Distributed algorithm to compute the balance of the parentheses - algorithm

This is an interview question: "How to build a distributed algorithm to compute the balance of the parentheses ?"
Usually he balance algorithm scans a string form left to right and uses a stack to make sure that the number of open parentheses always >= the number of close parentheses and finally the number of open parentheses == the number of close parentheses.
How would you make it distributed ?

You can break the string into chunks and process each separately, assuming you can read and send to the other machines in parallel. You need two numbers for each string.
The minimum nesting depth achieved relative to the start of the string.
The total gain or loss in nesting depth across the whole string.
With these values, you can compute the values for the concatenation of many chunks as follows:
minNest = 0
totGain = 0
for p in chunkResults
minNest = min(minNest, totGain + p.minNest)
totGain += p.totGain
return new ChunkResult(minNest, totGain)
The parentheses are matched if the final values of totGain and minNest are zero.

I would apply the map-reduce algorithm in which the map function would compute a part of the string return either an empty string if parentheses are balanced or a string with the last parenthesis remaining.
Then the reduce function would concatenate the result of two returned strings by map function and compute it again returning the same result than map. At the end of all computations, you'd either obtain an empty string or a string containing the un-balanced parenthesis.

I'll try to have a more detailed explain on #jonderry's answer. Code first, in Scala
def parBalance(chars: Array[Char], chunkSize: Int): Boolean = {
require(chunkSize > 0, "chunkSize must be greater than 0")
def traverse(from: Int, until: Int): (Int, Int) = {
var count = 0
var stack = 0
var nest = 0
for (n <- from until until) {
val cur = chars(c)
if (cur == '(') {
count += 1
stack += 1
}
else if (cur == ')') {
count -= 1
if (stack > 0) stack -= 1
else nest -= 1
}
}
(nest, count)
}
def reduce(from: Int, until: Int): (Int, Int) = {
val m = (until + from) / 2
if (until - from <= chunkSize) {
traverse(from, until)
} else {
parallel(reduce(from, m), reduce(m, until)) match {
case ((minNestL, totGainL), (minNestR, totGainR)) => {
((minNestL min (minNestR + totGainL)), (totGainL + totGainR))
}
}
}
}
reduce(0, chars.length) == (0,0)
}
Given a string, if we remove balanced parentheses, what's left will be in a form )))(((, give n for number of ) and m for number of (, then m >= 0, n <= 0(for easier calculation). Here n is minNest and m+n is totGain. To make a true balanced string, we need m+n == 0 && n == 0.
In a parallel operation, how to we derive those for node from it's left and right? For totGain we just needs to add them up. When calculating n for node, it can just be n(left) if n(right) not contribute or n(right) + left.totGain whichever is smaller.

Related

native string matching algorithm

Following is a very famous question in native string matching. Please can someone explain me the answer.
Suppose that all characters in the pattern P are different. Show how to accelerate NAIVE-STRING MATCHER to run in time O(n) on an n-character text T.
The basic idea:
Iterate through the input and the pattern at the same time, comparing their characters to each other
Whenever you get a non-matching character between the two, you can just reset the pattern position and keep the input position as is
This works because the pattern characters are all different, which means that whenever you have a partial match, there can be no other match overlapping with that, so we can just start looking from the end of the partial match.
Here's some pseudo-code that shouldn't be too difficult to understand:
input[n]
pattern[k]
pPos = 0
iPos = 0
while iPos < n
if pPos == k
FOUND!
if pattern[pPos] == input[iPos]
pPos++
iPos++
else
// if pPos is already 0, we need to increase iPos,
// otherwise we just keep comparing the same characters
if pPos == 0
iPos++
pPos = 0
It's easy to see that iPos increases at least every second loop, thus there can be at most 2n loop runs, making the running time O(n).
When T[i] and P[j] mismatches in NAIVE-STRING-MATCHER, we can skip all characters before T[i] and begin new matching from T[i + 1] with P[1].
NAIVE-STRING-MATCHER(T, P)
1 n length[T]
2 m length[P]
3 for s 0 to n - m
4 do if P[1 . . m] = T[s + 1 . . s + m]
5 then print "Pattern occurs with shift" s
Naive string search algorithm implementations in Python 2.7:
https://gist.github.com/heyhuyen/4341692
In the middle of implementing Boyer-Moore's string search algorithm, I decided to play with my original naive search algorithm. It's implemented as an instance method that takes a string to be searched. The object has an attribute 'pattern' which is the pattern to match.
1) Here is the original version of the search method, using a double for-loop.
Makes calls to range and len
def search(self, string):
for i in range(len(string)):
for j in range(len(self.pattern)):
if string[i+j] != self.pattern[j]:
break
elif j == len(self.pattern) - 1:
return i
return -1
2) Here is the second version, using a double while-loop instead.
Slightly faster, not making calls to range
def search(self, string):
i = 0
while i < len(string):
j = 0
while j < len(self.pattern) and self.pattern[j] == string[i+j]:
j += 1
if j == len(self.pattern):
return i
i += 1
return -1
3) Here is the original, replacing range with xrange.
Faster than both of the previous two.
def search(self, string):
for i in xrange(len(string)):
for j in xrange(len(self.pattern)):
if string[i+j] != self.pattern[j]:
break
elif j == len(self.pattern) - 1:
return i
return -1
4) Storing values in local variables = win! With the double while loop, this is the fastest.
def search(self, string):
len_pat = len(self.pattern)
len_str = len(string)
i = 0
while i < len_str:
j = 0
while j < len_pat and self.pattern[j] == string[i+j]:
j += 1
if j == len_pat:
return i
i += 1
return -1

How would you find the initial letter with the most occurrences using recursion?

