OCaml and Scheme for game development - scheme

This is a question more targeted towards language features and not coding.
Could you tell me which would be a better language (OCaml or Scheme??) to use for basic game development?
My knowledge with both scheme and OCaml is pretty basic and I find both equally challenging to work with and was unable to determine which would be a better one with respect to scalability and ease of use.
If any of you guys have extensive development experience with either of the 2 languages please give me your inputs.
Any inputs appreciated.
Thank you.

Both OCaml and Racket (PLT Scheme) have OpenGL bindings. It looks like Racket doesn't have SDL bindings however, which may or may not be important to you.
Racket uses a JIT compiler, OCaml can be compiled to native code or byte code (and there are a couple of JIT compilers for OCaml).
OCaml is faster than Racket for most of the benchmarks on Languages Benchmark Game.*
Personally I would choose OCaml. It can be compiled to native code, executes faster and has bindings to SDL (which provides input, sound and buffered 2D graphics, among other things).
Another option to consider is F# which is another ML dialect. F# can take advantage of the XNA framework. XNA will limit you to Windows however (from what I understand F# can only be used in dlls on the XBox; there are Mono implementations of XNA but I'm not sure how complete they are).
The benchmark game can only give you a rough idea of the relative efficiency of a language's implementation. A game is much more complex than the tests used by the benchmark game.

Related

Are custom-made programming language- compilers, based on existing languages?

I'm trying to start, figuring out, how creating a simple programming language work. Both with the syntax and the compiler itself. I've done some research on this topic, but I really don't get what my true question is all about.
I would think, that existing programming languages- compilers, is built on already existing programming languages, and therefore it would only make sense, to also base my compiler, on one of these languages.
Altho, since this in theory, the very first language with a compiler, didn't have another language to be based on, this can't be a true fact, and really must be based on something else, like the core Computer System language.
Which way is the best way to go, aswell as how, to get to my goal, which is creating a simple (With room to expanding) programming language?
Any answer is appreciated!
The very first compilers were based on assembler coding. Where did the assemblers come from?
The very first assemblers were based on painfully entered raw binary machine code instructions.
Hardly anybody enters binary; at very least, some kind of debugger program is used to do this. Hardly anybody codes compilers using assemblers anymore either; in many cases, a first compiler for a language is coded in C.
If you want to build a programming language, your first step is to get a compiler book (google "compiler book") and read it from cover to cover. If you try to avoid this step, you'll spend a huge amount of energy to try and invent what you need, and you'll likely fail.
Key tools for building compilers are parser generators, and program transformation systems. The former is the classic answer. The latter is a high-tech answer, and isn't very common, but can produce language processing tools much more quickly than classic answers. You need the compiler book background to understand these tools.
Which way is the best way to creating a simple programming language?
Unlike a majority of people I don't believe that creating a language is about using a compiler or interpreter. While you will most likely need a compiler or interpreter to implement your new language, they are tools just as is a pencil and paper. Don't start by using a tool and think you have accomplished something. It would be like using a wrench to make an engine that doesn't work, but you claim you made an engine because use used a wrench.
To create a good programming language you have to have goal for your language.
Since you mention programming language as opposed to some other type of language such as SQL, or a markup language such as HTML, I will take it that you want a Turing complete language.
Since most Turing complete languages support arithmetic I would start with a simple arithmetic expression language and build on that. There are a huge amount of examples of these on the Internet, but be fore warned that many have problems.
Next learn how to build Abstract Syntax Trees (AST) for arithmetic expressions. i.e.
3 + 2 * 6
+
/ \
3 *
/ \
2 6
Do not use a compiler to build the AST, but build them by hand in the language you are using to write your programming language. i.e. If you are using Java to create a C++ compiler, then create the AST using Java.
Then write an evaluator for the AST that will walk the tree.
Once you are able to correctly build an AST and evaluate then add the lexer/parser which translates human readable source code into an AST. This is were you will need to get a good compiler design book.
Now you can compile the AST into assembly or byte code or just continue using an evaluator.
From this point on you just add features to your language, again starting by with the AST and then modifying the parser and code generator if you implemented one.
How to create a simple (with room to expanding) programming language?
As I noted: start with an arithmetic evaluator and add language concepts one at a time. Since you are new at this, you may find that a concept you add is actually better as a composition of simpler concepts and that you should add one of the simpler concepts first before adding the other concept finally reaching the higher concept.
Because your question is so general I can't give more specific answers. I see that you already have a few close votes noting such.
If you want to build an unlimited extensibility into your language, consider implementing a simple metaprogramming system in it.
This way you can start with some very simple and small language, and then build an arbitrary complex language or a set of different languages by extending it with its own macros. Such language can be trivially turned into any other language.
Take a look at Forth and Lisp - both can be built upon some extremely trivial core which is then extended to a fully capable language. You don't even need any other high level language to implement such a chain: a simple Forth can be bootstrapped in about a couple of hundred lines of x86 assembly.
If you're determined enough, you can even skip assembler and write in machine code straight away, for something of this scale it's quite manageable in a reasonable time and might give you some indispensable experience.
well inventing a language is inventing a language...how you implement it you usually use an existing language and then at some point assuming your new language is such that it can be used as a compiler, then you write a compiler in your new language and you use the binary from the current language to compile the same language compiler, then you do it once more with the binary from the same language compiler if that all works you are self-hosting. a compiler that can compile its own language compiler.
If you have never made a language or compiler then you are a long long way from that, you might try one of the many examples on line of a simple C like compiler that can only do some simple things (and can never self-compile), get your feet wet with something like that.
At the end of the day the programming language to be useful has to compile down to something, ideally machine code be it a real machine or virtual like python or java or old pascal. But sometimes one language compiles down to another known language, C++ for example, and then you use existing tools for that language to take down to something can execute.
It has been asked and answered a number of times now. If you go far enough back or want to get as pure as you can you start with machine code and a way to enter it (see the many computers for this, dec pdp series, altair, etc, the entry method being address, data and clock manual switches). The "compiler" or in the case of assembly/machine code the "assembler" is the human with paper and pencil or pen if you are that good. You manually write out your assembly language, you then manually convert that to machine code, then you manually flip switches to enter the program into ram then you manually push the run button.
The first assemblers and then later compilers were written this way, you make an assembler using machine code using a human assembler, then self host that. Then you either use the human assembler or software assembler to the write your first compiler for your first ever non-assembly language, then you re-write the compiler in the new language, then you self-host that. Repeat until it is present day and there are more compilers and languages that you could ever master and a myriad of choices of editors and languages to build a compiler for a new language upon.

