How would I go about implementing this algorithm? - algorithm

A while back I was trying to bruteforce a remote control which sent a 12 bit binary 'key'.
The device I made worked, but was very slow as it was trying every combination at about 50 bits per second (4096 codes = 49152 bits = ~16 minutes)
I opened the receiver and found it was using a shift register to check the codes and no delay was required between attempts. This meant that the receiver was simply looking at the last 12 bits to be received to see if they were a match to the key.
This meant that if the stream 111111111111000000000000 was sent through, it had effectively tried all of these codes.
111111111111 111111111110 111111111100 111111111000
111111110000 111111100000 111111000000 111110000000
111100000000 111000000000 110000000000 100000000000
000000000000
In this case, I have used 24 bits to try 13 12 bit combinations (>90% compression).
Does anyone know of an algorithm that could reduce my 49152 bits sent by taking advantage of this?

What you're talking about is a de Bruijn sequence. If you don't care about how it works, you just want the result, here it is.

Off the top of my head, I suppose flipping one bit in each 12-bit sequence would take care of another 13 combinations, for example 111111111101000000000010, then 111111111011000000000100, etc. But you still have to do a lot permutations, even with one bit I think you still have to do 111111111101000000000100 etc. Then flip two bits on one side and 1 on the other, etc.

Related

{Two's complement} Bit shifting

I got confused by all this shifting thing since I saw two different results of shifting the same number. I know there are tons of questions about this thing but seems like I still couldn't find what I was looking for (Feel free to post link of a question or a website that could help).
So, first I have seen the number 13 binary like: 001101 (not whole word of bits).
When applied shifting to the left by 2 they hold the last bit (bit for sign probably) and results like 0|10100 = 20. However on other place I have seen the number 13 represented like: 01101, and now the 01101<<2 was 0|0100 = 4. I know shifting left is same as multiplying by the base, however this made me confused. Should i present 13 as 001101 or 01101 and apply shifting.
I think we omit the overflow considering the results.
Thank you !!
This behaviour seems to be corresponding with integers of length 5 and
4 (in bits, not counting the sign bit). So it seems overflow is indeed the problem. If it isn't, could you add some context as to where these strange results occur?
001101, 01101 and also 1101 and 00001101 and other sizes have equal claim to "being" 13. You can't really say that 13 has one definitive size, rather it is the operation that has a size (which may be infinite, then a left shift never wraps).
So you have to decide what size of shift you're doing, independently of the value you're shifting. Common choices are 32 or 64 bits, but you're certainly not limited to that, although "strange" sizes take more effort to implement on typical machines and in typical programming languages.
The sign is never deliberately kept in left shifts by the way, there is no useful way to do so: forcefully keeping it means the wrapping happens in a really odd way, instead of the usual wrapping modulo a power of two (which has nice properties).