Given a sentence that is spread over a linked list where each item in the list is a word, for example:
Hello -> Everybody -> How -> Are -> You -> Feeling -> |
Given that this list is sorted, eg:
Are -> Everybody -> Feeling -> Hello -> How -> You -> |
How would you write the recursion that will find the initial letter that appears the most in the sentence (in this example the letter H from Hello & How) ?
Edit: I have update the code to recursion version.
In order to run it you call
GetMostLetterRecursion(rootNode , '0', 0, '0', 0)
The code itself look like this:
public char GetMostLetterRecursion(LinkedListNode<String> node, char currentChar, int currentCount, char maxChar, int maxCount)
{
if (node == null) return maxChar;
char c = node.Value[0];
if (c == currentChar)
{
return GetMostLetterRecursion(node.Next, currentChar, currentCount++, maxChar, maxCount);
}
if(currentCount > maxCount)
{
return GetMostLetterRecursion(node.Next, c, 1, currentChar, currentCount);
}
return GetMostLetterRecursion(node.Next, c, 1, maxChar, maxCount);
}
Solution 1
Loop over the words, keeping a tally of how many words start with each letter. Return the most popular letter according to the tally (easy if you used a priority queue for the tally).
This takes O(n) time (the number of words) and O(26) memory (the number of letters in alphabet).
Solution 2
Sort the words alphabetically. Loop over the words. Keep a record of the current letter and its frequency, as well as the most popular letter so far and its frequency. At the end of the loop, that's the most popular letter over the whole list.
This takes O(n log n) time and O(1) memory.
Keep an array to store the count of occurrences and Go through the linked list once to count it. Finally loop through the array to find the highest one.
Rough sketch in C:
int count[26]={0};
While ( head->next != NULL)
{
count[head->word[0] - 'A']++; // Assuming 'word' is string in each node
head = head->next;
}
max = count[0];
for (i=0;i<26;i++)
{
if(max<a[i])
max = a[i];
}
You can modify it to use recursion and handle lower case letters.
Here is a pure recursive implementation in Python. I haven't tested it, but it should work modulo typos or syntax errors. I used a Dictionary to store counts, so it will work with Unicode words too. The problem is split into two functions: one to count the occurrences of each letter, and another to find the maximum recursively.
# returns a dictionary where dict[letter] contains the count of letter
def count_first_letters(words):
def count_first_letters_rec(words, count_so_far):
if len(words) == 0:
return count_so_far
first_letter = words[0][0]
# could use defaultdict but this is an exercise :)
try:
count_so_far[first_letter] += 1
except KeyError:
count_so_far[first_letter] = 1
# recursive call
return count_first_letters_rec(words[1:], count_so_far)
return count_first_letters(words, {})
# takes a list of (item, count) pairs and returns the item with largest count.
def argmax(item_count_pairs):
def argmax_rec(item_count_pairs, max_so_far, argmax_so_far):
if len(item_count_pairs) == 0:
return argmax_so_far
item, count = item_count_pairs[0]
if count > max_so_far:
max_so_far = count
argmax_so_far = item
# recursive call
return argmax_rec(item_count_pairs[1:], max_so_far, argmax_so_far)
return argmax_rec(item_count_pairs, 0, None)
def most_common_first_letter(words);
counts = count_first_letters(words)
# this returns a dictionary, but we need to convert to
# a list of (key, value) tuples because recursively iterating
# over a dictionary is not so easy
kvpairs = counts.items()
# counts.iteritems() for Python 2
return argmax(kvpairs)
I have an array with the length of 26 (as English letters, so index 1 is for 'a' and 2 for 'b' and so on. ). Each time a letter occurs, I increment it's value in the array. if the value becomes more than max amount, then I update the max and take that letter as most occurred one.then I call the method for the next node.
This is the code in Java:
import java.util.LinkedList;
public class MostOccurance {
char mostOccured;
int maxOccurance;
LinkedList<String> list= new LinkedList<String>();
int[] letters= new int[26];
public void start(){
findMostOccuredChar( 0, '0', 0);
}
public char findMostOccuredChar ( int node, char most, int max){
if(node>=list.size())
return most;
String string=list.get(node);
if (string.charAt(0)== most)
{max++;
letters[Character.getNumericValue(most)-10]++;
}
else{
letters[Character.getNumericValue(most)-10]++;
if (letters[Character.getNumericValue(most)-10]++>max){
max=letters[Character.getNumericValue(most)-10];
most=string.charAt(0);
}
}
findMostOccuredChar( node++, most, max);
return most;
}
}
of course, you have to add each word to your link list. I didn't do that, because I was just showing an example.

