finding unions of line segments on a number line - algorithm

I have a number-line between 0 to 1000. I have many line segments on the number line. All line segments' x1 is >= 0 and all x2 are < 1000. All x1 and x2 are integers.
I need to find all of the unions of the line segments.
In this image, the line segments are in blue and the unions are in red:
Is there an existing algorithm for this type of problem?

You can use marzullo's algorithm (see Wikipedia for more details).
Here is a Python implementation I wrote:
def ip_ranges_grouping(range_lst):
## Based on Marzullo's algorithm
## Input: list of IP ranges
## Returns a new merged list of IP ranges
table = []
for rng in range_lst:
start,end = rng.split('-')
table.append((ip2int(start),1))
table.append((ip2int(end),-1))
table.sort(key=lambda x: x[0])
for i in range(len(table) - 1):
if((table[i][0] == table[i+1][0]) and ((table[i][1] == -1) and (table[i+1][1] == 1))):
table[i],table[i+1] = table[i+1],table[i]
merged = []
end = count = 0
while (end < len(table)):
start = end
count += table[end][1]
while(count > 0): # upon last index, count == 0 and loop terminates
end += 1
count += table[end][1]
merged.append(int2ip(table[start][0]) + '-' + int2ip(table[end][0]))
end += 1
return merged

Considering that the coordinates of your segments are bounded ([0, 1000]) integers, you could use an array of size 1000 initialized with zeroes. You then run through your set of segments and set 1 on every cell of the array that the segment covers. You then only have to run through the array to check for contigous sequences of 1.
--- -----
--- ---
1111100111111100
The complexity depends on the number of segments but also on their length.
Here is another method, which also work for floating point segments. Sort the segments. You then only have to travel the sorted segments and compare the boundaries of each adjacent segments. If they cross, they are in the same union.

If the segments are not changed dynamically, it is a simple problem. Just sorting all the segments by the left end, then scanning the sorted elements:
struct Seg {int L,R;};
int cmp(Seg a, Seg b) {return a.L < b.L;}
int union_segs(int n, Seg *segs, Segs *output) {
sort(segs, segs + n, cmp);
int right_most = -1;
int cnt = 0;
for (int i = 0 ; i < n ; i++) {
if (segs[i].L > right_most) {
right_most = segs[i].R;
++cnt;
output[cnt].L = segs[i].L;
output[cnt].R = segs[i].R;
}
if (segs[i].R > right_most) {
right_most = segs[i].R;
output[cnt].R = segs[i].R;
}
}
return cnt+1;
}
The time complexity is O(nlogn) (sorting) + O(n) (scan).
If the segments are inserted and deleted dynamically, and you want to query the union at any time, you will need some more complicated data structures such as range tree.

Related

Algorithm for equiprobable random square binary matrices with two non-adjacent non-zeros in each row and column