Bash string compression

I'd like to know how I can compress a string into fewer characters using a shell script. The goal is to take a Mac's serial number and MAC address then compress those values into a 14 character string. I'm not sure if this is possible, but I'd like to hear if anyone has any suggestions.
Thank you
Your question is way too vague to result in a detailed answer.
Given your restriction of a 14 character string output, you won't be able to use "real" compression (like zip), due to the overhead. This leaves you with simple algorithms, like RLE or bit concatenation.
If by "string" you mean "printable string", i.e. only about 62 or so values are usable in a character (depending on the exact printable set you choose), then you have an additional space constraint.
A handy trick you could use with the MAC address part is, since it belongs to an Apple device, you already know that the first three values (AA:BB:CC) are one of 297 combinations, so you could save 6 characters (plus 2 for the colons) worth of information into 2+ characters (depending on your output character set, see above).
The remaining three MAC address values are base-16 (0-9, A-F), so you could "compress" this information slightly as well.
A similar analysis can be done for the Mac serial number (which values can it take? how much space can be saved?).
The effort to do this in bash would be disproportionate though. I'd highly recommend a C (or other programming language) approach.
Cheating answer
Get someone at Apple to give you access to the database I'm assuming they have which matches devices' serial numbers to MAC addresses. Then you can just store the MAC address and look it up in the database whenever you need the serial number. The 64-bit MAC address can easily be stored in 12 characters with standard base64 encoding.
Frustrating answer
You have to make some unreliable assumptions just to make this approachable. You can fix the assumptions later, but I don't know if it would still fit in 14 characters. Personally, I have no idea why you want to save space by reprocessing the serial and MAC numbers, but here's how I'd start.
Simplifying assumptions
Apple will never use MAC address prefixes beyond the 297 combinations mentioned in Sir Athos' answer.
The "new" Mac serial number format in this article from
2010 is the only format Apple has used or ever will use.
Core concepts of encoding
You're taking something which could have n possible values and you're converting it into something else with n possible values.
There may be gaps in the original's possible values, such as if Apple cancels building a manufacturing plant after already assigning it a location code.
There may be gaps in your encoded form's possible values, perhaps in anticipation of Apple doing things that would fill the gaps.
Abstract integer encoding
Break apart the serial number into groups as "PPP Y W SSS CCCC" (like the article describes)
Make groups for the first 3 bytes and last 5 bytes of the MAC address.
Translate each group into a number from 0 to n-1 where n is the number of possible values for something in the group. As far as I can tell from the article, the values are n_P=36^3, n_Y=20, n_W=27, n_S=3^3, and n_C=36^4. The first 3 MAC bytes has 297 values and the last 5 have 2^(8*5)=2^40 values.
Set a variable, i, to the value of the first group's number.
For each remaining group's number, multiply i by the number of values possible for the group, and then add the number to i.
Base n encoding
Make a list of n characters that you want to use in your final output.
Print the character in your list at index i%n.
Subtract the modulus from the integer encoding and divide by n.
Repeat 1 and 2 until the integer becomes 0.
Result
This results in a total of 36^3 * 20 * 27 * 36 * 7 * 297 * 2^40 ~= 2 * 10^24 combinations. If you let n=64 for a custom base64 encoding
(without any padding characters), then you can barely fit that into ceiling(log(2 * 10^24) / log(64)) = 14 characters. If you use all 95 printable ASCII characters, then you can fit it into ceiling(log(2 * 10^24) / log(95)) = 13 characters.
Fixing the assumptions
If you're trying to build something that uses this and are determined to make it work, here's what you need to do to make it solid, along with some tips.
Do the same analysis on every other serial number format you may care about. You might want to see if there's any redundant information between the serial and MAC numbers.
Figure out a way to detect between serial number formats. Adding an extra thing at the end of the abstract number encoding can enable you to track which version it uses.
Think long and careful about the format you're making. It's a lot easier to make changes before you're stuck with backwards compatibility.
If you can, use a language that's well suited for mapping between values, doing a lot of arithmetic, and handling big numbers. You may be able to do it in Bash, but it'd probably be easier in, say, Python.

What are the design decisions behind Google Maps encoded polyline algorithm format?

Several Google Maps products have the notion of polylines, which in terms of underlying data is basically just a sequence of lat/lng points that might for example manifest in a line drawn on a map. The Google Map developer libraries make use of an encoded polyline format that churns out an ASCII string representing the points making up the polyline. This encoded format is then typically decoded with a built in function of the Google libraries or a function written by a third party that implements the decoding algorithm.
The algorithm for encoding polyline points is described in the Encoded Polyline Algorithm Format document. What is not described is the rationale for implementing the algorithm this way, and the significance of each of the individual steps. I'm interested to know whether the thinking/purpose behind implementing the algorithm this way is publicly described anywhere. Two example questions:
Do some of the steps have a quantifiable impact on compression and how does this impact vary as a function of the delta between points?
Is the summing of values with ASCII 63 a compatibility hack of some sort?
But just in general, a description to go along with the algorithm explaining why the algorithm is implemented the way it is.
Update: This blog post from James Snook also has the 'valid ascii' range argument and reads logically for other steps I wondered. E.g. the left shifting before storing which makes place for the negative bit as the first bit.
Some explanations I found, not sure if everything is 100% correct.
One double value is stored in multiple 5 bits chunks and 0x20 (binary '0010 0000') is used as indication that the next 5 bit entry belongs to the current double.
0x1f (binary '0001 1111') is used as bit mask to throw away other bits
I expect that 5 bits are used because the delta of lat or lons are in this range. So that every double value takes only 5 bits on average when done for a lot of examples (but not verified yet).
Now, compression is done by assuming nearby double values are very close and creating the difference is nearly 0, so that the results fits in a few bytes. Then this result is stored in a dynamic fashion: store 5 bits and if the value is longer mark with 0x20 and store the next 5 bits and so on. So I guess you can tweak the compression if you try 6 or 4 bits but I guess 5 is a practically reasonable choice.
Now regarding the magic 63, this is 0x3f and binary 0011 1111. I'm not sure why they add it. I thought that adding 63 will give some 'better' asci characters (e.g. allowed in XML or in URL) as we skip e.g. 62 which is > but 63 which is ? is really better? At least the first ascii chars are not displayable and have to be avoided. Note that if one would use 64 then one would hit the ascii char 127 for the maximum value of 31 (31+64+32) and this char is not defined in html4. Or is because of a signed char is going from -128 to 127 and we need to store the negative numbers as positive, thus adding the maximum possible negative number?
Just for me: here is a link to an official Java implementation with Apache License