Cuda Source to Source translation using Rose compiler

I would like to know about the extent of support for cuda in rose compiler. I am trying to build a source to source translator for cuda. Is it possible using Rose compiler? Which distribution of Rose compiler should I use?
I know this has been discussed earlier (support for cuda in rose compiler), but I cannot understand whether cuda support is there or not. Rose user manual does not have much information either.
Rose has a C++ front end and a Fortran front end that seem reasonably well integrated. The Rose system design IMHO is not amenable to easy integration of other front end parsers (such as you would need presumably to parse Cuda), although with enough effort you could do it. (Rose originally only had C++, and Fortran was grafted on).
If you don't see explicit mention of Cuda in the Rose manuals, its pretty like because it simply isn't there.
If you want to process Cuda using source to source transformations, you'll need both a Cuda parser and an appropriate set of transformation machinery something like what Rose has.
I cannot offer you a Cuda parser, but my company does provide industrial strength source-to-source program transformation systems in the form the DMS Software Reengineering Toolkit.
DMS has been used to carry out massive transformations on large C++ systems, so I think it quite reasonable to say it is at least as competent as Rose for that purpose. DMS has also been used to process extremely large C and Fortran systems, and other codes in Java, C#, ECMAScript, PHP, and many other languages, so I think it safe to say it is considerably easier to integrate a different front end into DMS.
Cuda, as I understand it, is a C99 derivative. DMS has a C front end, with explicit support for building various C dialects. Most of C99 is already built using the dialect mechanism. That might be a pretty good starting point.
You can try other tools such as ANTLR as an alternative, but I think it will soon become obvious that ANTLR, and Rose and DMS are in very different leagues in terms of their ability to parse, analyze and transform complex systems of real code.

Is there any scripting language that's fast, easy to embed, and well-suited for high-level game-programming?