It would be great if someone could point me towards an algorithm that would allow me to :
create a random square matrix, with entries 0 and 1, such that
every row and every column contain exactly two non-zero entries,
two non-zero entries cannot be adjacent,
all possible matrices are equiprobable.
Right now I manage to achieve points 1 and 2 doing the following : such a matrix can be transformed, using suitable permutations of rows and columns, into a diagonal block matrix with blocks of the form
1 1 0 0 ... 0
0 1 1 0 ... 0
0 0 1 1 ... 0
.............
1 0 0 0 ... 1
So I start from such a matrix using a partition of [0, ..., n-1] and scramble it by permuting rows and columns randomly. Unfortunately, I can't find a way to integrate the adjacency condition, and I am quite sure that my algorithm won't treat all the matrices equally.
Update
I have managed to achieve point 3. The answer was actually straight under my nose : the block matrix I am creating contains all the information needed to take into account the adjacency condition. First some properties and definitions:
a suitable matrix defines permutations of [1, ..., n] that can be build like so: select a 1 in row 1. The column containing this entry contains exactly one other entry equal to 1 on a row a different from 1. Again, row a contains another entry 1 in a column which contains a second entry 1 on a row b, and so on. This starts a permutation 1 -> a -> b ....
For instance, with the following matrix, starting with the marked entry
v
1 0 1 0 0 0 | 1
0 1 0 0 0 1 | 2
1 0 0 1 0 0 | 3
0 0 1 0 1 0 | 4
0 0 0 1 0 1 | 5
0 1 0 0 1 0 | 6
------------+--
1 2 3 4 5 6 |
we get permutation 1 -> 3 -> 5 -> 2 -> 6 -> 4 -> 1.
the cycles of such a permutation lead to the block matrix I mentioned earlier. I also mentioned scrambling the block matrix using arbitrary permutations on the rows and columns to rebuild a matrix compatible with the requirements.
But I was using any permutation, which led to some adjacent non-zero entries. To avoid that, I have to choose permutations that separate rows (and columns) that are adjacent in the block matrix. Actually, to be more precise, if two rows belong to a same block and are cyclically consecutive (the first and last rows of a block are considered consecutive too), then the permutation I want to apply has to move these rows into non-consecutive rows of the final matrix (I will call two rows incompatible in that case).
So the question becomes : How to build all such permutations ?
The simplest idea is to build a permutation progressively by randomly adding rows that are compatible with the previous one. As an example, consider the case n = 6 using partition 6 = 3 + 3 and the corresponding block matrix
1 1 0 0 0 0 | 1
0 1 1 0 0 0 | 2
1 0 1 0 0 0 | 3
0 0 0 1 1 0 | 4
0 0 0 0 1 1 | 5
0 0 0 1 0 1 | 6
------------+--
1 2 3 4 5 6 |
Here rows 1, 2 and 3 are mutually incompatible, as are 4, 5 and 6. Choose a random row, say 3.
We will write a permutation as an array: [2, 5, 6, 4, 3, 1] meaning 1 -> 2, 2 -> 5, 3 -> 6, ... This means that row 2 of the block matrix will become the first row of the final matrix, row 5 will become the second row, and so on.
Now let's build a suitable permutation by choosing randomly a row, say 3:
p = [3, ...]
The next row will then be chosen randomly among the remaining rows that are compatible with 3 : 4, 5and 6. Say we choose 4:
p = [3, 4, ...]
Next choice has to be made among 1 and 2, for instance 1:
p = [3, 4, 1, ...]
And so on: p = [3, 4, 1, 5, 2, 6].
Applying this permutation to the block matrix, we get:
1 0 1 0 0 0 | 3
0 0 0 1 1 0 | 4
1 1 0 0 0 0 | 1
0 0 0 0 1 1 | 5
0 1 1 0 0 0 | 2
0 0 0 1 0 1 | 6
------------+--
1 2 3 4 5 6 |
Doing so, we manage to vertically isolate all non-zero entries. Same has to be done with the columns, for instance by using permutation p' = [6, 3, 5, 1, 4, 2] to finally get
0 1 0 1 0 0 | 3
0 0 1 0 1 0 | 4
0 0 0 1 0 1 | 1
1 0 1 0 0 0 | 5
0 1 0 0 0 1 | 2
1 0 0 0 1 0 | 6
------------+--
6 3 5 1 4 2 |
So this seems to work quite efficiently, but building these permutations needs to be done with caution, because one can easily be stuck: for instance, with n=6 and partition 6 = 2 + 2 + 2, following the construction rules set up earlier can lead to p = [1, 3, 2, 4, ...]. Unfortunately, 5 and 6 are incompatible, so choosing one or the other makes the last choice impossible. I think I've found all situations that lead to a dead end. I will denote by r the set of remaining choices:
p = [..., x, ?], r = {y} with x and y incompatible
p = [..., x, ?, ?], r = {y, z} with y and z being both incompatible with x (no choice can be made)
p = [..., ?, ?], r = {x, y} with x and y incompatible (any choice would lead to situation 1)
p = [..., ?, ?, ?], r = {x, y, z} with x, y and z being cyclically consecutive (choosing x or z would lead to situation 2, choosing y to situation 3)
p = [..., w, ?, ?, ?], r = {x, y, z} with xwy being a 3-cycle (neither x nor y can be chosen, choosing z would lead to situation 3)
p = [..., ?, ?, ?, ?], r = {w, x, y, z} with wxyz being a 4-cycle (any choice would lead to situation 4)
p = [..., ?, ?, ?, ?], r = {w, x, y, z} with xyz being a 3-cycle (choosing w would lead to situation 4, choosing any other would lead to situation 4)
Now it seems that the following algorithm gives all suitable permutations:
As long as there are strictly more than 5 numbers to choose, choose randomly among the compatible ones.
If there are 5 numbers left to choose: if the remaining numbers contain a 3-cycle or a 4-cycle, break that cycle (i.e. choose a number belonging to that cycle).
If there are 4 numbers left to choose: if the remaining numbers contain three cyclically consecutive numbers, choose one of them.
If there are 3 numbers left to choose: if the remaining numbers contain two cyclically consecutive numbers, choose one of them.
I am quite sure that this allows me to generate all suitable permutations and, hence, all suitable matrices.
Unfortunately, every matrix will be obtained several times, depending on the partition that was chosen.
Intro
Here is some prototype-approach, trying to solve the more general task of
uniform combinatorial sampling, which for our approach here means: we can use this approach for everything which we can formulate as SAT-problem.
It's not exploiting your problem directly and takes a heavy detour. This detour to the SAT-problem can help in regards to theory (more powerful general theoretical results) and efficiency (SAT-solvers).
That being said, it's not an approach if you want to sample within seconds or less (in my experiments), at least while being concerned about uniformity.
Theory
The approach, based on results from complexity-theory, follows this work:
GOMES, Carla P.; SABHARWAL, Ashish; SELMAN, Bart. Near-uniform sampling of combinatorial spaces using XOR constraints. In: Advances In Neural Information Processing Systems. 2007. S. 481-488.
The basic idea:
formulate the problem as SAT-problem
add randomly generated xors to the problem (acting on the decision-variables only! that's important in practice)
this will reduce the number of solutions (some solutions will get impossible)
do that in a loop (with tuned parameters) until only one solution is left!
search for some solution is being done by SAT-solvers or #SAT-solvers (=model-counting)
if there is more than one solution: no xors will be added but a complete restart will be done: add random-xors to the start-problem!
The guarantees:
when tuning the parameters right, this approach achieves near-uniform sampling
this tuning can be costly, as it's based on approximating the number of possible solutions
empirically this can also be costly!
Ante's answer, mentioning the number sequence A001499 actually gives a nice upper bound on the solution-space (as it's just ignoring adjacency-constraints!)
The drawbacks:
inefficient for large problems (in general; not necessarily compared to the alternatives like MCMC and co.)
need to change / reduce parameters to produce samples
those reduced parameters lose the theoretical guarantees
but empirically: good results are still possible!
Parameters:
In practice, the parameters are:
N: number of xors added
L: minimum number of variables part of one xor-constraint
U: maximum number of variables part of one xor-constraint
N is important to reduce the number of possible solutions. Given N constant, the other variables of course also have some effect on that.
Theory says (if i interpret correctly), that we should use L = R = 0.5 * #dec-vars.
This is impossible in practice here, as xor-constraints hurt SAT-solvers a lot!
Here some more scientific slides about the impact of L and U.
They call xors of size 8-20 short-XORS, while we will need to use even shorter ones later!
Implementation
Final version
Here is a pretty hacky implementation in python, using the XorSample scripts from here.
The underlying SAT-solver in use is Cryptominisat.
The code basically boils down to:
Transform the problem to conjunctive normal-form
as DIMACS-CNF
Implement the sampling-approach:
Calls XorSample (pipe-based + file-based)
Call SAT-solver (file-based)
Add samples to some file for later analysis
Code: (i hope i did warn you already about the code-quality)
from itertools import count
from time import time
import subprocess
import numpy as np
import os
import shelve