What methods can I use to analyse and guess 4-bit checksum algorithm?

[Background Story]
I am working with a 5 year old user identification system, and I am trying to add IDs to the database. The problem I have is that the system that reads the ID numbers requires some sort of checksum, and no-one working here now has ever worked with it, so no-one knows how it works.
I have access to the list of existing IDs, which already have correct checksums. Also, as the checksum only has 16 possible values, I can create any ID I want and run it through the authentication system up to 16 times until I get the correct checksum (but this is quite time consuming)
[Question]
What methods can I use to help guess the checksum algorithm of used for some data?
I have tried a few simple methods such as XORing and summing, but these have not worked.
So my question is: if I have data (in hexadecimal) like this:
data checksum
00029921 1
00013481 B
00026001 3
00004541 8
What methods can I use work out what sort of checksum is used?
i.e. should I try sequential numbers such as 00029921,00029922,00029923,... or 00029911,00029921,00029931,... If I do this what patterns should I look for in the changing checksum?
Similarly, would comparing swapped digits tell me anything useful about the checksum?
i.e. 00013481 and 00031481
Is there anything else that could tell me something useful? What about inverting one bit, or maybe one hex digit?
I am assuming that this will be a common checksum algorithm, but I don't know where to start in testing it.
I have read the following links, but I am not sure if I can apply any of this to my case, as I don't think mine is a CRC.
stackoverflow.com/questions/149617/how-could-i-guess-a-checksum-algorithm
stackoverflow.com/questions/2896753/find-the-algorithm-that-generates-the-checksum
cosc.canterbury.ac.nz/greg.ewing/essays/CRC-Reverse-Engineering.html
[ANSWER]
I have now downloaded a much larger list of data, and it turned out to be simpler than I was expecting, but for completeness, here is what I did.
data:
00024901 A
00024911 B
00024921 C
00024931 D
00042811 A
00042871 0
00042881 1
00042891 2
00042901 A
00042921 C
00042961 0
00042971 1
00042981 2
00043021 4
00043031 5
00043041 6
00043051 7
00043061 8
00043071 9
00043081 A
00043101 3
00043111 4
00043121 5
00043141 7
00043151 8
00043161 9
00043171 A
00044291 E
From these, I could see that when just one value was increased by a value, the checksum was also increased by the same value as in:
00024901 A
00024911 B
Also, two digits swapped did not change the checksum:
00024901 A
00042901 A
This means that the polynomial value (for these two positions at least) must be the same
Finally, the checksum for 00000000 was A, so I calculated the sum of digits plus A mod 16:
( (Σxi) +0xA )mod16
And this matched for all the values I had. Just to check that there was nothing sneaky going on with the first 3 digits that never changed in my data, I made up and tested some numbers as Eric suggested, and those all worked with this too!
Many checksums I've seen use simple weighted values based on the position of the digits. For example, if the weights are 3,5,7 the checksum might be 3*c[0] + 5*c[1] + 7*c[2], then mod 10 for the result. (In your case, mod 16, since you have 4 bit checksum)
To check if this might be the case, I suggest that you feed some simple values into your system to get an answer:
1000000 = ?
0100000 = ?
0010000 = ?
... etc. If there are simple weights based on position, this may reveal it. Even if the algorithm is something different, feeding in nice, simple values and looking for patterns may be enlightening. As Matti suggested, you/we will likely need to see more samples before decoding the pattern.