How to design an algorithm to calculate countdown style maths number puzzle

I have always wanted to do this but every time I start thinking about the problem it blows my mind because of its exponential nature.
The problem solver I want to be able to understand and code is for the countdown maths problem:
Given set of number X1 to X5 calculate how they can be combined using mathematical operations to make Y.
You can apply multiplication, division, addition and subtraction.
So how does 1,3,7,6,8,3 make 348?
Answer: (((8 * 7) + 3) -1) *6 = 348.
How to write an algorithm that can solve this problem? Where do you begin when trying to solve a problem like this? What important considerations do you have to think about when designing such an algorithm?
Very quick and dirty solution in Java:
public class JavaApplication1
{
public static void main(String[] args)
{
List<Integer> list = Arrays.asList(1, 3, 7, 6, 8, 3);
for (Integer integer : list) {
List<Integer> runList = new ArrayList<>(list);
runList.remove(integer);
Result result = getOperations(runList, integer, 348);
if (result.success) {
System.out.println(integer + result.output);
return;
}
}
}
public static class Result
{
public String output;
public boolean success;
}
public static Result getOperations(List<Integer> numbers, int midNumber, int target)
{
Result midResult = new Result();
if (midNumber == target) {
midResult.success = true;
midResult.output = "";
return midResult;
}
for (Integer number : numbers) {
List<Integer> newList = new ArrayList<Integer>(numbers);
newList.remove(number);
if (newList.isEmpty()) {
if (midNumber - number == target) {
midResult.success = true;
midResult.output = "-" + number;
return midResult;
}
if (midNumber + number == target) {
midResult.success = true;
midResult.output = "+" + number;
return midResult;
}
if (midNumber * number == target) {
midResult.success = true;
midResult.output = "*" + number;
return midResult;
}
if (midNumber / number == target) {
midResult.success = true;
midResult.output = "/" + number;
return midResult;
}
midResult.success = false;
midResult.output = "f" + number;
return midResult;
} else {
midResult = getOperations(newList, midNumber - number, target);
if (midResult.success) {
midResult.output = "-" + number + midResult.output;
return midResult;
}
midResult = getOperations(newList, midNumber + number, target);
if (midResult.success) {
midResult.output = "+" + number + midResult.output;
return midResult;
}
midResult = getOperations(newList, midNumber * number, target);
if (midResult.success) {
midResult.output = "*" + number + midResult.output;
return midResult;
}
midResult = getOperations(newList, midNumber / number, target);
if (midResult.success) {
midResult.output = "/" + number + midResult.output;
return midResult
}
}
}
return midResult;
}
}
UPDATE
It's basically just simple brute force algorithm with exponential complexity.
However you can gain some improvemens by leveraging some heuristic function which will help you to order sequence of numbers or(and) operations you will process in each level of getOperatiosn() function recursion.
Example of such heuristic function is for example difference between mid result and total target result.
This way however only best-case and average-case complexities get improved. Worst case complexity remains untouched.
Worst case complexity can be improved by some kind of branch cutting. I'm not sure if it's possible in this case.
Sure it's exponential but it's tiny so a good (enough) naive implementation would be a good start. I suggest you drop the usual infix notation with bracketing, and use postfix, it's easier to program. You can always prettify the outputs as a separate stage.
Start by listing and evaluating all the (valid) sequences of numbers and operators. For example (in postfix):
1 3 7 6 8 3 + + + + + -> 28
1 3 7 6 8 3 + + + + - -> 26
My Java is laughable, I don't come here to be laughed at so I'll leave coding this up to you.
To all the smart people reading this: yes, I know that for even a small problem like this there are smarter approaches which are likely to be faster, I'm just pointing OP towards an initial working solution. Someone else can write the answer with the smarter solution(s).
So, to answer your questions:
I begin with an algorithm that I think will lead me quickly to a working solution. In this case the obvious (to me) choice is exhaustive enumeration and testing of all possible calculations.
If the obvious algorithm looks unappealing for performance reasons I'll start thinking more deeply about it, recalling other algorithms that I know about which are likely to deliver better performance. I may start coding one of those first instead.
If I stick with the exhaustive algorithm and find that the run-time is, in practice, too long, then I might go back to the previous step and code again. But it has to be worth my while, there's a cost/benefit assessment to be made -- as long as my code can outperform Rachel Riley I'd be satisfied.
Important considerations include my time vs computer time, mine costs a helluva lot more.
A working solution in c++11 below.
The basic idea is to use a stack-based evaluation (see RPN) and convert the viable solutions to infix notation for display purposes only.
If we have N input digits, we'll use (N-1) operators, as each operator is binary.
First we create valid permutations of operands and operators (the selector_ array). A valid permutation is one that can be evaluated without stack underflow and which ends with exactly one value (the result) on the stack. Thus 1 1 + is valid, but 1 + 1 is not.
We test each such operand-operator permutation with every permutation of operands (the values_ array) and every combination of operators (the ops_ array). Matching results are pretty-printed.
Arguments are taken from command line as [-s] <target> <digit>[ <digit>...]. The -s switch prevents exhaustive search, only the first matching result is printed.
(use ./mathpuzzle 348 1 3 7 6 8 3 to get the answer for the original question)