import uuid
import pickle
from random import SystemRandom
cryptogen = SystemRandom()
""" Helper functions """
# K-ARY CONSTRAINT GENERATION
# ###########################
# SINZ, Carsten. Towards an optimal CNF encoding of boolean cardinality constraints.
# CP, 2005, 3709. Jg., S. 827-831.
def next_var_index(start):
next_var = start
while(True):
yield next_var
next_var += 1
class s_index():
def __init__(self, start_index):
self.firstEnvVar = start_index
def next(self,i,j,k):
return self.firstEnvVar + i*k +j
def gen_seq_circuit(k, input_indices, next_var_index_gen):
cnf_string = ''
s_index_gen = s_index(next_var_index_gen.next())
# write clauses of first partial sum (i.e. i=0)
cnf_string += (str(-input_indices[0]) + ' ' + str(s_index_gen.next(0,0,k)) + ' 0\n')
for i in range(1, k):
cnf_string += (str(-s_index_gen.next(0, i, k)) + ' 0\n')
# write clauses for general case (i.e. 0 < i < n-1)
for i in range(1, len(input_indices)-1):
cnf_string += (str(-input_indices[i]) + ' ' + str(s_index_gen.next(i, 0, k)) + ' 0\n')
cnf_string += (str(-s_index_gen.next(i-1, 0, k)) + ' ' + str(s_index_gen.next(i, 0, k)) + ' 0\n')
for u in range(1, k):
cnf_string += (str(-input_indices[i]) + ' ' + str(-s_index_gen.next(i-1, u-1, k)) + ' ' + str(s_index_gen.next(i, u, k)) + ' 0\n')
cnf_string += (str(-s_index_gen.next(i-1, u, k)) + ' ' + str(s_index_gen.next(i, u, k)) + ' 0\n')
cnf_string += (str(-input_indices[i]) + ' ' + str(-s_index_gen.next(i-1, k-1, k)) + ' 0\n')
# last clause for last variable
cnf_string += (str(-input_indices[-1]) + ' ' + str(-s_index_gen.next(len(input_indices)-2, k-1, k)) + ' 0\n')
return (cnf_string, (len(input_indices)-1)*k, 2*len(input_indices)*k + len(input_indices) - 3*k - 1)
# K=2 clause GENERATION
# #####################
def gen_at_most_2_constraints(vars, start_var):
constraint_string = ''
used_clauses = 0
used_vars = 0
index_gen = next_var_index(start_var)
circuit = gen_seq_circuit(2, vars, index_gen)
constraint_string += circuit[0]
used_clauses += circuit[2]
used_vars += circuit[1]
start_var += circuit[1]
return [constraint_string, used_clauses, used_vars, start_var]
def gen_at_least_2_constraints(vars, start_var):
k = len(vars) - 2
vars = [-var for var in vars]
constraint_string = ''
used_clauses = 0
used_vars = 0
index_gen = next_var_index(start_var)
circuit = gen_seq_circuit(k, vars, index_gen)
constraint_string += circuit[0]
used_clauses += circuit[2]
used_vars += circuit[1]
start_var += circuit[1]
return [constraint_string, used_clauses, used_vars, start_var]
# Adjacency conflicts
# ###################
def get_all_adjacency_conflicts_4_neighborhood(N, X):
conflicts = set()
for x in range(N):
for y in range(N):
if x < (N-1):
conflicts.add(((x,y),(x+1,y)))
if y < (N-1):
conflicts.add(((x,y),(x,y+1)))
cnf = '' # slow string appends
for (var_a, var_b) in conflicts:
var_a_ = X[var_a]
var_b_ = X[var_b]
cnf += '-' + var_a_ + ' ' + '-' + var_b_ + ' 0 \n'
return cnf, len(conflicts)
# Build SAT-CNF
#############
def build_cnf(N, verbose=False):
var_counter = count(1)
N_CLAUSES = 0
X = np.zeros((N, N), dtype=object)
for a in range(N):
for b in range(N):
X[a,b] = str(next(var_counter))
# Adjacency constraints
CNF, N_CLAUSES = get_all_adjacency_conflicts_4_neighborhood(N, X)
# k=2 constraints
NEXT_VAR = N*N+1
for row in range(N):
constraint_string, used_clauses, used_vars, NEXT_VAR = gen_at_most_2_constraints(X[row, :].astype(int).tolist(), NEXT_VAR)
N_CLAUSES += used_clauses
CNF += constraint_string
constraint_string, used_clauses, used_vars, NEXT_VAR = gen_at_least_2_constraints(X[row, :].astype(int).tolist(), NEXT_VAR)
N_CLAUSES += used_clauses
CNF += constraint_string
for col in range(N):
constraint_string, used_clauses, used_vars, NEXT_VAR = gen_at_most_2_constraints(X[:, col].astype(int).tolist(), NEXT_VAR)
N_CLAUSES += used_clauses
CNF += constraint_string
constraint_string, used_clauses, used_vars, NEXT_VAR = gen_at_least_2_constraints(X[:, col].astype(int).tolist(), NEXT_VAR)
N_CLAUSES += used_clauses
CNF += constraint_string
# build final cnf
CNF = 'p cnf ' + str(NEXT_VAR-1) + ' ' + str(N_CLAUSES) + '\n' + CNF
return X, CNF, NEXT_VAR-1
# External tools
# ##############
def get_random_xor_problem(CNF_IN_fp, N_DEC_VARS, N_ALL_VARS, s, min_l, max_l):
# .cnf not part of arg!
p = subprocess.Popen(['./gen-wff', CNF_IN_fp,
str(N_DEC_VARS), str(N_ALL_VARS),
str(s), str(min_l), str(max_l), 'xored'],
stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
result = p.communicate()
os.remove(CNF_IN_fp + '-str-xored.xor') # file not needed
return CNF_IN_fp + '-str-xored.cnf'
def solve(CNF_IN_fp, N_DEC_VARS):
seed = cryptogen.randint(0, 2147483647) # actually no reason to do it; but can't hurt either
p = subprocess.Popen(["./cryptominisat5", '-t', '4', '-r', str(seed), CNF_IN_fp], stdin=subprocess.PIPE, stdout=subprocess.PIPE)
result = p.communicate()[0]
sat_line = result.find('s SATISFIABLE')
if sat_line != -1:
# solution found!
vars = parse_solution(result)[:N_DEC_VARS]
# forbid solution (DeMorgan)
negated_vars = list(map(lambda x: x*(-1), vars))
with open(CNF_IN_fp, 'a') as f:
f.write( (str(negated_vars)[1:-1] + ' 0\n').replace(',', ''))
# assume solve is treating last constraint despite not changing header!
# solve again
seed = cryptogen.randint(0, 2147483647)
p = subprocess.Popen(["./cryptominisat5", '-t', '4', '-r', str(seed), CNF_IN_fp], stdin=subprocess.PIPE, stdout=subprocess.PIPE)
result = p.communicate()[0]
sat_line = result.find('s SATISFIABLE')
if sat_line != -1:
os.remove(CNF_IN_fp) # not needed anymore
return True, False, None
else:
return True, True, vars
else:
return False, False, None
def parse_solution(output):
# assumes there is one
vars = []
for line in output.split("\n"):
if line:
if line[0] == 'v':
line_vars = list(map(lambda x: int(x), line.split()[1:]))
vars.extend(line_vars)
return vars
# Core-algorithm
# ##############
def xorsample(X, CNF_IN_fp, N_DEC_VARS, N_VARS, s, min_l, max_l):
start_time = time()
while True:
# add s random XOR constraints to F
xored_cnf_fp = get_random_xor_problem(CNF_IN_fp, N_DEC_VARS, N_VARS, s, min_l, max_l)
state_lvl1, state_lvl2, var_sol = solve(xored_cnf_fp, N_DEC_VARS)
print('------------')
if state_lvl1 and state_lvl2:
print('FOUND')
d = shelve.open('N_15_70_4_6_TO_PLOT')
d[str(uuid.uuid4())] = (pickle.dumps(var_sol), time() - start_time)
d.close()
return True
else:
if state_lvl1:
print('sol not unique')
else:
print('no sol found')
print('------------')
""" Run """
N = 15
N_DEC_VARS = N*N
X, CNF, N_VARS = build_cnf(N)
with open('my_problem.cnf', 'w') as f:
f.write(CNF)
counter = 0
while True:
print('sample: ', counter)
xorsample(X, 'my_problem', N_DEC_VARS, N_VARS, 70, 4, 6)
counter += 1
Output will look like (removed some warnings):
------------
no sol found
------------
------------
no sol found
------------
------------
no sol found
------------
------------
sol not unique
------------
------------
FOUND
Core: CNF-formulation
We introduce one variable for every cell of the matrix. N=20 means 400 binary-variables.
Adjancency:
Precalculate all symmetry-reduced conflicts and add conflict-clauses.
Basic theory:
a -> !b
<->
!a v !b (propositional logic)
Row/Col-wise Cardinality:
This is tough to express in CNF and naive approaches need an exponential number
of constraints.
We use some adder-circuit based encoding (SINZ, Carsten. Towards an optimal CNF encoding of boolean cardinality constraints) which introduces new auxiliary-variables.
Remark:
sum(var_set) <= k
<->
sum(negated(var_set)) >= len(var_set) - k
These SAT-encodings can be put into exact model-counters (for small N; e.g. < 9). The number of solutions equals Ante's results, which is a strong indication for a correct transformation!
There are also interesting approximate model-counters (also heavily based on xor-constraints) like approxMC which shows one more thing we can do with the SAT-formulation. But in practice i have not been able to use these (approxMC = autoconf; no comment).
Other experiments
I did also build a version using pblib, to use more powerful cardinality-formulations
for the SAT-CNF formulation. I did not try to use the C++-based API, but only the reduced pbencoder, which automatically selects some best encoding, which was way worse than my encoding used above (which is best is still a research-problem; often even redundant-constraints can help).
Empirical analysis
For the sake of obtaining some sample-size (given my patience), i only computed samples for N=15. In this case we used:
N=70 xors
L,U = 4,6
I also computed some samples for N=20 with (100,3,6), but this takes a few mins and we reduced the lower bound!
Visualization
Here some animation (strengthening my love-hate relationship with matplotlib):
Edit: And a (reduced) comparison to brute-force uniform-sampling with N=5 (NXOR,L,U = 4, 10, 30):
(I have not yet decided on the addition of the plotting-code. It's as ugly as the above one and people might look too much into my statistical shambles; normalizations and co.)
Theory
Statistical analysis is probably hard to do as the underlying problem is of such combinatoric nature. It's even not entirely obvious how that final cell-PDF should look like. In the case of N=odd, it's probably non-uniform and looks like a chess-board (i did brute-force check N=5 to observe this).
One thing we can be sure about (imho): symmetry!
