller vectors. Then use multiply and addition to get the final result.
Could anyone please explain how to do so.
Thank you.
You don't have to do that.
Just instance a 33x33 multiplier and the FPGA mapping tools will take care of splitting and recombination.
If you insist of doing it yourself look up "Wallace tree multiplier". That is the principle of how multipliers are build in hardware, with the improvement of using carry look ahead adders.

{Two's complement} Bit shifting

I got confused by all this shifting thing since I saw two different results of shifting the same number. I know there are tons of questions about this thing but seems like I still couldn't find what I was looking for (Feel free to post link of a question or a website that could help).
So, first I have seen the number 13 binary like: 001101 (not whole word of bits).
When applied shifting to the left by 2 they hold the last bit (bit for sign probably) and results like 0|10100 = 20. However on other place I have seen the number 13 represented like: 01101, and now the 01101<<2 was 0|0100 = 4. I know shifting left is same as multiplying by the base, however this made me confused. Should i present 13 as 001101 or 01101 and apply shifting.
I think we omit the overflow considering the results.
Thank you !!
This behaviour seems to be corresponding with integers of length 5 and
4 (in bits, not counting the sign bit). So it seems overflow is indeed the problem. If it isn't, could you add some context as to where these strange results occur?
001101, 01101 and also 1101 and 00001101 and other sizes have equal claim to "being" 13. You can't really say that 13 has one definitive size, rather it is the operation that has a size (which may be infinite, then a left shift never wraps).
So you have to decide what size of shift you're doing, independently of the value you're shifting. Common choices are 32 or 64 bits, but you're certainly not limited to that, although "strange" sizes take more effort to implement on typical machines and in typical programming languages.
The sign is never deliberately kept in left shifts by the way, there is no useful way to do so: forcefully keeping it means the wrapping happens in a really odd way, instead of the usual wrapping modulo a power of two (which has nice properties).

What are the design decisions behind Google Maps encoded polyline algorithm format?

Several Google Maps products have the notion of polylines, which in terms of underlying data is basically just a sequence of lat/lng points that might for example manifest in a line drawn on a map. The Google Map developer libraries make use of an encoded polyline format that churns out an ASCII string representing the points making up the polyline. This encoded format is then typically decoded with a built in function of the Google libraries or a function written by a third party that implements the decoding algorithm.
The algorithm for encoding polyline points is described in the Encoded Polyline Algorithm Format document. What is not described is the rationale for implementing the algorithm this way, and the significance of each of the individual steps. I'm interested to know whether the thinking/purpose behind implementing the algorithm this way is publicly described anywhere. Two example questions:
Do some of the steps have a quantifiable impact on compression and how does this impact vary as a function of the delta between points?
Is the summing of values with ASCII 63 a compatibility hack of some sort?
But just in general, a description to go along with the algorithm explaining why the algorithm is implemented the way it is.
Update: This blog post from James Snook also has the 'valid ascii' range argument and reads logically for other steps I wondered. E.g. the left shifting before storing which makes place for the negative bit as the first bit.
Some explanations I found, not sure if everything is 100% correct.
One double value is stored in multiple 5 bits chunks and 0x20 (binary '0010 0000') is used as indication that the next 5 bit entry belongs to the current double.
0x1f (binary '0001 1111') is used as bit mask to throw away other bits
I expect that 5 bits are used because the delta of lat or lons are in this range. So that every double value takes only 5 bits on average when done for a lot of examples (but not verified yet).
Now, compression is done by assuming nearby double values are very close and creating the difference is nearly 0, so that the results fits in a few bytes. Then this result is stored in a dynamic fashion: store 5 bits and if the value is longer mark with 0x20 and store the next 5 bits and so on. So I guess you can tweak the compression if you try 6 or 4 bits but I guess 5 is a practically reasonable choice.
Now regarding the magic 63, this is 0x3f and binary 0011 1111. I'm not sure why they add it. I thought that adding 63 will give some 'better' asci characters (e.g. allowed in XML or in URL) as we skip e.g. 62 which is > but 63 which is ? is really better? At least the first ascii chars are not displayable and have to be avoided. Note that if one would use 64 then one would hit the ascii char 127 for the maximum value of 31 (31+64+32) and this char is not defined in html4. Or is because of a signed char is going from -128 to 127 and we need to store the negative numbers as positive, thus adding the maximum possible negative number?
Just for me: here is a link to an official Java implementation with Apache License