First off, I'm aware that there are many questions related to this, but none of them seemed to help my specific situation. In particular, lua and python don't fit my needs as well as I could hope. It may be that no language with my requirements exists, but before coming to that conclusion it'd be nice to hear a few more opinions. :)
As you may have guessed, I need such a language for a game engine I'm trying to create. The purpose of this game engine is to provide a user with the basic tools for building a game, while still giving her the freedom of creating many different types of games.
For this reason, the scripting language should be able to handle game concepts intuitively. Among other things, it should be easy to define a variety of types, sub-type them with slightly different properties, query and modify objects dynamically, and so on.
Furthermore, it should be possible for the game developer to handle every situation they come across in the scripting language. While basic components like the renderer and networking would be implemented in C++, game-specific mechanisms such as rotating a few hundred objects around a planet will be handled in the scripting language. This means that the scripting language has to be insanely fast, 1/10 C speed is probably the minimum.
Then there's the problem of debugging. Information about the function, stack trace and variable states that the error occurred in should be accessible.
Last but not least, this is a project done by a single person. Even if I wanted to, I simply don't have the resources to spend weeks on just the glue code. Integrating the language with my project shouldn't be much harder than integrating lua.
Examining the two suggested languages, lua and python, lua is fast(luajit) and easy to integrate, but its standard debugging facilities seem to be lacking. What's even worse, lua by default has no type-system at all. Of course you can implement that on your own, but the syntax will always be weird and unintuitive.
Python, on the other hand, is very comfortable to use and has a basic class system. However, it's not that easy to integrate, it's paradigm doesn't really involve type-checking and it's definitely not fast enough for more complex games. I'd again like to point out that everything would be done in python. I'm well aware that python would likely be fast enough for 90% of the code.
There's also Scala, which I haven't seen suggested so far. Scala seems to actually fulfill most of the requirements, but embedding the Java VM with C doesn't seem very easy, and it generally seems like java expects you to build your application around java rather than the other way around. I'm also not sure if Scala's functional paradigm would be good for intuitive game-development.
EDIT: Please note that this question isn't about finding a solution at any cost. If there isn't any language better than lua, I will simply compromise and use that(I actually already have the thing linked into my program). I just want to make sure I'm not missing something that'd be more suitable before doing so, seeing as lua is far from the perfect solution for me.
You might consider mono. I only know of one success story for this approach, but it is a big one: C++ engine with mono scripting is the approach taken in Unity.
Try the Ring programming language
http://ring-lang.net
It's general-purpose multi-paradigm scripting language that can be embedded in C/C++ projects, extended using C/C++ code and/or used as standalone language. The supported programming paradigms are Imperative, Procedural, Object-Oriented, Functional, Meta programming, Declarative programming using nested structures, and Natural programming.
The language is simple, trying to be natural, encourage organization and comes with transparent implementation. It comes with compact syntax and a group of features that enable the programmer to create natural interfaces and declarative domain-specific languages in a fraction of time. It is very small, fast and comes with smart garbage collector that puts the memory under the programmer control. It supports many programming paradigms, comes with useful and practical libraries. The language is designed for productivity and developing high quality solutions that can scale.
The compiler + The Virtual Machine are 15,000 lines of C code
Embedding Ring Interpreter in C/C++ Programs
https://en.wikibooks.org/wiki/Ring/Lessons/Embedding_Ring_Interpreter_in_C/C%2B%2B_Programs
For embeddability, you might look into Tcl, or if you're into Scheme, check out SIOD or Guile. I would suggest Lua or Python in general, of course, but your question precludes them.
Since noone seems to know a combination better than lua/luajit, I think I will leave it at that. Thanks for everyone's input on this. I personally find lua to be very lacking as a high-level language for game-programming, but it's probably the best choice out there. So to whomever finds this question and has the same requirements(fast, easy to use, easy to embed), you'll either have to use lua/luajit or make your own. :)

Java or C for image processing

I am looking in to learning a programming language (take a course) for use in image analysis and processing. Possibly Bioinformatics too. Which language should I go for? C or Java? Other languages are not an option for me. Also please explain why either of the languages is a better option for my application.
You have to balance raw processing power and developer time. Java is getting pretty fast too and if you are finished a couple of days early, you have more time to process the data.
It all depends on volume.
More importantly, I suggest you look for the libraries and frameworks which already exist, see which fits closest to what needs to be done, and choose whatever language the library was written be it C, Java or Fortran.
For Java I found BioJava.org as a starting point.
Java isn't TOOO bad for image processing. If you manage your source objects appropriately, you ll have a chance at getting reasonable performance out of it. Some of the things I like with Java that relates to imaging:
Java Advanced Imaging
2D Graphics utilities (take a look at BufferedImages)
ImageJ, etc
Get it to work with JAMA
Ask someone in the field you're working in (ie, bioinformatics)
For solar images, the majority of the work is done in IDL, Fortran, Matlab, Python, C or Perl (PDL). (Roughly in that order ... IDL is definitely first, as the majority of the instrument calibration software is written in IDL)
Because of this, there's a lot of toolkits already written in those languages for our field. Frequently, with large reference data sets, the PI releases some software package as an example of how to interpret / interact with the data format. I can only assume that Bioinformatics would be similar.
If you end up going a different route than the rest of the field, you're going to have a much harder time working with other scientists as you can't share code as easily.
Note -- There are a number of the visualization tools that have been released in our field that were written in Java, but they assume that the images have already been prepped by some other process.
The most popular computer vision (image processing, image analysis) library is OpenCV which is written in C++, but can also be used with Python, and Java (official OpenCV4Android and non-official JavaCV).
There are Bioinformatic applications that are basically image processing, so OpenCV will take care of that. But there are also some which are not, they are, for example, based on Machine Learning, so if you need something other than image/video related you will need another Bioinformatic oriented library. Opencv also has a machine learning module but it is more focused for computer vision.
About the languages C vs Java, most has been said in the other answers. I should add that these libraries are now C++ based and not plain C. If your applications have real-time processing needs, C++ will probably be better for that, if not, Java will be more than enough as it is more friendly.
Ideally, you would use something like Java or (even better) Python for "high-level" stuff, and compile in C the routines that require a lot of processing power (for instance using Cython, etc).
Some scientific libraries exist for Python (SciPy and NumPy), and they are a good start, although it isn't yet straightforward to combine Python and C (you need to tweak things a bit).
just my two pence worth: java doesn't allow the use of pointers as opposed to C/C++ or C#. So if you are going to manipulate pixels directly, i.e. write your own image processing functions then they will be much slower than the equivalent in C++. On the otherhand C++ is a total nightmare of a language compared to java. it will take you at least twice as long to write the equivalent bit of code in c++. so with all the productivity gain you can probably afford to buy a computer that makes up for the difference in runtime ;-)
i know other languages aren't an option for you, but personally i can highly recommend c# for image processing or computer vision: it allows pointers and hence IP functions in c# are only half as slow as in C++ (an acceptable trade-off i think) and it has excellent integration with native C++ and a good wrapper library for opencv.
Disclaimer: I work for TunaCode.
If you have to make a choice between different languages to get started on Image Processing, I would recommend to start with C++. You can raw pointer access which is a must if you want to operate on individual pixels.
Next, what kind of Imaging are you interested in? Just for fun image filters or some heavy stuff like motion estimation, tracking and detection etc? For that I would recommend you take a look at CUVILib since sooner than later, you will need performance on Imaging functionality and that's what CUVI provides. You can use it as standalone if it serves your purposes or you can plug it with other libraries like Intel IPP, ITK, OpenCV etc.

