Differences in kernel mode and drivers - windows

I am just trying to understand the differences to patching into the kernel and writing a driver.
It is my understanding that a kernel mode driver can do anything the kernel can do, and is similar in some ways to a linux module.
Why then, were AV makers so upset when Microsoft stopped them from patching into the Windows kernel?
What kind of stuff can you do through kernel patching that you can't do through a driver?

In this context patching the kernel means modifying its (undocumented?) internal structures in order to achieve some functionality, typically hooking various functions (e.g. opening a file). You are not supposed to go messing around with internal kernel structures that do not belong to you. In the past Microsoft did not provide official hooks for some things, so security companies reverse engineered the internals and hooked the kernel directly. Recently Microsoft has provided official hooks for some things, so the need to hook the kernel directly is not as strong.

It's true that a kernel-mode driver can do anything the kernel can do - after all, they both run in ring 0. The key question here is: how difficult is it? Patching things relies on internal details that may change between different kernel releases. For example, the system call number of NtTerminateProcess will change between versions, so a driver which hooks the SSDT will break between versions (although the system call number can be obtained through other means). Reading or modifying fields of internal structures such as EPROCESS or ETHREAD is risky as well, because again, these structures change between versions. None of this is impossible for a driver to do, but it's hard.
If an official interface is provided for hooking, Microsoft can guarantee compatibility between versions as well as being able to control who can do what (e.g. only signed drivers can use the object manager callbacks). However, Microsoft can't do this for everything, because some things are just implementation details that drivers shouldn't know about.

Related

MiniFilter Driver - The right implementation and the Microsoft signature

I am working on malware analysis. I use a mini-filter driver to intercept file system access. Then I apply algorithms to detect malicious activity.
My questions:
It know that the driver will need a signature by Microsoft for a public release.
https://learn.microsoft.com/fr-fr/windows-hardware/drivers/dashboard/attestation-signing-a-kernel-driver-for-public-release
Is it authorized to implement the algorithms as AI in kernel space, or I must implement them in userspace? What is recommended concerning Microsoft, the right architecture, and security?
If you can implement a Windows kernel driver, you can do whatever you want. Not only algorithms, we ever ported OpenSSL, SQLite and other open source projects (of course in C and C++) to our Windows kernel drivers. It's not something mission impossible. Just you need to know how and limitations with work-around.
The idea of driver signing from MS is to avoid rogue driver developers to run malware in kernel. This was the biggest issue for 32 bit Windows for very long time, since in kernel you are not only able to implement something but you can also abuse anything, including kernel variable, file system data, registry and you can even hook to any code you want (if system protection is not running). However, such certificate is also not perfect. Years ago hackers stole certificates from companies (RealTek, if I recall it correctly) and signed their malware drivers.

Can Windows device drivers have dependencies?

I wrote a kernel-mode driver using C. When I examined it using dependency walker I saw that it depends on some NT*.dll and HAL.dll.
I have several questions:
When does the OS load these DLLs? I thought kernel is responsible for loading DLLs in that case how can driver load a DLL if it is already in kernel-mode
Why don't the standard C dependencies show up like ucrtbase, concrt, vcruntime, msvcp etc? Would it be possible for a driver to have these dependencies and still function?
(A continuation of the last question). If Windows will still load DLLs even in kernel mode, I don't see why drivers cannot be written in (MS) C++
Thanks,
Most of the API in the driver is exported from ntoskrnl.exe.
Your driver is actually a "kernel module", which is part of a process, just like the modules in Ring3.
The driver's "process" is "System", with a Pid of 4, which you can see in the task manager.
ntoskrnl.exe and HAL.dll are modules in the "System", they will Loaded at system startup, while other modules are loaded at time of use (such as your drivers).
You can write and load "driver DLLs", but I haven't done so yet, so I can't answer that.
Ring3 modules are not loaded into the kernel, so you can't call many common Ring3 APIs, but Microsoft has mostly provided alternative APIs for them.
You can't load the Ring3 module directly into the kernel and call its export function. There may be some very complicated methods or tricks to do this, but it's really not necessary.
You can write drivers in C++, but this is not officially recommended by Microsoft at this time as it will encounter many problems, such as:
Constructors and destructors of global variables cannot be called automatically.
You can't use C++ standard libraries directly.
You can't use new and delete directly, they need to be overridden.
C++ exceptions cannot be used directly, and will consume a lot of stack space if you support them manually. Ring0 driver stack space is usually much smaller than Ring3 application stack space, indicating that BSOD may be caused.
Fortunately:
Some great people have solved most of the problems, such as the automatic calling of constructors and destructors and the use of standard libraries.
GitHub Project Link (But I still don't recommend using standard libraries in the kernel unless it's necessary, because they are too complex and large and can lead to some unanticipated issues)
My friend told me that Microsoft seems to have a small team currently trying to make drivers support C++. But I don't have time to confirm the veracity of this claim.