Given a cell-PDF matrix, we should expect, that the matrix is symmetric (A = A.T).
This is checked in the visualization and the euclidean-norm of differences over time is plotted.
We can do the same on some other observation: observed pairings.
For N=3, we can observe the following pairs:
0,1
0,2
1,2
Now we can do this per-row and per-column and should expect symmetry too!
Sadly, it's probably not easy to say something about the variance and therefore the needed samples to speak about confidence!
Observation
According to my simplified perception, current-samples and the cell-PDF look good, although convergence is not achieved yet (or we are far away from uniformity).
The more important aspect are probably the two norms, nicely decreasing towards 0.
(yes; one could tune some algorithm for that by transposing with prob=0.5; but this is not done here as it would defeat it's purpose).
Potential next steps
Tune parameters
Check out the approach using #SAT-solvers / Model-counters instead of SAT-solvers
Try different CNF-formulations, especially in regards to cardinality-encodings and xor-encodings
XorSample is by default using tseitin-like encoding to get around exponentially grow
for smaller xors (as used) it might be a good idea to use naive encoding (which propagates faster)
XorSample supports that in theory; but the script's work differently in practice
Cryptominisat is known for dedicated XOR-handling (as it was build for analyzing cryptography including many xors) and might gain something by naive encoding (as inferring xors from blown-up CNFs is much harder)
More statistical-analysis
Get rid of XorSample scripts (shell + perl...)
Summary
The approach is very general
This code produces feasible samples
It should be not hard to prove, that every feasible solution can be sampled
Others have proven theoretical guarantees for uniformity for some params
does not hold for our params
Others have empirically / theoretically analyzed smaller parameters (in use here)
(Updated test results, example run-through and code snippets below.)
You can use dynamic programming to calculate the number of solutions resulting from every state (in a much more efficient way than a brute-force algorithm), and use those (pre-calculated) values to create equiprobable random solutions.
Consider the example of a 7x7 matrix; at the start, the state is:
0,0,0,0,0,0,0
meaning that there are seven adjacent unused columns. After adding two ones to the first row, the state could be e.g.:
0,1,0,0,1,0,0
with two columns that now have a one in them. After adding ones to the second row, the state could be e.g.:
0,1,1,0,1,0,1
After three rows are filled, there is a possibility that a column will have its maximum of two ones; this effectively splits the matrix into two independent zones:
1,1,1,0,2,0,1 -> 1,1,1,0 + 0,1
These zones are independent in the sense that the no-adjacent-ones rule has no effect when adding ones to different zones, and the order of the zones has no effect on the number of solutions.
In order to use these states as signatures for types of solutions, we have to transform them into a canonical notation. First, we have to take into account the fact that columns with only 1 one in them may be unusable in the next row, because they contain a one in the current row. So instead of a binary notation, we have to use a ternary notation, e.g.:
2,1,1,0 + 0,1
where the 2 means that this column was used in the current row (and not that there are 2 ones in the column). At the next step, we should then convert the twos back into ones.
Additionally, we can also mirror the seperate groups to put them into their lexicographically smallest notation:
2,1,1,0 + 0,1 -> 0,1,1,2 + 0,1
Lastly, we sort the seperate groups from small to large, and then lexicographically, so that a state in a larger matrix may be e.g.:
0,0 + 0,1 + 0,0,2 + 0,1,0 + 0,1,0,1
Then, when calculating the number of solutions resulting from each state, we can use memoization using the canonical notation of each state as a key.
Creating a dictionary of the states and the number of solutions for each of them only needs to be done once, and a table for larger matrices can probably be used for smaller matrices too.
Practically, you'd generate a random number between 0 and the total number of solutions, and then for every row, you'd look at the different states you could create from the current state, look at the number of unique solutions each one would generate, and see which option leads to the solution that corresponds with your randomly generated number.
Note that every state and the corresponding key can only occur in a particular row, so you can store the keys in seperate dictionaries per row.
TEST RESULTS
A first test using unoptimized JavaScript gave very promising results. With dynamic programming, calculating the number of solutions for a 10x10 matrix now takes a second, where a brute-force algorithm took several hours (and this is the part of the algorithm that only needs to be done once). The size of the dictionary with the signatures and numbers of solutions grows with a diminishing factor approaching 2.5 for each step in size; the time to generate it grows with a factor of around 3.
These are the number of solutions, states, signatures (total size of the dictionaries), and maximum number of signatures per row (largest dictionary per row) that are created:
size unique solutions states signatures max/row
4x4 2 9 6 2
5x5 16 73 26 8
6x6 722 514 107 40
7x7 33,988 2,870 411 152
8x8 2,215,764 13,485 1,411 596
9x9 179,431,924 56,375 4,510 1,983
10x10 17,849,077,140 218,038 13,453 5,672
11x11 2,138,979,146,276 801,266 38,314 14,491
12x12 304,243,884,374,412 2,847,885 104,764 35,803
13x13 50,702,643,217,809,908 9,901,431 278,561 96,414
14x14 9,789,567,606,147,948,364 33,911,578 723,306 238,359
15x15 2,168,538,331,223,656,364,084 114,897,838 1,845,861 548,409
16x16 546,386,962,452,256,865,969,596 ... 4,952,501 1,444,487
17x17 155,420,047,516,794,379,573,558,433 12,837,870 3,754,040
18x18 48,614,566,676,379,251,956,711,945,475 31,452,747 8,992,972
19x19 17,139,174,923,928,277,182,879,888,254,495 74,818,773 20,929,008
20x20 6,688,262,914,418,168,812,086,412,204,858,650 175,678,000 50,094,203
(Additional results obtained with C++, using a simple 128-bit integer implementation. To count the states, the code had to be run using each state as a seperate signature, which I was unable to do for the largest sizes. )
EXAMPLE
The dictionary for a 5x5 matrix looks like this:
row 0: 00000 -> 16 row 3: 101 -> 0
1112 -> 1
row 1: 20002 -> 2 1121 -> 1
00202 -> 4 1+01 -> 0
02002 -> 2 11+12 -> 2
02020 -> 2 1+121 -> 1
0+1+1 -> 0
row 2: 10212 -> 1 1+112 -> 1
12012 -> 1
12021 -> 2 row 4: 0 -> 0
12102 -> 1 11 -> 0
21012 -> 0 12 -> 0
02121 -> 3 1+1 -> 1
01212 -> 1 1+2 -> 0
The total number of solutions is 16; if we randomly pick a number from 0 to 15, e.g. 13, we can find the corresponding (i.e. the 14th) solution like this:
state: 00000
options: 10100 10010 10001 01010 01001 00101
signature: 00202 02002 20002 02020 02002 00202
solutions: 4 2 2 2 2 4
This tells us that the 14th solution is the 2nd solution of option 00101. The next step is:
state: 00101
options: 10010 01010
signature: 12102 02121
solutions: 1 3
This tells us that the 2nd solution is the 1st solution of option 01010. The next step is:
state: 01111
options: 10100 10001 00101
signature: 11+12 1112 1+01
solutions: 2 1 0
This tells us that the 1st solution is the 1st solution of option 10100. The next step is:
state: 11211
options: 01010 01001
signature: 1+1 1+1
solutions: 1 1
This tells us that the 1st solutions is the 1st solution of option 01010. The last step is:
state: 12221
options: 10001
And the 5x5 matrix corresponding to randomly chosen number 13 is:
0 0 1 0 1
0 1 0 1 0
1 0 1 0 0
0 1 0 1 0
1 0 0 0 1
And here's a quick'n'dirty code example; run the snippet to generate the signature and solution count dictionary, and generate a random 10x10 matrix (it takes a second to generate the dictionary; once that is done, it generates random solutions in half a millisecond):
function signature(state, prev) {
var zones = [], zone = [];
for (var i = 0; i < state.length; i++) {
if (state[i] == 2) {
if (zone.length) zones.push(mirror(zone));
zone = [];
}
else if (prev[i]) zone.push(3);
else zone.push(state[i]);
}
if (zone.length) zones.push(mirror(zone));
zones.sort(function(a,b) {return a.length - b.length || a - b;});
return zones.length ? zones.join("2") : "2";
function mirror(zone) {
var ltr = zone.join('');
zone.reverse();
var rtl = zone.join('');
return (ltr < rtl) ? ltr : rtl;
}
}
function memoize(n) {
var memo = [], empty = [];
for (var i = 0; i <= n; i++) memo[i] = [];
for (var i = 0; i < n; i++) empty[i] = 0;
memo[0][signature(empty, empty)] = next_row(empty, empty, 1);
return memo;
function next_row(state, prev, row) {
if (row > n) return 1;
var solutions = 0;
for (var i = 0; i < n - 2; i++) {
if (state[i] == 2 || prev[i] == 1) continue;
for (var j = i + 2; j < n; j++) {
if (state[j] == 2 || prev[j] == 1) continue;
var s = state.slice(), p = empty.slice();
++s[i]; ++s[j]; ++p[i]; ++p[j];
var sig = signature(s, p);
var sol = memo[row][sig];
if (sol == undefined)
memo[row][sig] = sol = next_row(s, p, row + 1);
solutions += sol;
}
}
return solutions;
}
}
function random_matrix(n, memo) {
var matrix = [], empty = [], state = [], prev = [];