This solution doesn't allow concatenating the input digits to form numbers. That could be added as an additional outer loop.
The working code can be downloaded from here. (Note: I updated that code with support for concatenating input digits to form a solution)
See code comments for additional explanation.
#include <iostream>
#include <vector>
#include <algorithm>
#include <stack>
#include <iterator>
#include <string>
namespace {
enum class Op {
Add,
Sub,
Mul,
Div,
};
const std::size_t NumOps = static_cast<std::size_t>(Op::Div) + 1;
const Op FirstOp = Op::Add;
using Number = int;
class Evaluator {
std::vector<Number> values_; // stores our digits/number we can use
std::vector<Op> ops_; // stores the operators
std::vector<char> selector_; // used to select digit (0) or operator (1) when evaluating. should be std::vector<bool>, but that's broken
template <typename T>
using Stack = std::stack<T, std::vector<T>>;
// checks if a given number/operator order can be evaluated or not
bool isSelectorValid() const {
int numValues = 0;
for (auto s : selector_) {
if (s) {
if (--numValues <= 0) {
return false;
}
}
else {
++numValues;
}
}
return (numValues == 1);
}
// evaluates the current values_ and ops_ based on selector_
Number eval(Stack<Number> &stack) const {
auto vi = values_.cbegin();
auto oi = ops_.cbegin();
for (auto s : selector_) {
if (!s) {
stack.push(*(vi++));
continue;
}
Number top = stack.top();
stack.pop();
switch (*(oi++)) {
case Op::Add:
stack.top() += top;
break;
case Op::Sub:
stack.top() -= top;
break;
case Op::Mul:
stack.top() *= top;
break;
case Op::Div:
if (top == 0) {
return std::numeric_limits<Number>::max();
}
Number res = stack.top() / top;
if (res * top != stack.top()) {
return std::numeric_limits<Number>::max();
}
stack.top() = res;
break;
}
}
Number res = stack.top();
stack.pop();
return res;
}
bool nextValuesPermutation() {
return std::next_permutation(values_.begin(), values_.end());
}
bool nextOps() {
for (auto i = ops_.rbegin(), end = ops_.rend(); i != end; ++i) {
std::size_t next = static_cast<std::size_t>(*i) + 1;
if (next < NumOps) {
*i = static_cast<Op>(next);
return true;
}
*i = FirstOp;
}
return false;
}
bool nextSelectorPermutation() {
// the start permutation is always valid
do {
if (!std::next_permutation(selector_.begin(), selector_.end())) {
return false;
}
} while (!isSelectorValid());
return true;
}
static std::string buildExpr(const std::string& left, char op, const std::string &right) {
return std::string("(") + left + ' ' + op + ' ' + right + ')';
}
std::string toString() const {
Stack<std::string> stack;
auto vi = values_.cbegin();
auto oi = ops_.cbegin();
for (auto s : selector_) {
if (!s) {
stack.push(std::to_string(*(vi++)));
continue;
}
std::string top = stack.top();
stack.pop();
switch (*(oi++)) {
case Op::Add:
stack.top() = buildExpr(stack.top(), '+', top);
break;
case Op::Sub:
stack.top() = buildExpr(stack.top(), '-', top);
break;
case Op::Mul:
stack.top() = buildExpr(stack.top(), '*', top);
break;
case Op::Div:
stack.top() = buildExpr(stack.top(), '/', top);
break;
}
}
return stack.top();
}
public:
Evaluator(const std::vector<Number>& values) :
values_(values),
ops_(values.size() - 1, FirstOp),
selector_(2 * values.size() - 1, 0) {
std::fill(selector_.begin() + values_.size(), selector_.end(), 1);
std::sort(values_.begin(), values_.end());
}
// check for solutions
// 1) we create valid permutations of our selector_ array (eg: "1 1 + 1 +",
// "1 1 1 + +", but skip "1 + 1 1 +" as that cannot be evaluated
// 2) for each evaluation order, we permutate our values
// 3) for each value permutation we check with each combination of
// operators
//
// In the first version I used a local stack in eval() (see toString()) but
// it turned out to be a performance bottleneck, so now I use a cached
// stack. Reusing the stack gives an order of magnitude speed-up (from
// 4.3sec to 0.7sec) due to avoiding repeated allocations. Using
// std::vector as a backing store also gives a slight performance boost
// over the default std::deque.
std::size_t check(Number target, bool singleResult = false) {
Stack<Number> stack;
std::size_t res = 0;
do {
do {
do {
Number value = eval(stack);
if (value == target) {
++res;
std::cout << target << " = " << toString() << "\n";
if (singleResult) {
return res;
}
}
} while (nextOps());
} while (nextValuesPermutation());
} while (nextSelectorPermutation());
return res;
}
};
} // namespace
int main(int argc, const char **argv) {
int i = 1;
bool singleResult = false;
if (argc > 1 && std::string("-s") == argv[1]) {
singleResult = true;
++i;
}
if (argc < i + 2) {
std::cerr << argv[0] << " [-s] <target> <digit>[ <digit>]...\n";
std::exit(1);
}
Number target = std::stoi(argv[i]);
std::vector<Number> values;
while (++i < argc) {
values.push_back(std::stoi(argv[i]));
}
Evaluator evaluator{values};
std::size_t res = evaluator.check(target, singleResult);
if (!singleResult) {
std::cout << "Number of solutions: " << res << "\n";
}
return 0;
}
Input is obviously a set of digits and operators: D={1,3,3,6,7,8,3} and Op={+,-,*,/}. The most straight forward algorithm would be a brute force solver, which enumerates all possible combinations of these sets. Where the elements of set Op can be used as often as wanted, but elements from set D are used exactly once. Pseudo code:
D={1,3,3,6,7,8,3}
Op={+,-,*,/}
Solution=348
for each permutation D_ of D:
for each binary tree T with D_ as its leafs:
for each sequence of operators Op_ from Op with length |D_|-1:
label each inner tree node with operators from Op_
result = compute T using infix traversal
if result==Solution
return T
return nil
Other than that: read jedrus07's and HPM's answers.
By far the easiest approach is to intelligently brute force it. There is only a finite amount of expressions you can build out of 6 numbers and 4 operators, simply go through all of them.
How many? Since you don't have to use all numbers and may use the same operator multiple times, This problem is equivalent to "how many labeled strictly binary trees (aka full binary trees) can you make with at most 6 leaves, and four possible labels for each non-leaf node?".