Encoding / Error Correction Challenge

Is it mathematically feasible to encode and initial 4 byte message into 8 bytes and if one of the 8 bytes is completely dropped and another is wrong to reconstruct the initial 4 byte message? There would be no way to retransmit nor would the location of the dropped byte be known.
If one uses Reed Solomon error correction with 4 "parity" bytes tacked on to the end of the 4 "data" bytes, such as DDDDPPPP, and you end up with DDDEPPP (where E is an error) and a parity byte has been dropped, I don't believe there's a way to reconstruct the initial message (although correct me if I am wrong)...
What about multiplying (or performing another mathematical operation) the initial 4 byte message by a constant, then utilizing properties of an inverse mathematical operation to determine what byte was dropped. Or, impose some constraints on the structure of the message so every other byte needs to be odd and the others need to be even.
Alternatively, instead of bytes, it could also be 4 decimal digits encoded in some fashion into 8 decimal digits where errors could be detected & corrected under the same circumstances mentioned above - no retransmission and the location of the dropped byte is not known.
I'm looking for any crazy ideas anyone might have... Any ideas out there?
EDIT:
It may be a bit contrived, but the situation that I'm trying to solve is one where you have, let's say, a faulty printer that prints out important numbers onto a form, which are then mailed off to a processing firm which uses OCR to read the forms. The OCR isn't going to be perfect, but it should get close with only digits to read. The faulty printer could be a bigger problem, where it may drop a whole number, but there's no way of knowing which one it'll drop, but they will always come out in the correct order, there won't be any digits swapped.
The form could be altered so that it always prints a space between the initial four numbers and the error correction numbers, ie 1234 5678, so that one would know whether a 1234 initial digit was dropped or a 5678 error correction digit was dropped, if that makes the problem easier to solve. I'm thinking somewhat similar to how they verify credit card numbers via algorithm, but in four digit chunks.
Hopefully, that provides some clarification as to what I'm looking for...
In the absence of "nice" algebraic structure, I suspect that it's going to be hard to find a concise scheme that gets you all the way to 10**4 codewords, since information-theoretically, there isn't a lot of slack. (The one below can use GF(5) for 5**5 = 3125.) Fortunately, the problem is small enough that you could try Shannon's greedy code-construction method (find a codeword that doesn't conflict with one already chosen, add it to the set).
Encode up to 35 bits as a quartic polynomial f over GF(128). Evaluate the polynomial at eight predetermined points x0,...,x7 and encode as 0f(x0) 1f(x1) 0f(x2) 1f(x3) 0f(x4) 1f(x5) 0f(x6) 1f(x7), where the alternating zeros and ones are stored in the MSB.
When decoding, first look at the MSBs. If the MSB doesn't match the index mod 2, then that byte is corrupt and/or it's been shifted left by a deletion. Assume it's good and shift it back to the right (possibly accumulating multiple different possible values at a point). Now we have at least seven evaluations of a quartic polynomial f at known points, of which at most one is corrupt. We can now try all possibilities for the corruption.
EDIT: bmm6o has advanced the claim that the second part of my solution is incorrect. I disagree.
Let's review the possibilities for the case where the MSBs are 0101101. Suppose X is the array of bytes sent and Y is the array of bytes received. On one hand, Y[0], Y[1], Y[2], Y[3] have correct MSBs and are presumed to be X[0], X[1], X[2], X[3]. On the other hand, Y[4], Y[5], Y[6] have incorrect MSBs and are presumed to be X[5], X[6], X[7].
If X[4] is dropped, then we have seven correct evaluations of f.
If X[3] is dropped and X[4] is corrupted, then we have an incorrect evaluation at 3, and six correct evaluations.
If X[5] is dropped and X[4] is corrupted, then we have an incorrect evaluation at 5, and six correct evaluations.
There are more possibilities besides these, but we never have fewer than six correct evaluations, which suffices to recover f.
I think you would need to study what erasure codes might offer you. I don't know any bounds myself, but maybe some kind of MDS code might achieve this.
EDIT: After a quick search I found RSCode library and in the example it says that
In general, with E errors, and K erasures, you will need
* 2E + K bytes of parity to be able to correct the codeword
* back to recover the original message data.
So looks like Reed-Solomon code is indeed the answer and you may actually get recovery from one erasure and one error in 8,4 code.
Parity codes work as long as two different data bytes aren't affected by error or loss and as long as error isn't equal to any data byte while a parity byte is lost, imho.