Lua: Code optimization vector length calculation

I have a script in a game with a function that gets called every second. Distances between player objects and other game objects are calculated every second there. The problem is that there can be thoretically 800 function calls in 1 second(max 40 players * 2 main objects(1 up to 10 sub-objects)). I have to optimize this function for less processing. this is my current function:
local square = math.sqrt;
local getDistance = function(a, b)
local x, y, z = a.x-b.x, a.y-b.y, a.z-b.z;
return square(x*x+y*y+z*z);
end;
-- for example followed by: for i = 800, 1 do getDistance(posA, posB); end
I found out, that the localization of the math.sqrt function through
local square = math.sqrt;
is a big optimization regarding to the speed, and the code
x*x+y*y+z*z
is faster than this code:
x^2+y^2+z^2
I don't know if the localization of x, y and z is better than using the class method "." twice, so maybe square(a.x*b.x+a.y*b.y+a.z*b.z) is better than the code local x, y, z = a.x-b.x, a.y-b.y, a.z-b.z;
square(x*x+y*y+z*z);
Is there a better way in maths to calculate the vector length or are there more performance tips in Lua?
You should read Roberto Ierusalimschy's Lua Performance Tips (Roberto is the chief architect of Lua). It touches some of the small optimizations you're asking about (such as localizing library functions and replacing exponents with their mutiplicative equivalents). Most importantly, it conveys one of the most important and overlooked ideas in engineering: sometimes the best solution involves changing your problem. You're not going to fix a 30-million-calculation leak by reducing the number of CPU cycles the calculation takes.
In your specific case of distance calculation, you'll find it's best to make your primitive calculation return the intermediate sum representing squared distance and allow the use case to call the final Pythagorean step only if they need it, which they often don't (for instance, you don't need to perform the square root to compare which of two squared lengths is longer).
This really should come before any discussion of optimization, though: don't worry about problems that aren't the problem. Rather than scouring your code for any possible issues, jump directly to fixing the biggest one - and if performance is outpacing missing functionality, bugs and/or UX shortcomings for your most glaring issue, it's nigh-impossible for micro-inefficiencies to have piled up to the point of outpacing a single bottleneck statement.
Or, as the opening of the cited article states:
In Lua, as in any other programming language, we should always follow the two
maxims of program optimization:
Rule #1: Don’t do it.
Rule #2: Don’t do it yet. (for experts only)
I honestly doubt these kinds of micro-optimizations really help any.
You should be focusing on your algorithms instead, like for example get rid of some distance calculations through pruning, stop calculating the square roots of values for comparison (tip: if a^2<b^2 and a>0 and b>0, then a<b), etc etc
Your "brute force" approach doesn't scale well.
What I mean by that is that every new object/player included in the system increases the number of operations significantly:
+---------+--------------+
| objects | calculations |
+---------+--------------+
| 40 | 1600 |
| 45 | 2025 |
| 50 | 2500 |
| 55 | 3025 |
| 60 | 3600 |
... ... ...
| 100 | 10000 |
+---------+--------------+
If you keep comparing "everything with everything", your algorithm will start taking more and more CPU cycles, in a cuadratic way.
The best option you have for optimizing your code isn't not in "fine tuning" the math operations or using local variables instead of references.
What will really boost your algorithm will be eliminating calculations that you don't need.
The most obvious example would be not calculating the distance between Player1 and Player2 if you already have calculated the distance between Player2 and Player1. This simple optimization should reduce your time by a half.
Another very common implementation consists in dividing the space into "zones". When two objects are on the same zone, you calculate the space between them normally. When they are in different zones, you use an approximation. The ideal way of dividing the space will depend on your context; an example would be dividing the space into a grid, and for players on different squares, use the distance between the centers of their squares, that you have computed in advance).
There's a whole branch in programming dealing with this issue; It's called Space Partitioning. Give this a look:
http://en.wikipedia.org/wiki/Space_partitioning
Seriously?
Running 800 of those calculations should not take more than 0.001 second - even in Lua on a phone.
Did you do some profiling to see if it's really slowing you down? Did you replace that function with "return (0)" to verify performance improves (yes, function will be lost).
Are you sure it's run every second and not every millisecond?
I haven't see an issue running 800 of anything simple in 1 second since like 1987.
If you want to calc sqrt for positive number a, take a recursive sequense
x_0 = a
x_n+1 = 1/2 * (x_n + a / x_n)
x_n goes to sqrt(a) with n -> infinity. first several iterations should be fast enough.
BTW! Maybe you'll try to use the following formula for length of vector instesd of standart.
local getDistance = function(a, b)
local x, y, z = a.x-b.x, a.y-b.y, a.z-b.z;
return x+y+z;
end;
It's much more easier to compute and in some cases (e.g. if distance is needed to know whether two object are close) it may act adequate.

How would I go about implementing this algorithm?

A while back I was trying to bruteforce a remote control which sent a 12 bit binary 'key'.
The device I made worked, but was very slow as it was trying every combination at about 50 bits per second (4096 codes = 49152 bits = ~16 minutes)
I opened the receiver and found it was using a shift register to check the codes and no delay was required between attempts. This meant that the receiver was simply looking at the last 12 bits to be received to see if they were a match to the key.
This meant that if the stream 111111111111000000000000 was sent through, it had effectively tried all of these codes.
111111111111 111111111110 111111111100 111111111000
111111110000 111111100000 111111000000 111110000000
111100000000 111000000000 110000000000 100000000000
000000000000
In this case, I have used 24 bits to try 13 12 bit combinations (>90% compression).
Does anyone know of an algorithm that could reduce my 49152 bits sent by taking advantage of this?
What you're talking about is a de Bruijn sequence. If you don't care about how it works, you just want the result, here it is.
Off the top of my head, I suppose flipping one bit in each 12-bit sequence would take care of another 13 combinations, for example 111111111101000000000010, then 111111111011000000000100, etc. But you still have to do a lot permutations, even with one bit I think you still have to do 111111111101000000000100 etc. Then flip two bits on one side and 1 on the other, etc.

Resources