The amount of full binary trees with n leaves is equal to catalan(n-1). You can see this as follows:
Every full binary tree with n leaves has n-1 internal nodes and corresponds to a non-full binary tree with n-1 nodes in a unique way (just delete all the leaves from the full one to get it). There happen to be catalan(n) possible binary trees with n nodes, so we can say that a strictly binary tree with n leaves has catalan(n-1) possible different structures.
There are 4 possible operators for each non-leaf node: 4^(n-1) possibilities
The leaves can be numbered in n! * (6 choose (n-1)) different ways. (Divide this by k! for each number that occurs k times, or just make sure all numbers are different)
So for 6 different numbers and 4 possible operators you get Sum(n=1...6) [ Catalan(n-1) * 6!/(6-n)! * 4^(n-1) ] possible expressions for a total of 33,665,406. Not a lot.
How do you enumerate these trees?
Given a collection of all trees with n-1 or less nodes, you can create all trees with n nodes by systematically pairing all of the n-1 trees with the empty tree, all n-2 trees with the 1 node tree, all n-3 trees with all 2 node tree etc. and using them as the left and right sub trees of a newly formed tree.
So starting with an empty set you first generate the tree that has just a root node, then from a new root you can use that either as a left or right sub tree which yields the two trees that look like this: / and . And so on.
You can turn them into a set of expressions on the fly (just loop over the operators and numbers) and evaluate them as you go until one yields the target number.
I've written my own countdown solver, in Python.
Here's the code; it is also available on GitHub:
#!/usr/bin/env python3
import sys
from itertools import combinations, product, zip_longest
from functools import lru_cache
assert sys.version_info >= (3, 6)
class Solutions:
def __init__(self, numbers):
self.all_numbers = numbers
self.size = len(numbers)
self.all_groups = self.unique_groups()
def unique_groups(self):
all_groups = {}
all_numbers, size = self.all_numbers, self.size
for m in range(1, size+1):
for numbers in combinations(all_numbers, m):
if numbers in all_groups:
continue
all_groups[numbers] = Group(numbers, all_groups)
return all_groups
def walk(self):
for group in self.all_groups.values():
yield from group.calculations
class Group:
def __init__(self, numbers, all_groups):
self.numbers = numbers
self.size = len(numbers)
self.partitions = list(self.partition_into_unique_pairs(all_groups))
self.calculations = list(self.perform_calculations())
def __repr__(self):
return str(self.numbers)
def partition_into_unique_pairs(self, all_groups):
# The pairs are unordered: a pair (a, b) is equivalent to (b, a).
# Therefore, for pairs of equal length only half of all combinations
# need to be generated to obtain all pairs; this is set by the limit.
if self.size == 1:
return
numbers, size = self.numbers, self.size
limits = (self.halfbinom(size, size//2), )
unique_numbers = set()
for m, limit in zip_longest(range((size+1)//2, size), limits):
for numbers1, numbers2 in self.paired_combinations(numbers, m, limit):
if numbers1 in unique_numbers:
continue
unique_numbers.add(numbers1)
group1, group2 = all_groups[numbers1], all_groups[numbers2]
yield (group1, group2)
def perform_calculations(self):
if self.size == 1:
yield Calculation.singleton(self.numbers[0])
return
for group1, group2 in self.partitions:
for calc1, calc2 in product(group1.calculations, group2.calculations):
yield from Calculation.generate(calc1, calc2)
#classmethod
def paired_combinations(cls, numbers, m, limit):
for cnt, numbers1 in enumerate(combinations(numbers, m), 1):
numbers2 = tuple(cls.filtering(numbers, numbers1))
yield (numbers1, numbers2)
if cnt == limit:
return
#staticmethod
def filtering(iterable, elements):
# filter elements out of an iterable, return the remaining elements
elems = iter(elements)
k = next(elems, None)
for n in iterable:
if n == k:
k = next(elems, None)
else:
yield n
#staticmethod
#lru_cache()
def halfbinom(n, k):
if n % 2 == 1:
return None
prod = 1
for m, l in zip(reversed(range(n+1-k, n+1)), range(1, k+1)):
prod = (prod*m)//l
return prod//2
class Calculation:
def __init__(self, expression, result, is_singleton=False):
self.expr = expression
self.result = result
self.is_singleton = is_singleton
def __repr__(self):
return self.expr
#classmethod
def singleton(cls, n):
return cls(f"{n}", n, is_singleton=True)
#classmethod
def generate(cls, calca, calcb):
if calca.result < calcb.result:
calca, calcb = calcb, calca
for result, op in cls.operations(calca.result, calcb.result):
expr1 = f"{calca.expr}" if calca.is_singleton else f"({calca.expr})"
expr2 = f"{calcb.expr}" if calcb.is_singleton else f"({calcb.expr})"
yield cls(f"{expr1} {op} {expr2}", result)
#staticmethod
def operations(x, y):
yield (x + y, '+')
if x > y: # exclude non-positive results
yield (x - y, '-')
if y > 1 and x > 1: # exclude trivial results
yield (x * y, 'x')
if y > 1 and x % y == 0: # exclude trivial and non-integer results
yield (x // y, '/')
def countdown_solver():
# input: target and numbers. If you want to play with more or less than
# 6 numbers, use the second version of 'unsorted_numbers'.
try:
target = int(sys.argv[1])
unsorted_numbers = (int(sys.argv[n+2]) for n in range(6)) # for 6 numbers
# unsorted_numbers = (int(n) for n in sys.argv[2:]) # for any numbers
numbers = tuple(sorted(unsorted_numbers, reverse=True))
except (IndexError, ValueError):
print("You must provide a target and numbers!")
return
solutions = Solutions(numbers)
smallest_difference = target
bestresults = []
for calculation in solutions.walk():
diff = abs(calculation.result - target)
if diff <= smallest_difference:
if diff < smallest_difference:
bestresults = [calculation]
smallest_difference = diff
else:
bestresults.append(calculation)
output(target, smallest_difference, bestresults)
def output(target, diff, results):