Error correcting codes can in general handle erasures, but in the literature the position of the erasure is assumed known. In most cases, the erasure will be introduced by the demodulator when there is low confidence that the correct data can be retrieved from the channel. For instance, if the signal is not clearly 0 or 1, the device can indicate that the data was lost, rather than risking the introduction of an error. Since an erasure is essentially an error with a known position, they are much easier to fix.
I'm not sure what your situation is where you can lose a single value and you can still be confident that the remaining values are delivered in the correct order, but it's not a situation classical coding theory addresses.
What algorithmist is suggesting above is this: If you can restrict yourself to just 7 bits of information, you can fill the 8th bit of each byte with alternating 0 and 1, which will allow you to know the placement of the missing byte. That is, put a 0 in the high bit of bytes 0, 2, 4, 6 and a 1 in the high bits of the others. On the receiving end, if you only receive 7 bytes, the missing one will have been dropped from between bytes whose high bits match. Unfortunately, that's not quite right: if the erasure and the error are adjacent, you can't know immediately which byte was dropped. E.g., high bits 0101101 could result from dropping the 4th byte, or from an error in the 4th byte and dropping the 3rd, or from an error in the 4th byte and dropping the 5th.
You could use the linear code:
1 0 0 0 0 1 1 1
0 1 0 0 1 0 1 1
0 0 1 0 1 1 0 1
0 0 0 1 1 1 1 0
(i.e. you'll send data like (a, b, c, d, b+c+d, a+c+d, a+b+d, a+b+c) (where addition is implemented with XOR, since a,b,c,d are elements of GF(128))). It's a linear code with distance 4, so it can correct a single-byte error. You can decode with syndrome decoding, and since the code is self-dual, the matrix H will be the same as above.
In the case where there's a dropped byte, you can use the technique above to determine which one it is. Once you've determined that, you're essentially decoding a different code - the "punctured" code created by dropping that given byte. Since the punctured code is still linear, you can use syndrome decoding to determine the error. You would have to calculate the parity-check matrix for each of the shortened codes, but you can do this ahead of time. The shortened code has distance 3, so it can correct any single-byte errors.
In the case of decimal digits, assuming one goes with first digit odd, second digit even, third digit odd, etc - with two digits, you get 00-99, which can be represented in 3 odd/even/odd digits (125 total combinations) - 00 = 101, 01 = 103, 20 = 181, 99 = 789, etc. So one encodes two sets of decimal digits into 6 total digits, then the last two digits signify things about the first sets of 2 digits or a checksum of some sort... The next to last digit, I suppose, could be some sort of odd/even indicator on each of the initial 2 digit initial messages (1 = even first 2 digits, 3 = odd first two digits) and follow the pattern of being odd. Then, the last digit could be the one's place of a sum of the individual digits, that way if a digit was missing, it would be immediately apparent and could be corrected assuming the last digit was correct. Although, it would throw things off if one of the last two digits were dropped...
It looks to be theoretically possible if we assume 1 bit error in wrong byte. We need 3 bits to identify dropped byte and 3 bits to identify wrong byte and 3 bits to identify wrong bit. We have 3 times that many extra bits.
But if we need to identify any number of bits error in wrong byte, it comes to 30 bits. Even that looks to be possible with 32 bits, although 32 is a bit too close for my comfort.
But I don't know hot to encode to get that. Try turbocode?
Actually, as Krystian said, when you correct a RS code, both the message AND the "parity" bytes will be corrected, as long as you have v+2e < (n-k) where v is the number of erasures (you know the position) and e is the number of errors. This means that if you only have errors, you can correct up to (n-k)/2 errors, or (n-k-1) erasures (about the double of the number of errors), or a mix of both (see Blahut's article: Transform techniques for error control codes and A universal Reed-Solomon decoder).
What's even nicer is that you can check that the correction was successful: by checking that the syndrome polynomial only contains 0 coefficients, you know that the message+parity bytes are both correct. You can do that before to check if the message needs any correction, and also you can do the check after the decoding to check that both the message and the parity bytes were completely repaired.
The bound v+2e < (n-k) is optimal, you cannot do better (that's why Reed-Solomon is called an optimal error correction code). In fact it's possible to go beyond this limit using bruteforce approaches, up to a certain point (you can gain 1 or 2 more symbols for each 8 symbols) using list decoding, but it's still a domain in its infancy, I don't know of any practical implementation that works.

Resources