Device driver without the device?

I'm creating an application that needs to use some kernel level modules, for which I've divided the app into 2: one user-level program and one kernel level program.
After reading about device drivers and walking through some tutorials, I'm a little confused.
Can there be a device driver without any specific device associated with it? Is there anything other than the device driver (kernel code or something) which works in kernel mode?
How do anti-virus programs and other such applications work in kernel mode? Is device driver the correct way or am I missing something?
Yes, device drivers can work without an actual piece of hardware (i.e. the device) attached to the machine. Just think of the different programs that emulate a connected SCSI drive (CD-ROM, whatever) for mounting ISO images. Or think about TrueCrypt, which emulates (removable) drives using containers, which are nothing more than encrypted files on your hard drive.
A word of warning, though: Driver development requires much more thought and has to be done more carefully, no shortcuts, good testing and in general expects you to know quite a good deal about the Windows driver model. Remember that faulty and poor drivers put the whole system's stability in jeopardy.
Honestly, I don't think reading a tutorial is sufficient here. You might want to at least invest in a decent book on that subject. Just my 2 cents, though.
Sorry, but the Windows Internals book is more of a general reading for the curious. I cannot recommend it if you want to engage in driver development - or at most as prerequisite reading to understand the architecture. There are plenty of other books around, although most of them are a bit older.
Depending on your goal, you may get away with one of the simpler driver models. That is not to say that driver development is trivial - in fact I second all aspects of the warning above and would even go further - but it means that you can save some of the more tedious work, if instead of writing a legacy file system filter you'd write one based on the filter manager. However, Windows XP before SP2 did not have it installed by default and Windows 2000 would require SP4+SRP+patch if I remember correctly. WDF (Windows Driver Foundation) makes writing drivers even easier, but it is not suitable for all needs.
The term device is somewhat of bad choice here. Device has a meaning in drivers as well, and it does not necessarily refer to the hardware device (as pointed out). Roughly there is a distinction between PDOs (physical device objects) and CDOs (control device objects). The latter are usually what you get to see in user mode and what can be accessed by means of CreateFile, ReadFile, WriteFile, DeviceIoControl and friends. CDOs are usually made visible to the Win32 realm by means of symbolic links (not to be confused with the file system entities of the same name). Drive letter assignments like C: are actually symbolic links to an underlying device. It depends on the driver whether that'd be a CDO or PDO. The distinction is more of a conceptual one taught as such in classes.
And that's what I would actually recommend. Take a class about Windows driver development. Having attended two seminars from OSR myself, I can highly recommend it. Those folks know what they're talking about. Oh, and sign up to their mailing lists over at OSR Online.
Use Sysinternals' WinObj to find out more about the device and driver objects and symlinks.
As for the question about AVs, yes they use file system filter drivers (briefly mentioned above). The only alternative to a full-fledged legacy FSFD is a mini-filter.
It is possible to load a special kind of DLL in kernel mode, too. But in general a driver is the way into the kernel mode and well documented as such.
Books you may want to consider (by ISBN): Most importantly "Programming the Windows Driver Model" (0735618038), "Windows NT Device Driver Development" (1578700582), "Windows NT File System Internals" (0976717514 (OSR's new edition)), "Undocumented Windows NT" (0764545698) and "Undocumented Windows 2000 Secrets" (0201721872) - and of course "Windows NT/2000 Native API Reference" (9781578701995) (classic). Although the last three more or less give you a better insight and are not strictly needed as reading for driver developers.
Anti-virus (and system recovery) software generally make use of file-system filter drivers. A device can have multiple filter drivers arranged like a stack, and any event/operation on this device has to pass through all the stacked up drivers. For example, anti-viruses install a filter driver for disk device so that they can intercept and scan all file system (read/write) operation.
As mentioned in above post, going through a good book would be a nice way to start. Also, install DDK/WDK and refer the bundled examples.

Developing a kernel patch or driver for windows?