print(f"\nThe closest results differ from {target} by {diff}. They are:\n")
for calculation in results:
print(f"{calculation.result} = {calculation.expr}")
if __name__ == "__main__":
countdown_solver()
The algorithm works as follows:
The numbers are put into a tuple of length 6 in descending order. Then, all unique subgroups of lengths 1 to 6 are created, the smallest groups first.
Example: (75, 50, 5, 9, 1, 1) -> {(75), (50), (9), (5), (1), (75, 50), (75, 9), (75, 5), ..., (75, 50, 9, 5, 1, 1)}.
Next, the groups are organised into a hierarchical tree: every group is partitioned into all unique unordered pairs of its non-empty subgroups.
Example: (9, 5, 1, 1) -> [(9, 5, 1) + (1), (9, 1, 1) + (5), (5, 1, 1) + (9), (9, 5) + (1, 1), (9, 1) + (5, 1)].
Within each group of numbers, the calculations are performed and the results are stored. For groups of length 1, the result is simply the number itself. For larger groups, the calculations are carried out on every pair of subgroups: in each pair, all results of the first subgroup are combined with all results of the second subgroup using +, -, x and /, and the valid outcomes are stored.
Example: (75, 5) consists of the pair ((75), (5)). The result of (75) is 75; the result of (5) is 5; the results of (75, 5) are [75+5=80, 75-5=70, 75*5=375, 75/5=15].
In this manner, all results are generated, from the smallest groups to the largest. Finally, the algorithm iterates through all results and selects the ones that are the closest match to the target number.
For a group of m numbers, the maximum number of arithmetic computations is
comps[m] = 4*sum(binom(m, k)*comps[k]*comps[m-k]//(1 + (2*k)//m) for k in range(1, m//2+1))
For all groups of length 1 to 6, the maximum total number of computations is then
total = sum(binom(n, m)*comps[m] for m in range(1, n+1))
which is 1144386. In practice, it will be much less, because the algorithm reuses the results of duplicate groups, ignores trivial operations (adding 0, multiplying by 1, etc), and because the rules of the game dictate that intermediate results must be positive integers (which limits the use of the division operator).
I think, you need to strictly define the problem first. What you are allowed to do and what you are not. You can start by making it simple and only allowing multiplication, division, substraction and addition.
Now you know your problem space- set of inputs, set of available operations and desired input. If you have only 4 operations and x inputs, the number of combinations is less than:
The number of order in which you can carry out operations (x!) times the possible choices of operations on every step: 4^x. As you can see for 6 numbers it gives reasonable 2949120 operations. This means that this may be your limit for brute force algorithm.
Once you have brute force and you know it works, you can start improving your algorithm with some sort of A* algorithm which would require you to define heuristic functions.
In my opinion the best way to think about it is as the search problem. The main difficulty will be finding good heuristics, or ways to reduce your problem space (if you have numbers that do not add up to the answer, you will need at least one multiplication etc.). Start small, build on that and ask follow up questions once you have some code.
I wrote a terminal application to do this:
https://github.com/pg328/CountdownNumbersGame/tree/main
Inside, I've included an illustration of the calculation of the size of the solution space (it's n*((n-1)!^2)*(2^n-1), so: n=6 -> 2,764,800. I know, gross), and more importantly why that is. My implementation is there if you care to check it out, but in case you don't I'll explain here.
Essentially, at worst it is brute force because as far as I know it's impossible to determine whether any specific branch will result in a valid answer without explicitly checking. Having said that, the average case is some fraction of that; it's {that number} divided by the number of valid solutions (I tend to see around 1000 on my program, where 10 or so are unique and the rest are permutations fo those 10). If I handwaved a number, I'd say roughly 2,765 branches to check which takes like no time. (Yes, even in Python.)
TL;DR: Even though the solution space is huge and it takes a couple million operations to find all solutions, only one answer is needed. Best route is brute force til you find one and spit it out.
I wrote a slightly simpler version:
for every combination of 2 (distinct) elements from the list and combine them using +,-,*,/ (note that since a>b then only a-b is needed and only a/b if a%b=0)
if combination is target then record solution
recursively call on the reduced lists
import sys
def driver():
try:
target = int(sys.argv[1])
nums = list((int(sys.argv[i+2]) for i in range(6)))
except (IndexError, ValueError):
print("Provide a list of 7 numbers")
return
solutions = list()
solve(target, nums, list(), solutions)
unique = set()
final = list()
for s in solutions:
a = '-'.join(sorted(s))
if not a in unique:
unique.add(a)
final.append(s)
for s in final: #print them out
print(s)
def solve(target, nums, path, solutions):
if len(nums) == 1:
return
distinct = sorted(list(set(nums)), reverse = True)
rem1 = list(distinct)
for n1 in distinct: #reduce list by combining a pair
rem1.remove(n1)
for n2 in rem1:
rem2 = list(nums) # in case of duplicates we need to start with full list and take out the n1,n2 pair of elements
rem2.remove(n1)
rem2.remove(n2)
combine(target, solutions, path, rem2, n1, n2, '+')
combine(target, solutions, path, rem2, n1, n2, '-')
if n2 > 1:
combine(target, solutions, path, rem2, n1, n2, '*')
if not n1 % n2:
combine(target, solutions, path, rem2, n1, n2, '//')
def combine(target, solutions, path, rem2, n1, n2, symb):
lst = list(rem2)
ans = eval("{0}{2}{1}".format(n1, n2, symb))
newpath = path + ["{0}{3}{1}={2}".format(n1, n2, ans, symb[0])]
if ans == target:
solutions += [newpath]
else:
lst.append(ans)
solve(target, lst, newpath, solutions)
if __name__ == "__main__":
driver()