Which event-driven applications are implemented in Haskell?

I've been looking at Haskell lately and it seems like a very nice way to watch programming problems from an alternative point of view - alternative to my usual imperative (I have a strong C++ background) view, at least.
However, all the articles I see seem to deal with the same kinds of programming problems:
Parsers
Compilers
Numeric computation problems
I'd like to give Haskell a try myself, by writing some GUI application. Hence, I'm wondering: does it make sense to write event-driven systems like GUIs in a functional programming language like Haskell? Or is that a problem domain at which imperative languages excel? Unfortunately it still takes quite some time for me to switch my mind to 'functional' mode, so I have a hard time deciding argueing against or in favor of using a functional programming language for an event-driven system.
I'd also be interested in examples of GUI applications (or event-driven systems, in general) which are implemented in Haskell.
Here's a couple of Google keywords for you:
Functional Reactive Programming (FRP), a programming paradigm for, well reactive (aka event-driven) programming in purely functional languages,
Leksah, a Haskell IDE written in Haskell,
Yi, an Emacs-like editor which replaces Lisp with Haskell as the implementation, configuration, customization and scripting language,
Super Monao Bros. (yes, you guessed it, a Jump&Run game)
Frag (First-Person Shooter)
Purely Functional Retrogames is a 4-part series of blog articles about how to write games in a purely functional language, explained using Pacman as the example. (Part 2, Part 3, Part 4.)
xmonad is an X11 window manager written in Haskell.
Also, looking at how the various Haskell GUI Libraries are implemented may give some ideas of how interactive programs are made in Haskell.
Here's an example using epoll to implement an event driven web server: http://haskell.org/haskellwiki/Simple_Servers
Take a look at this wikibooks article, it's a basic wxHaskell tutorial. In particular see the Events section.
I recommend spending some quality time with Haskell and FP in general before jumping in to develop a fully-fledged application so you can get more familiarized with Haskell, since it's quite different from C++
xmonad is event-driven -- see the main event handling loop, which takes messages from the X server, and dispatches to purely functional code, which in turn renders state out to the screen.
"Functional reactive programming" was already mentioned, but it may seem complicated if you're looking at it for the first time (and if you're looking at some advanced articles, it will look complicated no matter how long have you studied it :-)). However, there are some very nice articles that will help you understand it:
Composing Reactive Animations by Conal Elliott shows a "combinator library" (a common programming style in functional languages) for describing animations. It starts with very simple examples, but shows also more interesting "reactive" bit in the second part.
Yampa Arcade is a more evolved demo of Functional Reactive Programming. It uses some advanced Haskell features (such as Arrows), but is still very readable. Getting it to actually run may be more complicated, but it is an excellent reading.
Haskell School of Expression by Paul Hudak is a book which teaches Haskell using multimedia and graphics (including some animations etc.). It is an excellent reading, but it takes more time as it is an entire book :-).
I find my way to functional programming through F#, which is a bit less "pure" compared to Haskell, but it gives you a full access to .NET libraries, so it is easy to use "real-world" technologies from a functional language. In case you were interested, there are a couple of examples on my blog.

Resources