for (var i = 0; i < n; i++) empty[i] = state[i] = prev[i] = 0;
var total = memo[0][signature(empty, empty)];
var pick = Math.floor(Math.random() * total);
document.write("solution " + pick.toLocaleString('en-US') +
" from a total of " + total.toLocaleString('en-US') + "<br>");
for (var row = 1; row <= n; row++) {
var options = find_options(state, prev);
for (var i in options) {
var state_copy = state.slice();
for (var j in state_copy) state_copy[j] += options[i][j];
var sig = signature(state_copy, options[i]);
var solutions = memo[row][sig];
if (pick < solutions) {
matrix.push(options[i].slice());
prev = options[i].slice();
state = state_copy.slice();
break;
}
else pick -= solutions;
}
}
return matrix;
function find_options(state, prev) {
var options = [];
for (var i = 0; i < n - 2; i++) {
if (state[i] == 2 || prev[i] == 1) continue;
for (var j = i + 2; j < n; j++) {
if (state[j] == 2 || prev[j] == 1) continue;
var option = empty.slice();
++option[i]; ++option[j];
options.push(option);
}
}
return options;
}
}
var size = 10;
var memo = memoize(size);
var matrix = random_matrix(size, memo);
for (var row in matrix) document.write(matrix[row] + "<br>");
The code snippet below shows the dictionary of signatures and solution counts for a matrix of size 10x10. I've used a slightly different signature format from the explanation above: the zones are delimited by a '2' instead of a plus sign, and a column which has a one in the previous row is marked with a '3' instead of a '2'. This shows how the keys could be stored in a file as integers with 2×N bits (padded with 2's).
function signature(state, prev) {
var zones = [], zone = [];
for (var i = 0; i < state.length; i++) {
if (state[i] == 2) {
if (zone.length) zones.push(mirror(zone));
zone = [];
}
else if (prev[i]) zone.push(3);
else zone.push(state[i]);
}
if (zone.length) zones.push(mirror(zone));
zones.sort(function(a,b) {return a.length - b.length || a - b;});
return zones.length ? zones.join("2") : "2";
function mirror(zone) {
var ltr = zone.join('');
zone.reverse();
var rtl = zone.join('');
return (ltr < rtl) ? ltr : rtl;
}
}
function memoize(n) {
var memo = [], empty = [];
for (var i = 0; i <= n; i++) memo[i] = [];
for (var i = 0; i < n; i++) empty[i] = 0;
memo[0][signature(empty, empty)] = next_row(empty, empty, 1);
return memo;
function next_row(state, prev, row) {
if (row > n) return 1;
var solutions = 0;
for (var i = 0; i < n - 2; i++) {
if (state[i] == 2 || prev[i] == 1) continue;
for (var j = i + 2; j < n; j++) {
if (state[j] == 2 || prev[j] == 1) continue;
var s = state.slice(), p = empty.slice();
++s[i]; ++s[j]; ++p[i]; ++p[j];
var sig = signature(s, p);
var sol = memo[row][sig];
if (sol == undefined)
memo[row][sig] = sol = next_row(s, p, row + 1);
solutions += sol;
}
}
return solutions;
}
}
var memo = memoize(10);
for (var i in memo) {
document.write("row " + i + ":<br>");
for (var j in memo[i]) {
document.write(""" + j + "": " + memo[i][j] + "<br>");
}
}
Just few thoughts. Number of matrices satisfying conditions for n <= 10:
3 0
4 2
5 16
6 722
7 33988
8 2215764
9 179431924
10 17849077140
Unfortunatelly there is no sequence with these numbers in OEIS.
There is one similar (A001499), without condition for neighbouring one's. Number of nxn matrices in this case is 'of order' as A001499's number of (n-1)x(n-1) matrices. That is to be expected since number
of ways to fill one row in this case, position 2 one's in n places with at least one zero between them is ((n-1) choose 2). Same as to position 2 one's in (n-1) places without the restriction.
I don't think there is an easy connection between these matrix of order n and A001499 matrix of order n-1, meaning that if we have A001499 matrix than we can construct some of these matrices.
With this, for n=20, number of matrices is >10^30. Quite a lot :-/
This solution use recursion in order to set the cell of the matrix one by one. If the random walk finish with an impossible solution then we rollback one step in the tree and we continue the random walk.
The algorithm is efficient and i think that the generated data are highly equiprobable.
package rndsqmatrix;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
import java.util.stream.IntStream;
public class RndSqMatrix {
/**
* Generate a random matrix
* #param size the size of the matrix
* #return the matrix encoded in 1d array i=(x+y*size)
*/
public static int[] generate(final int size) {
return generate(size, new int[size * size], new int[size],
new int[size]);
}
/**
* Build a matrix recursivly with a random walk
* #param size the size of the matrix
* #param matrix the matrix encoded in 1d array i=(x+y*size)
* #param rowSum
* #param colSum
* #return
*/
private static int[] generate(final int size, final int[] matrix,
final int[] rowSum, final int[] colSum) {
// generate list of valid positions
final List<Integer> positions = new ArrayList();
for (int y = 0; y < size; y++) {
if (rowSum[y] < 2) {
for (int x = 0; x < size; x++) {
if (colSum[x] < 2) {
final int p = x + y * size;
if (matrix[p] == 0
&& (x == 0 || matrix[p - 1] == 0)
&& (x == size - 1 || matrix[p + 1] == 0)
&& (y == 0 || matrix[p - size] == 0)
&& (y == size - 1 || matrix[p + size] == 0)) {
positions.add(p);
}
}
}
}
}
// no valid positions ?
if (positions.isEmpty()) {
// if the matrix is incomplete => return null
for (int i = 0; i < size; i++) {
if (rowSum[i] != 2 || colSum[i] != 2) {
return null;
}
}
// the matrix is complete => return it
return matrix;
}
// random walk
Collections.shuffle(positions);
for (int p : positions) {
// set '1' and continue recursivly the exploration
matrix[p] = 1;
rowSum[p / size]++;
colSum[p % size]++;
final int[] solMatrix = generate(size, matrix, rowSum, colSum);
if (solMatrix != null) {
return solMatrix;
}
// rollback
matrix[p] = 0;
rowSum[p / size]--;
colSum[p % size]--;
}
// we can't find a valid matrix from here => return null
return null;
}
public static void printMatrix(final int size, final int[] matrix) {
for (int y = 0; y < size; y++) {
for (int x = 0; x < size; x++) {
System.out.print(matrix[x + y * size]);
System.out.print(" ");
}
System.out.println();
}
}
public static void printStatistics(final int size, final int count) {
final int sumMatrix[] = new int[size * size];
for (int i = 0; i < count; i++) {
final int[] matrix = generate(size);
for (int j = 0; j < sumMatrix.length; j++) {
sumMatrix[j] += matrix[j];
}
}
printMatrix(size, sumMatrix);
}
public static void checkAlgorithm() {
final int size = 8;
final int count = 2215764;
final int divisor = 122;
final int sumMatrix[] = new int[size * size];
for (int i = 0; i < count/divisor ; i++) {
final int[] matrix = generate(size);
for (int j = 0; j < sumMatrix.length; j++) {
sumMatrix[j] += matrix[j];
}
}
int total = 0;
for(int i=0; i < sumMatrix.length; i++) {
total += sumMatrix[i];
}
final double factor = (double)total / (count/divisor);
System.out.println("Factor=" + factor + " (theory=16.0)");
}
public static void benchmark(final int size, final int count,
final boolean parallel) {
final long begin = System.currentTimeMillis();
if (!parallel) {
for (int i = 0; i < count; i++) {
generate(size);
}
} else {
IntStream.range(0, count).parallel().forEach(i -> generate(size));
}
final long end = System.currentTimeMillis();
System.out.println("rate="
+ (double) (end - begin) / count + "ms/matrix");
}
public static void main(String[] args) {
checkAlgorithm();
benchmark(8, 10000, true);
//printStatistics(8, 2215764/36);
printStatistics(8, 2215764);
}
}
The output is:
Factor=16.0 (theory=16.0)
rate=0.2835ms/matrix
552969 554643 552895 554632 555680 552753 554567 553389
554071 554847 553441 553315 553425 553883 554485 554061
554272 552633 555130 553699 553604 554298 553864 554028
554118 554299 553565 552986 553786 554473 553530 554771
554474 553604 554473 554231 553617 553556 553581 553992
554960 554572 552861 552732 553782 554039 553921 554661
553578 553253 555721 554235 554107 553676 553776 553182
553086 553677 553442 555698 553527 554850 553804 553444
Here is a very fast approach of generating the matrix row by row, written in Java:
public static void main(String[] args) throws Exception {
int n = 100;
Random rnd = new Random();
byte[] mat = new byte[n*n];
byte[] colCount = new byte[n];
//generate row by row
for (int x = 0; x < n; x++) {
//generate a random first bit
int b1 = rnd.nextInt(n);
while ( (x > 0 && mat[(x-1)*n + b1] == 1) || //not adjacent to the one above
(colCount[b1] == 2) //not in a column which has 2
) b1 = rnd.nextInt(n);
//generate a second bit, not equal to the first one
int b2 = rnd.nextInt(n);
while ( (b2 == b1) || //not the same as bit 1
(x > 0 && mat[(x-1)*n + b2] == 1) || //not adjacent to the one above
(colCount[b2] == 2) || //not in a column which has 2
(b2 == b1 - 1) || //not adjacent to b1
(b2 == b1 + 1)
) b2 = rnd.nextInt(n);
//fill the matrix values and increment column counts
mat[x*n + b1] = 1;
mat[x*n + b2] = 1;
colCount[b1]++;
colCount[b2]++;
}
String arr = Arrays.toString(mat).substring(1, n*n*3 - 1);
System.out.println(arr.replaceAll("(.{" + n*3 + "})", "$1\n"));
}
It essentially generates each a random row at a time. If the row will violate any of the conditions, it is generated again (again randomly). I believe this will satisfy condition 4 as well.
Adding a quick note that it will spin forever for N-s where there is no solutions (like N=3).