How long, approximately, would it take to develop a kernel patch or driver for the windows NT kernel/series of kernels, that would introduce new functionality, or replace existing functionality?
For example, to add in a different encryption algorithm, or to implement some sort of new security model.
What are the advantages/disadvantages between actually writing a kernel patch, and a driver?
Can a driver be theoretically bypassed, in a way a kernel patch cannot?
I understand the windows kernel is proprietary and it is hard to write a kernel patch for it, but this is exactly what several companies, notably AV companies do, without cooperation from Microsoft, so it is possible...
A different encryption algorithm
This is done by extending the encryption provider. There is a framework where you can do that.
new security model
What new security model?
If you want more specific control over one application, you build a sandbox.
If you want more specific control over an OS, you put the OS into a virtual machine.
If you have something completely new, you have to write a new kernel. Right management is really a broad topic, where you have to touch every entry point to get your solution to work.
Can a driver be theoretically bypassed, in a way a kernel patch cannot?
No and yes ... How do you think a driver changes a security model?
but this is exactly what several companies, notably AV companies do.
No, they don't. They have a kernel driver, which hooks into the right functions. Most AV software hooks the ReadFile/WriteFile/CreateFile APIs, in which they check for 'malicious code-sequences'. This is not a security model. Its just a binary 'May access/may not access' check.
the proper way to modify how the kernel works is to write a filter driver that modifies or snoops at information transferred between drivers.
that is the closest thing to a legitimate patch
with regard to patching the kernel function tables...you should not do that because: it will not work in x64 edtions. since it will not work in x64 edtion, you cannot WLK certify your driver even for 32-bits. and if you cannot certify your driver, you will end up having an undecertified driver which is highly discourgaed (for example, you cannot preinstall on a computer and then wlk certify the machine).

Finding undocumented APIs in Windows

I was curious as to how does one go about finding undocumented APIs in Windows.
I know the risks involved in using them but this question is focused towards finding them and not whether to use them or not.
Use a tool to dump the export table from a shared library (for example, a .dll such as kernel32.dll). You'll see the named entry points and/or the ordinal entry points. Generally for windows the named entry points are unmangled (extern "C"). You will most likely need to do some peeking at the assembly code and derive the parameters (types, number, order, calling convention, etc) from the stack frame (if there is one) and register usage. If there is no stack frame it is a bit more difficult, but still doable. See the following links for references:
http://www.sf.org.cn/symbian/Tools/symbian_18245.html
http://msdn.microsoft.com/en-us/library/31d242h4.aspx
Check out tools such as dumpbin for investigating export sections.
There are also sites and books out there that try to keep an updated list of undocumented windows APIs:
The Undocumented Functions
A Primer of the Windows Architecture
How To Find Undocumented Constants Used by Windows API Functions
Undocumented Windows
Windows API
Edit:
These same principles work on a multitude of operating systems however, you will need to replace the tool you're using to dump the export table. For example, on Linux you could use nm to dump an object file and list its exports section (among other things). You could also use gdb to set breakpoints and step through the assembly code of an entry point to determine what the arguments should be.
IDA Pro is your best bet here, but please please double please don't actually use them for anything ever.
They're internal because they change; they can (and do) even change as a result of a Hotfix, so you're not even guaranteed your undocumented API will work for the specific OS version and Service Pack level you wrote it for. If you ship a product like that, you're living on borrowed time.
Everybody here so far is missing some substantial functionality that comprises hugely un-documented portions of the Windows OS RPC . RPC (think rpcrt4.dll, lsass.exe, csrss.exe, etc...) operations occur very frequently across all subsystems, via LPC ports or other interfaces, their functionality is buried in the mysticism incantations of various type/sub-type/struct-typedef's etc... which are substantially more difficult to debug, due to the asynchronous nature or the fact that they are destine for process's which if you were to debug via single stepping or what have you, you would find the entire system lockup due to blocking keyboard or other I/O from being passed ;)
ReactOS is probably the most expedient way to investigate undocumented API. They have a fairly mature kernel and other executive's built up. IDA is fairly time-intensive and it's unlikely you will find anything the ReactOS people have not already.
Here's a blurb from the linked page;
ReactOS® is a free, modern operating
system based on the design of Windows®
XP/2003. Written completely from
scratch, it aims to follow the
Windows® architecture designed by
Microsoft from the hardware level
right through to the application
level. This is not a Linux based
system, and shares none of the unix
architecture.
The main goal of the
ReactOS project is to provide an
operating system which is binary
compatible with Windows. This will
allow your Windows applications and
drivers to run as they would on your
Windows system. Additionally, the look
and feel of the Windows operating
system is used, such that people
accustomed to the familiar user
interface of Windows® would find using
ReactOS straightforward. The ultimate
goal of ReactOS is to allow you to
remove Windows® and install ReactOS
without the end user noticing the
change.
When I am investigating some rarely seen Windows construct, ReactOS is often the only credible reference.
Look at the system dlls and what functions they export. Every API function, whether documented or not, is exported in one of them (user, kernel, ...).
For user mode APIs you can open Kernel32.dll User32.dll Gdi32.dll, specially ntdll.dll in dependancy walker and find all the exported APIs. But you will not have the documentation offcourse.
Just found a good article on Native APIS by Mark Russinovich

Resources