finding unions of line segments on a number line

I have a number-line between 0 to 1000. I have many line segments on the number line. All line segments' x1 is >= 0 and all x2 are < 1000. All x1 and x2 are integers.
I need to find all of the unions of the line segments.
In this image, the line segments are in blue and the unions are in red:
Is there an existing algorithm for this type of problem?
You can use marzullo's algorithm (see Wikipedia for more details).
Here is a Python implementation I wrote:
def ip_ranges_grouping(range_lst):
## Based on Marzullo's algorithm
## Input: list of IP ranges
## Returns a new merged list of IP ranges
table = []
for rng in range_lst:
start,end = rng.split('-')
table.append((ip2int(start),1))
table.append((ip2int(end),-1))
table.sort(key=lambda x: x[0])
for i in range(len(table) - 1):
if((table[i][0] == table[i+1][0]) and ((table[i][1] == -1) and (table[i+1][1] == 1))):
table[i],table[i+1] = table[i+1],table[i]
merged = []
end = count = 0
while (end < len(table)):
start = end
count += table[end][1]
while(count > 0): # upon last index, count == 0 and loop terminates
end += 1
count += table[end][1]
merged.append(int2ip(table[start][0]) + '-' + int2ip(table[end][0]))
end += 1
return merged
Considering that the coordinates of your segments are bounded ([0, 1000]) integers, you could use an array of size 1000 initialized with zeroes. You then run through your set of segments and set 1 on every cell of the array that the segment covers. You then only have to run through the array to check for contigous sequences of 1.
--- -----
--- ---
1111100111111100
The complexity depends on the number of segments but also on their length.
Here is another method, which also work for floating point segments. Sort the segments. You then only have to travel the sorted segments and compare the boundaries of each adjacent segments. If they cross, they are in the same union.
If the segments are not changed dynamically, it is a simple problem. Just sorting all the segments by the left end, then scanning the sorted elements:
struct Seg {int L,R;};
int cmp(Seg a, Seg b) {return a.L < b.L;}
int union_segs(int n, Seg *segs, Segs *output) {
sort(segs, segs + n, cmp);
int right_most = -1;
int cnt = 0;
for (int i = 0 ; i < n ; i++) {
if (segs[i].L > right_most) {
right_most = segs[i].R;
++cnt;
output[cnt].L = segs[i].L;
output[cnt].R = segs[i].R;
}
if (segs[i].R > right_most) {
right_most = segs[i].R;
output[cnt].R = segs[i].R;
}
}
return cnt+1;
}
The time complexity is O(nlogn) (sorting) + O(n) (scan).
If the segments are inserted and deleted dynamically, and you want to query the union at any time, you will need some more complicated data structures such as range tree.