Display all the possible numbers having its digits in ascending order

Write a program that can display all the possible numbers in between given two numbers, having its digits in ascending order.
For Example:-
Input: 5000 to 6000
Output: 5678 5679 5689 5789
Input: 90 to 124
Output: 123 124
Brute force approach can make it count to all numbers and check of digits for each one of them. But I want approaches that can skip some numbers and can bring complexity lesser than O(n). Do any such solution(s) exists that can give better approach for this problem?
I offer a solution in Python. It is efficient as it considers only the relevant numbers. The basic idea is to count upwards, but handle overflow somewhat differently. While we normally set overflowing digits to 0, here we set them to the previous digit +1. Please check the inline comments for further details. You can play with it here: http://ideone.com/ePvVsQ
def ascending( na, nb ):
assert nb>=na
# split each number into a list of digits
a = list( int(x) for x in str(na))
b = list( int(x) for x in str(nb))
d = len(b) - len(a)
# if both numbers have different length add leading zeros
if d>0:
a = [0]*d + a # add leading zeros
assert len(a) == len(b)
n = len(a)
# check if the initial value has increasing digits as required,
# and fix if necessary
for x in range(d+1, n):
if a[x] <= a[x-1]:
for y in range(x, n):
a[y] = a[y-1] + 1
break
res = [] # result set
while a<=b:
# if we found a value and add it to the result list
# turn the list of digits back into an integer
if max(a) < 10:
res.append( int( ''.join( str(k) for k in a ) ) )
# in order to increase the number we look for the
# least significant digit that can be increased
for x in range( n-1, -1, -1): # count down from n-1 to 0
if a[x] < 10+x-n:
break
# digit x is to be increased
a[x] += 1
# all subsequent digits must be increased accordingly
for y in range( x+1, n ):
a[y] = a[y-1] + 1
return res
print( ascending( 5000, 9000 ) )
Sounds like task from Project Euler. Here is the solution in C++. It is not short, but it is straightforward and effective. Oh, and hey, it uses backtracking.
// Higher order digits at the back
typedef std::vector<int> Digits;
// Extract decimal digits of a number
Digits ExtractDigits(int n)
{
Digits digits;
while (n > 0)
{
digits.push_back(n % 10);
n /= 10;
}
if (digits.empty())
{
digits.push_back(0);
}
return digits;
}
// Main function
void PrintNumsRec(
const Digits& minDigits, // digits of the min value
const Digits& maxDigits, // digits of the max value
Digits& digits, // digits of current value
int pos, // current digits with index greater than pos are already filled
bool minEq, // currently filled digits are the same as of min value
bool maxEq) // currently filled digits are the same as of max value
{
if (pos < 0)
{
// Print current value. Handle leading zeros by yourself, if need
for (auto pDigit = digits.rbegin(); pDigit != digits.rend(); ++pDigit)
{
if (*pDigit >= 0)
{
std::cout << *pDigit;
}
}
std::cout << std::endl;
return;
}
// Compute iteration boundaries for current position
int first = minEq ? minDigits[pos] : 0;
int last = maxEq ? maxDigits[pos] : 9;
// The last filled digit
int prev = digits[pos + 1];
// Make sure generated number has increasing digits
int firstInc = std::max(first, prev + 1);
// Iterate through possible cases for current digit
for (int d = firstInc; d <= last; ++d)
{
digits[pos] = d;
if (d == 0 && prev == -1)
{
// Mark leading zeros with -1
digits[pos] = -1;
}
PrintNumsRec(minDigits, maxDigits, digits, pos - 1, minEq && (d == first), maxEq && (d == last));
}
}
// High-level function
void PrintNums(int min, int max)
{
auto minDigits = ExtractDigits(min);
auto maxDigits = ExtractDigits(max);
// Make digits array of the same size
while (minDigits.size() < maxDigits.size())
{
minDigits.push_back(0);
}
Digits digits(minDigits.size());
int pos = digits.size() - 1;
// Placeholder for leading zero
digits.push_back(-1);
PrintNumsRec(minDigits, maxDigits, digits, pos, true, true);
}
void main()
{
PrintNums(53, 297);
}
It uses recursion to handle arbitrary amount of digits, but it is essentially the same as the nested loops approach. Here is the output for (53, 297):
056
057
058
059
067
068
069
078
079
089
123
124
125
126
127
128
129
134
135
136
137
138
139
145
146
147
148
149
156
157
158
159
167
168
169
178
179
189
234
235
236
237
238
239
245
246
247
248
249
256
257
258
259
267
268
269
278
279
289
Much more interesting problem would be to count all these numbers without explicitly computing it. One would use dynamic programming for that.
There is only a very limited number of numbers which can match your definition (with 9 digits max) and these can be generated very fast. But if you really need speed, just cache the tree or the generated list and do a lookup when you need your result.
using System;
using System.Collections.Generic;
namespace so_ascending_digits
{
class Program
{
class Node
{
int digit;
int value;
List<Node> children;
public Node(int val = 0, int dig = 0)
{
digit = dig;
value = (val * 10) + digit;
children = new List<Node>();
for (int i = digit + 1; i < 10; i++)
{
children.Add(new Node(value, i));
}
}
public void Collect(ref List<int> collection, int min = 0, int max = Int16.MaxValue)
{
if ((value >= min) && (value <= max)) collection.Add(value);
foreach (Node n in children) if (value * 10 < max) n.Collect(ref collection, min, max);
}
}
static void Main(string[] args)
{
Node root = new Node();
List<int> numbers = new List<int>();
root.Collect(ref numbers, 5000, 6000);
numbers.Sort();
Console.WriteLine(String.Join("\n", numbers));
}
}
}
Why the brute force algorithm may be very inefficient.
One efficient way of encoding the input is to provide two numbers: the lower end of the range, a, and the number of values in the range, b-a-1. This can be encoded in O(lg a + lg (b - a)) bits, since the number of bits needed to represent a number in base-2 is roughly equal to the base-2 logarithm of the number. We can simplify this to O(lg b), because intuitively if b - a is small, then a = O(b), and if b - a is large, then b - a = O(b). Either way, the total input size is O(2 lg b) = O(lg b).
Now the brute force algorithm just checks each number from a to b, and outputs the numbers whose digits in base 10 are in increasing order. There are b - a + 1 possible numbers in that range. However, when you represent this in terms of the input size, you find that b - a + 1 = 2lg (b - a + 1) = 2O(lg b) for a large enough interval.
This means that for an input size n = O(lg b), you may need to check in the worst case O(2 n) values.
A better algorithm
Instead of checking every possible number in the interval, you can simply generate the valid numbers directly. Here's a rough overview of how. A number n can be thought of as a sequence of digits n1 ... nk, where k is again roughly log10 n.
For a and a four-digit number b, the iteration would look something like
for w in a1 .. 9:
for x in w+1 .. 9:
for y in x+1 .. 9:
for x in y+1 .. 9:
m = 1000 * w + 100 * x + 10 * y + w
if m < a:
next
if m > b:
exit
output w ++ x ++ y ++ z (++ is just string concatenation)
where a1 can be considered 0 if a has fewer digits than b.
For larger numbers, you can imagine just adding more nested for loops. In general, if b has d digits, you need d = O(lg b) loops, each of which iterates at most 10 times. The running time is thus O(10 lg b) = O(lg b) , which is a far better than the O(2lg b) running time you get by checking if every number is sorted or not.
One other detail that I have glossed over, which actually does affect the running time. As written, the algorithm needs to consider the time it takes to generate m. Without going into the details, you could assume that this adds at worst a factor of O(lg b) to the running time, resulting in an O(lg2 b) algorithm. However, using a little extra space at the top of each for loop to store partial products would save lots of redundant multiplication, allowing us to preserve the originally stated O(lg b) running time.
One way (pseudo-code):
for (digit3 = '5'; digit3 <= '6'; digit3++)
for (digit2 = digit3+1; digit2 <= '9'; digit2++)
for (digit1 = digit2+1; digit1 <= '9'; digit1++)
for (digit0 = digit1+1; digit0 <= '9'; digit0++)
output = digit3 + digit2 + digit1 + digit0; // concatenation

Algorithm: Determine if a combination of min/max values fall within a given range

Imagine you have 3 buckets, but each of them has a hole in it. I'm trying to fill a bath tub. The bath tub has a minimum level of water it needs and a maximum level of water it can contain. By the time you reach the tub with the bucket it is not clear how much water will be in the bucket, but you have a range of possible values.
Is it possible to adequately fill the tub with water?
Pretty much you have 3 ranges (min,max), is there some sum of them that will fall within a 4th range?
For example:
Bucket 1 : 5-10L
Bucket 2 : 15-25L
Bucket 3 : 10-50L
Bathtub 100-150L
Is there some guaranteed combination of 1 2 and 3 that will fill the bathtub within the requisite range? Multiples of each bucket can be used.
EDIT: Now imagine there are 50 different buckets?
If the capacity of the tub is not very large ( not greater than 10^6 for an example), we can solve it using dynamic programming.
Approach:
Initialization: memo[X][Y] is an array to memorize the result. X = number of buckets, Y = maximum capacity of the tub. Initialize memo[][] with -1.
Code:
bool dp(int bucketNum, int curVolume){
if(curVolume > maxCap)return false; // pruning extra branches
if(curVolume>=minCap && curVolume<=maxCap){ // base case on success
return true;
}
int &ret = memo[bucketNum][curVolume];
if(ret != -1){ // this state has been visited earlier
return false;
}
ret = false;
for(int i = minC[bucketNum]; i < = maxC[bucketNum]; i++){
int newVolume = curVolume + i;
for(int j = bucketNum; j <= 3; j++){
ret|=dp(j,newVolume);
if(ret == true)return ret;
}
}
return ret;
}
Warning: Code not tested
Here's a naïve recursive solution in python that works just fine (although it doesn't find an optimal solution):
def match_helper(lower, upper, units, least_difference, fail = dict()):
if upper < lower + least_difference:
return None
if fail.get((lower,upper)):
return None
exact_match = [ u for u in units if u['lower'] >= lower and u['upper'] <= upper ]
if exact_match:
return [ exact_match[0] ]
for unit in units:
if unit['upper'] > upper:
continue
recursive_match = match_helper(lower - unit['lower'], upper - unit['upper'], units, least_difference)
if recursive_match:
return [unit] + recursive_match
else:
fail[(lower,upper)] = 1
return None
def match(lower, upper):
units = [
{ 'name': 'Bucket 1', 'lower': 5, 'upper': 10 },
{ 'name': 'Bucket 2', 'lower': 15, 'upper': 25 },
{ 'name': 'Bucket 3', 'lower': 10, 'upper': 50 }
]
least_difference = min([ u['upper'] - u['lower'] for u in units ])
return match_helper(
lower = lower,
upper = upper,
units = sorted(units, key = lambda u: u['upper']),
least_difference = min([ u['upper'] - u['lower'] for u in units ]),
)
result = match(100, 175)
if result:
lower = sum([ u['lower'] for u in result ])
upper = sum([ u['upper'] for u in result ])
names = [ u['name'] for u in result ]
print lower, "-", upper
print names
else:
print "No solution"
It prints "No solution" for 100-150, but for 100-175 it comes up with a solution of 5x bucket 1, 5x bucket 2.
Assuming you are saying that the "range" for each bucket is the amount of water that it may have when it reaches the tub, and all you care about is if they could possibly fill the tub...
Just take the "max" of each bucket and sum them. If that is in the range of what you consider the tub to be "filled" then it can.
Updated:
Given that buckets can be used multiple times, this seems to me like we're looking for solutions to a pair of equations.
Given buckets x, y and z we want to find a, b and c:
a*x.min + b*y.min + c*z.min >= bathtub.min
and
a*x.max + b*y.max + c*z.max <= bathtub.max
Re: http://en.wikipedia.org/wiki/Diophantine_equation
If bathtub.min and bathtub.max are both multiples of the greatest common divisor of a,b and c, then there are infinitely many solutions (i.e. we can fill the tub), otherwise there are no solutions (i.e. we can never fill the tub).
This can be solved with multiple applications of the change making problem.
Each Bucket.Min value is a currency denomination, and Bathtub.Min is the target value.
When you find a solution via a change-making algorithm, then apply one more constraint:
sum(each Bucket.Max in your solution) <= Bathtub.max
If this constraint is not met, throw out this solution and look for another. This will probably require a change to a standard change-making algorithm that allows you to try other solutions when one is found to not be suitable.
Initially, your target range is Bathtub.Range.
Each time you add an instance of a bucket to the solution, you reduce the target range for the remaining buckets.
For example, using your example buckets and tub:
Target Range = 100..150
Let's say we want to add a Bucket1 to the candidate solution. That then gives us
Target Range = 95..140
because if the rest of the buckets in the solution total < 95, then this Bucket1 might not be sufficient to fill the tub to 100, and if the rest of the buckets in the solution total > 140, then this Bucket1 might fill the tub over 150.
So, this gives you a quick way to check if a candidate solution is valid:
TargetRange = Bathtub.Range
foreach Bucket in CandidateSolution
TargetRange.Min -= Bucket.Min
TargetRange.Max -= Bucket.Max
if TargetRange.Min == 0 AND TargetRange.Max >= 0 then solution found
if TargetRange.Min < 0 or TargetRange.Max < 0 then solution is invalid
This still leaves the question - How do you come up with the set of candidate solutions?
Brute force would try all possible combinations of buckets.
Here is my solution for finding the optimal solution (least number of buckets). It compares the ratio of the maximums to the ratio of the minimums, to figure out the optimal number of buckets to fill the tub.
private static void BucketProblem()
{
Range bathTub = new Range(100, 175);
List<Range> buckets = new List<Range> {new Range(5, 10), new Range(15, 25), new Range(10, 50)};
Dictionary<Range, int> result;
bool canBeFilled = SolveBuckets(bathTub, buckets, out result);
}
private static bool BucketHelper(Range tub, List<Range> buckets, Dictionary<Range, int> results)
{
Range bucket;
int startBucket = -1;
int fills = -1;
for (int i = buckets.Count - 1; i >=0 ; i--)
{
bucket = buckets[i];
double maxRatio = (double)tub.Maximum / bucket.Maximum;
double minRatio = (double)tub.Minimum / bucket.Minimum;
if (maxRatio >= minRatio)
{
startBucket = i;
if (maxRatio - minRatio > 1)
fills = (int) minRatio + 1;
else
fills = (int) maxRatio;
break;
}
}
if (startBucket < 0)
return false;
bucket = buckets[startBucket];
tub.Maximum -= bucket.Maximum * fills;
tub.Minimum -= bucket.Minimum * fills;
results.Add(bucket, fills);
return tub.Maximum == 0 || tub.Minimum <= 0 || startBucket == 0 || BucketHelper(tub, buckets.GetRange(0, startBucket), results);
}
public static bool SolveBuckets(Range tub, List<Range> buckets, out Dictionary<Range, int> results)
{
results = new Dictionary<Range, int>();
buckets = buckets.OrderBy(b => b.Minimum).ToList();
return BucketHelper(new Range(tub.Minimum, tub.Maximum), buckets, results);
}

Number distribution

Problem: We have x checkboxes and we want to check y of them evenly.
Example 1: select 50 checkboxes of 100 total.
[-]
[x]
[-]
[x]
...
Example 2: select 33 checkboxes of 100 total.
[-]
[-]
[x]
[-]
[-]
[x]
...
Example 3: select 66 checkboxes of 100 total:
[-]
[x]
[x]
[-]
[x]
[x]
...
But we're having trouble to come up with a formula to check them in code, especially once you go 11/111 or something similar. Anyone has an idea?
Let's first assume y is divisible by x. Then we denote p = y/x and the solution is simple. Go through the list, every p elements, mark 1 of them.
Now, let's say r = y%x is non zero. Still p = y/x where / is integer devision. So, you need to:
In the first p-r elements, mark 1 elements
In the last r elements, mark 2 elements
Note: This depends on how you define evenly distributed. You might want to spread the r sections withx+1 elements in between p-r sections with x elements, which indeed is again the same problem and could be solved recursively.
Alright so it wasn't actually correct. I think this would do though:
Regardless of divisibility:
if y > 2*x, then mark 1 element every p = y/x elements, x times.
if y < 2*x, then mark all, and do the previous step unmarking y-x out of y checkboxes (so like in the previous case, but x is replaced by y-x)
Note: This depends on how you define evenly distributed. You might want to change between p and p+1 elements for example to distribute them better.
Here's a straightforward solution using integer arithmetic:
void check(char boxes[], int total_count, int check_count)
{
int i;
for (i = 0; i < total_count; i++)
boxes[i] = '-';
for (i = 0; i < check_count; i++)
boxes[i * total_count / check_count] = 'x';
}
total_count is the total number of boxes, and check_count is the number of boxes to check.
First, it sets every box to unchecked. Then, it checks check_count boxes, scaling the counter to the number of boxes.
Caveat: this is left-biased rather than right-biased like in your examples. That is, it prints x--x-- rather than --x--x. You can turn it around by replacing
boxes[i * total_count / check_count] = 'x';
with:
boxes[total_count - (i * total_count / check_count) - 1] = 'x';
Correctness
Assuming 0 <= check_count <= total_count, and that boxes has space for at least total_count items, we can prove that:
No check marks will overlap. i * total_count / check_count increments by at least one on every iteration, because total_count >= check_count.
This will not overflow the buffer. The subscript i * total_count / check_count
Will be >= 0. i, total_count, and check_count will all be >= 0.
Will be < total_count. When n > 0 and d > 0:
(n * d - 1) / d < n
In other words, if we take n * d / d, and nudge the numerator down, the quotient will go down, too.
Therefore, (check_count - 1) * total_count / check_count will be less than total_count, with the assumptions made above. A division by zero won't happen because if check_count is 0, the loop in question will have zero iterations.
Say number of checkboxes is C and the number of Xes is N.
You example states that having C=111 and N=11 is your most troublesome case.
Try this: divide C/N. Call it D. Have index in the array as double number I. Have another variable as counter, M.
double D = (double)C / (double)N;
double I = 0.0;
int M = N;
while (M > 0) {
if (checkboxes[Round(I)].Checked) { // if we selected it, skip to next
I += 1.0;
continue;
}
checkboxes[Round(I)].Checked = true;
M --;
I += D;
if (Round(I) >= C) { // wrap around the end
I -= C;
}
}
Please note that Round(x) should return nearest integer value for x.
This one could work for you.
I think the key is to keep count of how many boxes you expect to have per check.
Say you want 33 checks in 100 boxes. 100 / 33 = 3.030303..., so you expect to have one check every 3.030303... boxes. That means every 3.030303... boxes, you need to add a check. 66 checks in 100 boxes would mean one check every 1.51515... boxes, 11 checks in 111 boxes would mean one check every 10.090909... boxes, and so on.
double count = 0;
for (int i = 0; i < boxes; i++) {
count += 1;
if (count >= boxes/checks) {
checkboxes[i] = true;
count -= count.truncate(); // so 1.6 becomes 0.6 - resetting the count but keeping the decimal part to keep track of "partial boxes" so far
}
}
You might rather use decimal as opposed to double for count, or there's a slight chance the last box will get skipped due to rounding errors.
Bresenham-like algorithm is suitable to distribute checkboxes evenly. Output of 'x' corresponds to Y-coordinate change. It is possible to choose initial err as random value in range [0..places) to avoid biasing.
def Distribute(places, stars):
err = places // 2
res = ''
for i in range(0, places):
err = err - stars
if err < 0 :
res = res + 'x'
err = err + places
else:
res = res + '-'
print(res)
Distribute(24,17)
Distribute(24,12)
Distribute(24,5)
output:
x-xxx-xx-xx-xxx-xx-xxx-x
-x-x-x-x-x-x-x-x-x-x-x-x
--x----x----x---x----x--
Quick html/javascript solution:
<html>
<body>
<div id='container'></div>
<script>
var cbCount = 111;
var cbCheckCount = 11;
var cbRatio = cbCount / cbCheckCount;
var buildCheckCount = 0;
var c = document.getElementById('container');
for (var i=1; i <= cbCount; i++) {
// make a checkbox
var cb = document.createElement('input');
cb.type = 'checkbox';
test = i / cbRatio - buildCheckCount;
if (test >= 1) {
// check the checkbox we just made
cb.checked = 'checked';
buildCheckCount++;
}
c.appendChild(cb);
c.appendChild(document.createElement('br'));
}
</script>
</body></html>
Adapt code from one question's answer or another answer from earlier this month. Set N = x = number of checkboxes and M = y = number to be checked and apply formula (N*i+N)/M - (N*i)/M for section sizes. (Also see Joey Adams' answer.)
In python, the adapted code is:
N=100; M=33; p=0;
for i in range(M):
k = (N+N*i)/M
for j in range(p,k-1): print "-",
print "x",
p=k
which produces
- - x - - x - - x - - x - - [...] x - - x - - - x where [...] represents 25 --x repetitions.
With M=66 the code gives
x - x x - x x - x x - x x - [...] x x - x x - x - x where [...] represents mostly xx- repetitions, with one x- in the middle.
Note, in C or java: Substitute for (i=0; i<M; ++i) in place of for i in range(M):. Substitute for (j=p; j<k-1; ++j) in place of for j in range(p,k-1):.
Correctness: Note that M = x boxes get checked because print "x", is executed M times.
What about using Fisher–Yates shuffle ?
Make array, shuffle and pick first n elements. You do not need to shuffle all of them, just first n of array. Shuffling can be find in most language libraries.