Scala PriorityQueue on Array[Int] performance issue with complex comparison function (caching is needed)

The problem involves the Scala PriorityQueue[Array[Int]] performance on large data set. The following operations are needed: enqueue, dequeue, and filter. Currently, my implementation is as follows:
For every element of type Array[Int], there is a complex evaluation function: (I'm not sure how to write it in a more efficient way, because it excludes the position 0)
def eval_fun(a : Array[Int]) =
if(a.size < 2) 3
else {
var ret = 0
var i = 1
while(i < a.size) {
if((a(i) & 0x3) == 1) ret += 1
else if((a(i) & 0x3) == 3) ret += 3
i += 1
}
ret / a.size
}
The ordering with a comparison function is based on the evaluation function: (Reversed, descendent order)
val arr_ord = new Ordering[Array[Int]] {
def compare(a : Array[Int], b : Array[Int]) = eval_fun(b) compare eval_fun(a) }
The PriorityQueue is defined as:
val pq: scala.collection.mutable.PriorityQueue[Array[Int]] = PriorityQueue()
Question:
Is there a more elegant and efficient way to write such a evaluation function? I'm thinking of using fold, but fold cannot exclude the position 0.
Is there a data structure to generate a priorityqueue with unique elements? Applying filter operation after each enqueue operation is not efficient.
Is there a cache method to reduce the evaluation computation? Since when adding a new element to the queue, every element may need to be evaluated by eval_fun again, which is not necessary if evaluated value of every element can be cached. Also, I should mention that two distinct element may have the same evaluated value.
Is there a more efficient data structure without using generic type? Because if the size of elements reaches 10,000 and the size of size reaches 1,000, the performance is terribly slow.
Thanks you.
(1) If you want maximum performance here, I would stick to the while loop, even if it is not terribly elegant. Otherwise, if you use a view on Array, you can easily drop the first element before going into the fold:
a.view.drop(1).foldLeft(0)( (sum, a) => sum + ((a & 0x03) match {
case 0x01 => 1
case 0x03 => 3
case _ => 0
})) / a.size
(2) You can maintain two structures, the priority queue, and a set. Both combined give you a sorted-set... So you could use collection.immutable.SortedSet, but there is no mutable variant in the standard library. Do want equality based on the priority function, or the actual array contents? Because in the latter case, you won't get around comparing arrays element by element for each insertion, undoing the effect of caching the priority function value.
(3) Just put the calculated priority along with the array in the queue. I.e.
implicit val ord = Ordering.by[(Int, Array[Int]), Int](_._1)
val pq = new collection.mutable.PriorityQueue[(Int, Array[Int])]
pq += eval_fun(a) -> a
Well, you can use a tail recursive loop (generally these are more "idiomatic":
def eval(a: Array[Int]): Int =
if (a.size < 2) 3
else {
#annotation.tailrec
def loop(ret: Int = 0, i: Int = 1): Int =
if (i >= a.size) ret / a.size
else {
val mod3 = (a(i) & 0x3)
if (mod3 == 1) loop(ret + 1, i + 1)
else if (mod3 == 3) loop(ret + 3, i + 1)
else loop(ret, i + 1)
}
loop()
}
Then you can use that to initialise a cached priority value:
case class PriorityArray(a: Array[Int]) {
lazy val priority = if (a.size < 2) 3 else {
#annotation.tailrec
def loop(ret: Int = 0, i: Int = 1): Int =
if (i >= a.size) ret / a.size
else {
val mod3 = (a(i) & 0x3)
if (mod3 == 2) loop(ret, i + 1)
else loop(ret + mod3, i + 1)
}
loop()
}
}
You may note also that I removed a redundant & op and have only the single conditional (for when it equals 2, rather than two checks for 1 && 3) – these should have some minimal effect.
There is not a huge difference from 0__'s proposal that just came though.
My answers:
If evaluation is critical, keep it as it is. You might get better performance with recursion (not sure why, but it happens), but you'll certainly get worse performance with pretty much any other approach.
No, there isn't, but you can come pretty close to it just modifying the dequeue operation:
def distinctDequeue[T](q: PriorityQueue[T]): T = {
val result = q.dequeue
while (q.head == result) q.dequeue
result
}
Otherwise, you'd have to keep a second data structure just to keep track of whether an element has been added or not. Either way, that equals sign is pretty heavy, but I have a suggestion to make it faster in the next item.
Note, however, that this requires that ties on the the cost function get solved in some other way.
Like 0__ suggested, put the cost on the priority queue. But you can also keep a cache on the function if that would be helpful. I'd try something like this:
val evalMap = scala.collection.mutable.HashMapWrappedArray[Int], Int
def eval_fun(a : Array[Int]) =
if(a.size < 2) 3
else evalMap.getOrElseUpdate(a, {
var ret = 0
var i = 1
while(i < a.size) {
if((a(i) & 0x3) == 1) ret += 1
else if((a(i) & 0x3) == 3) ret += 3
i += 1
}
ret / a.size
})
import scala.math.Ordering.Implicits._
val pq = new collection.mutable.PriorityQueue[(Int, WrappedArray[Int])]
pq += eval_fun(a) -> (a : WrappedArray[Int])
Note that I did not create a special Ordering -- I'm using the standard Ordering so that the WrappedArray will break the ties. There's little cost to wrap the Array, and you get it back with .array, but, on the other hand, you'll get the following:
Ties will be broken by comparing the array themselves. If there aren't many ties in the cost, this should be good enough. If there are, add something else to the tuple to help break ties without comparing the arrays.
That means all equal elements will be kept together, which will enable you to dequeue all of them at the same time, giving the impression of having kept only one.
And that equals will actually work, because WrappedArray compare like Scala sequences do.
I don't understand what you mean by that fourth point.

Resources