How do I generate a random string of up to a certain length?

I would like to generate a random string (or a series of random strings, repetitions allowed) of length between 1 and n characters from some (finite) alphabet. Each string should be equally likely (in other words, the strings should be uniformly distributed).
The uniformity requirement means that an algorithm like this doesn't work:
alphabet = "abcdefghijklmnopqrstuvwxyz"
len = rand(1, n)
s = ""
for(i = 0; i < len; ++i)
s = s + alphabet[rand(0, 25)]
(pseudo code, rand(a, b) returns a integer between a and b, inclusively, each integer equally likely)
This algorithm generates strings with uniformly distributed lengths, but the actual distribution should be weighted toward longer strings (there are 26 times as many strings with length 2 as there are with length 1, and so on.) How can I achieve this?
What you need to do is generate your length and then your string as two distinct steps. You will need to first chose the length using a weighted approach. You can calculate the number of strings of a given length l for an alphabet of k symbols as k^l. Sum those up and then you have the total number of strings of any length, your first step is to generate a random number between 1 and that value and then bin it accordingly. Modulo off by one errors you would break at 26, 26^2, 26^3, 26^4 and so on. The logarithm based on the number of symbols would be useful for this task.
Once you have you length then you can generate the string as you have above.
Okay, there are 26 possibilities for a 1-character string, 262 for a 2-character string, and so on up to 2626 possibilities for a 26-character string.
That means there are 26 times as many possibilities for an (N)-character string than there are for an (N-1)-character string. You can use that fact to select your length:
def getlen(maxlen):
sz = maxlen
while sz != 1:
if rnd(27) != 1:
return sz
sz--;
return 1
I use 27 in the above code since the total sample space for selecting strings from "ab" is the 26 1-character possibilities and the 262 2-character possibilities. In other words, the ratio is 1:26 so 1-character has a probability of 1/27 (rather than 1/26 as I first answered).
This solution isn't perfect since you're calling rnd multiple times and it would be better to call it once with an possible range of 26N+26N-1+261 and select the length based on where your returned number falls within there but it may be difficult to find a random number generator that'll work on numbers that large (10 characters gives you a possible range of 2610+...+261 which, unless I've done the math wrong, is 146,813,779,479,510).
If you can limit the maximum size so that your rnd function will work in the range, something like this should be workable:
def getlen(chars,maxlen):
assert maxlen >= 1
range = chars
sampspace = 0
for i in 1 .. maxlen:
sampspace = sampspace + range
range = range * chars
range = range / chars
val = rnd(sampspace)
sz = maxlen
while val < sampspace - range:
sampspace = sampspace - range
range = range / chars
sz = sz - 1
return sz
Once you have the length, I would then use your current algorithm to choose the actual characters to populate the string.
Explaining it further:
Let's say our alphabet only consists of "ab". The possible sets up to length 3 are [ab] (2), [ab][ab] (4) and [ab][ab][ab] (8). So there is a 8/14 chance of getting a length of 3, 4/14 of length 2 and 2/14 of length 1.
The 14 is the magic figure: it's the sum of all 2n for n = 1 to the maximum length. So, testing that pseudo-code above with chars = 2 and maxlen = 3:
assert maxlen >= 1 [okay]
range = chars [2]
sampspace = 0
for i in 1 .. 3:
i = 1:
sampspace = sampspace + range [0 + 2 = 2]
range = range * chars [2 * 2 = 4]
i = 2:
sampspace = sampspace + range [2 + 4 = 6]
range = range * chars [4 * 2 = 8]
i = 3:
sampspace = sampspace + range [6 + 8 = 14]
range = range * chars [8 * 2 = 16]
range = range / chars [16 / 2 = 8]
val = rnd(sampspace) [number from 0 to 13 inclusive]
sz = maxlen [3]
while val < sampspace - range: [see below]
sampspace = sampspace - range
range = range / chars
sz = sz - 1
return sz
So, from that code, the first iteration of the final loop will exit with sz = 3 if val is greater than or equal to sampspace - range [14 - 8 = 6]. In other words, for the values 6 through 13 inclusive, 8 of the 14 possibilities.
Otherwise, sampspace becomes sampspace - range [14 - 8 = 6] and range becomes range / chars [8 / 2 = 4].
Then the second iteration of the final loop will exit with sz = 2 if val is greater than or equal to sampspace - range [6 - 4 = 2]. In other words, for the values 2 through 5 inclusive, 4 of the 14 possibilities.
Otherwise, sampspace becomes sampspace - range [6 - 4 = 2] and range becomes range / chars [4 / 2 = 2].
Then the third iteration of the final loop will exit with sz = 1 if val is greater than or equal to sampspace - range [2 - 2 = 0]. In other words, for the values 0 through 1 inclusive, 2 of the 14 possibilities (this iteration will always exit since the value must be greater than or equal to zero.
In retrospect, that second solution is a bit of a nightmare. In my personal opinion, I'd go for the first solution for its simplicity and to avoid the possibility of rather large numbers.
Building on my comment posted as a reply to the OP:
I'd consider it an exercise in base
conversion. You're simply generating a
"random number" in "base 26", where
a=0 and z=25. For a random string of
length n, generate a number between 1
and 26^n. Convert from base 10 to base
26, using symbols from your chosen
alphabet.
Here's a PHP implementation. I won't guaranty that there isn't an off-by-one error or two in here, but any such error should be minor:
<?php
$n = 5;
var_dump(randstr($n));
function randstr($maxlen) {
$dict = 'abcdefghijklmnopqrstuvwxyz';
$rand = rand(0, pow(strlen($dict), $maxlen));
$str = base_convert($rand, 10, 26);
//base convert returns base 26 using 0-9 and 15 letters a-p(?)
//we must convert those to our own set of symbols
return strtr($str, '1234567890abcdefghijklmnopqrstuvwxyz', $dict);
}
Instead of picking a length with uniform distribution, weight it according to how many strings are a given length. If your alphabet is size m, there are mx strings of size x, and (1-mn+1)/(1-m) strings of length n or less. The probability of choosing a string of length x should be mx*(1-m)/(1-mn+1).
Edit:
Regarding overflow - using floating point instead of integers will expand the range, so for a 26-character alphabet and single-precision floats, direct weight calculation shouldn't overflow for n<26.
A more robust approach is to deal with it iteratively. This should also minimize the effects of underflow:
int randomLength() {
for(int i = n; i > 0; i--) {
double d = Math.random();
if(d > (m - 1) / (m - Math.pow(m, -i))) {
return i;
}
}
return 0;
}
To make this more efficient by calculating fewer random numbers, we can reuse them by splitting intervals in more than one place:
int randomLength() {
for(int i = n; i > 0; i -= 5) {
double d = Math.random();
double c = (m - 1) / (m - Math.pow(m, -i))
for(int j = 0; j < 5; j++) {
if(d > c) {
return i - j;
}
c /= m;
}
}
for(int i = n % 0; i > 0; i--) {
double d = Math.random();
if(d > (m - 1) / (m - Math.pow(m, -i))) {
return i;
}
}
return 0;
}
Edit: This answer isn't quite right. See the bottom for a disproof. I'll leave it up for now in the hope someone can come up with a variant that fixes it.
It's possible to do this without calculating the length separately - which, as others have pointed out, requires raising a number to a large power, and generally seems like a messy solution to me.
Proving that this is correct is a little tough, and I'm not sure I trust my expository powers to make it clear, but bear with me. For the purposes of the explanation, we're generating strings of length at most n from an alphabet a of |a| characters.
First, imagine you have a maximum length of n, and you've already decided you're generating a string of at least length n-1. It should be obvious that there are |a|+1 equally likely possibilities: we can generate any of the |a| characters from the alphabet, or we can choose to terminate with n-1 characters. To decide, we simply pick a random number x between 0 and |a| (inclusive); if x is |a|, we terminate at n-1 characters; otherwise, we append the xth character of a to the string. Here's a simple implementation of this procedure in Python:
def pick_character(alphabet):
x = random.randrange(len(alphabet) + 1)
if x == len(alphabet):
return ''
else:
return alphabet[x]
Now, we can apply this recursively. To generate the kth character of the string, we first attempt to generate the characters after k. If our recursive invocation returns anything, then we know the string should be at least length k, and we generate a character of our own from the alphabet and return it. If, however, the recursive invocation returns nothing, we know the string is no longer than k, and we use the above routine to select either the final character or no character. Here's an implementation of this in Python:
def uniform_random_string(alphabet, max_len):
if max_len == 1:
return pick_character(alphabet)
suffix = uniform_random_string(alphabet, max_len - 1)
if suffix:
# String contains characters after ours
return random.choice(alphabet) + suffix
else:
# String contains no characters after our own
return pick_character(alphabet)
If you doubt the uniformity of this function, you can attempt to disprove it: suggest a string for which there are two distinct ways to generate it, or none. If there are no such strings - and alas, I do not have a robust proof of this fact, though I'm fairly certain it's true - and given that the individual selections are uniform, then the result must also select any string with uniform probability.
As promised, and unlike every other solution posted thus far, no raising of numbers to large powers is required; no arbitrary length integers or floating point numbers are needed to store the result, and the validity, at least to my eyes, is fairly easy to demonstrate. It's also shorter than any fully-specified solution thus far. ;)
If anyone wants to chip in with a robust proof of the function's uniformity, I'd be extremely grateful.
Edit: Disproof, provided by a friend:
dato: so imagine alphabet = 'abc' and n = 2
dato: you have 9 strings of length 2, 3 of length 1, 1 of length 0
dato: that's 13 in total
dato: so probability of getting a length 2 string should be 9/13
dato: and probability of getting a length 1 or a length 0 should be 4/13
dato: now if you call uniform_random_string('abc', 2)
dato: that transforms itself into a call to uniform_random_string('abc', 1)
dato: which is an uniform distribution over ['a', 'b', 'c', '']
dato: the first three of those yield all the 2 length strings
dato: and the latter produce all the 1 length strings and the empty strings
dato: but 0.75 > 9/13
dato: and 0.25 < 4/13
// Note space as an available char
alphabet = "abcdefghijklmnopqrstuvwxyz "
result_string = ""
for( ;; )
{
s = ""
for( i = 0; i < n; i++ )
s += alphabet[rand(0, 26)]
first_space = n;
for( i = 0; i < n; i++ )
if( s[ i ] == ' ' )
{
first_space = i;
break;
}
ok = true;
// Reject "duplicate" shorter strings
for( i = first_space + 1; i < n; i++ )
if( s[ i ] != ' ' )
{
ok = false;
break;
}
if( !ok )
continue;
// Extract the short version of the string
for( i = 0; i < first_space; i++ )
result_string += s[ i ];
break;
}
Edit: I forgot to disallow 0-length strings, that will take a bit more code which I don't have time to add now.
Edit: After considering how my answer doesn't scale to large n (takes too long to get lucky and find an accepted string), I like paxdiablo's answer much better. Less code too.
Personally I'd do it like this:
Let's say your alphabet has Z characters. Then the number of possible strings for each length L is:
L | Z
--------------------------
1 | 26
2 | 676 (= 26 * 26)
3 | 17576 (= 26 * 26 * 26)
...and so on.
Now let's say your maximum desired length is N. Then the total number of possible strings from length 1 to N that your function could generate would be the sum of a geometric sequence:
(1 - (Z ^ (N + 1))) / (1 - Z)
Let's call this value S. Then the probability of generating a string of any length L should be:
(Z ^ L) / S
OK, fine. This is all well and good; but how do we generate a random number given a non-uniform probability distribution?
The short answer is: you don't. Get a library to do that for you. I develop mainly in .NET, so one I might turn to would be Math.NET.
That said, it's really not so hard to come up with a rudimentary approach to doing this on your own.
Here's one way: take a generator that gives you a random value within a known uniform distribution, and assign ranges within that distribution of sizes dependent on your desired distribution. Then interpret the random value provided by the generator by determining which range it falls into.
Here's an example in C# of one way you could implement this idea (scroll to the bottom for example output):
RandomStringGenerator class
public class RandomStringGenerator
{
private readonly Random _random;
private readonly char[] _alphabet;
public RandomStringGenerator(string alphabet)
{
if (string.IsNullOrEmpty(alphabet))
throw new ArgumentException("alphabet");
_random = new Random();
_alphabet = alphabet.Distinct().ToArray();
}
public string NextString(int maxLength)
{
// Get a value randomly distributed between 0.0 and 1.0 --
// this is approximately what the System.Random class provides.
double value = _random.NextDouble();
// This is where the magic happens: we "translate" the above number
// to a length based on our computed probability distribution for the given
// alphabet and the desired maximum string length.
int length = GetLengthFromRandomValue(value, _alphabet.Length, maxLength);
// The rest is easy: allocate a char array of the length determined above...
char[] chars = new char[length];
// ...populate it with a bunch of random values from the alphabet...
for (int i = 0; i < length; ++i)
{
chars[i] = _alphabet[_random.Next(0, _alphabet.Length)];
}
// ...and return a newly constructed string.
return new string(chars);
}
static int GetLengthFromRandomValue(double value, int alphabetSize, int maxLength)
{
// Looping really might not be the smartest way to do this,
// but it's the most obvious way that immediately springs to my mind.
for (int length = 1; length <= maxLength; ++length)
{
Range r = GetRangeForLength(length, alphabetSize, maxLength);
if (r.Contains(value))
return length;
}
return maxLength;
}
static Range GetRangeForLength(int length, int alphabetSize, int maxLength)
{
int L = length;
int Z = alphabetSize;
int N = maxLength;
double possibleStrings = (1 - (Math.Pow(Z, N + 1)) / (1 - Z));
double stringsOfGivenLength = Math.Pow(Z, L);
double possibleSmallerStrings = (1 - Math.Pow(Z, L)) / (1 - Z);
double probabilityOfGivenLength = ((double)stringsOfGivenLength / possibleStrings);
double probabilityOfShorterLength = ((double)possibleSmallerStrings / possibleStrings);
double startPoint = probabilityOfShorterLength;
double endPoint = probabilityOfShorterLength + probabilityOfGivenLength;
return new Range(startPoint, endPoint);
}
}
Range struct
public struct Range
{
public readonly double StartPoint;
public readonly double EndPoint;
public Range(double startPoint, double endPoint)
: this()
{
this.StartPoint = startPoint;
this.EndPoint = endPoint;
}
public bool Contains(double value)
{
return this.StartPoint <= value && value <= this.EndPoint;
}
}
Test
static void Main(string[] args)
{
const int N = 5;
const string alphabet = "acegikmoqstvwy";
int Z = alphabet.Length;
var rand = new RandomStringGenerator(alphabet);
var strings = new List<string>();
for (int i = 0; i < 100000; ++i)
{
strings.Add(rand.NextString(N));
}
Console.WriteLine("First 10 results:");
for (int i = 0; i < 10; ++i)
{
Console.WriteLine(strings[i]);
}
// sanity check
double sumOfProbabilities = 0.0;
for (int i = 1; i <= N; ++i)
{
double probability = Math.Pow(Z, i) / ((1 - (Math.Pow(Z, N + 1))) / (1 - Z));
int numStrings = strings.Count(str => str.Length == i);
Console.WriteLine("# strings of length {0}: {1} (probability = {2:0.00%})", i, numStrings, probability);
sumOfProbabilities += probability;
}
Console.WriteLine("Probabilities sum to {0:0.00%}.", sumOfProbabilities);
Console.ReadLine();
}
Output:
First 10 results:
wmkyw
qqowc
ackai
tokmo
eeiyw
cakgg
vceec
qwqyq
aiomt
qkyav
# strings of length 1: 1 (probability = 0.00%)
# strings of length 2: 38 (probability = 0.03%)
# strings of length 3: 475 (probability = 0.47%)
# strings of length 4: 6633 (probability = 6.63%)
# strings of length 5: 92853 (probability = 92.86%)
Probabilities sum to 100.00%.
My idea regarding this is like:
you have 1-n length string.there 26 possible 1 length string,26*26 2 length string and so on.
you can find out the percentage of each length string of the total possible strings.for example percentage of single length string is like
((26/(TOTAL_POSSIBLE_STRINGS_OF_ALL_LENGTH))*100).
similarly you can find out the percentage of other length strings.
Mark them on a number line between 1 to 100.ie suppose percentage of single length string is 3 and double length string is 6 then number line single length string lies between 0-3 while double length string lies between 3-9 and so on.
Now take a random number between 1 to 100.find out the range in which this number lies.I mean suppose for examplethe number you have randomly chosen is 2.Now this number lies between 0-3 so go 1 length string or if the random number chosen is 7 then go for double length string.
In this fashion you can see that length of each string choosen will be proportional to the percentage of the total number of that length string contribute to the all possible strings.
Hope I am clear.
Disclaimer: I have not gone through above solution except one or two.So if it matches with some one solution it will be purely a chance.
Also,I will welcome all the advice and positive criticism and correct me if I am wrong.
Thanks and regard
Mawia
Matthieu: Your idea doesn't work because strings with blanks are still more likely to be generated. In your case, with n=4, you could have the string 'ab' generated as 'a' + 'b' + '' + '' or '' + 'a' + 'b' + '', or other combinations. Thus not all the strings have the same chance of appearing.

Resources