I have a very large positive integer number (million digits). I need represent it with the smallest possible function, this number is variable, it means, I need an algorithm that generates the smallest possible function to get the given number.
Example: For the number 29512665430652752148753480226197736314359272517043832886063884637676943433478020332709411004889 the algorithm must return "9^99". It must be able to analyze numbers and always return a math function that represent the number. Example the number 21847450052839212624230656502990235142567050104912751880812823948662932355202 must return "9^5^16+1".
Heard of Kolmogorov complexity?
To answer your question: unless you restrict yourself to some specific set of functions, it's impossible.
EDIT: Even in your example, how do you know that the shortest representation of 21847450052839212624230656502990235142567050104912751880812823948662932355202 is actually 9^5^16+1? Isn't it a quite hard to prove even in this specific case?
If you restrict yourself to some set of functions then you can use the following algorithm:
For i = 1 to n
enumerate all strings s of length i
if s represents a valid expression according to rules chosen a priori,
and evaluates to the number in the input,
return s
It is guaranteed to halt because on the last iteration of the outer loop (i = n) you will get eventually to a string contains the input verbatim.
Of course, this is not very efficient. Specifically O(bn) where n is the length of the input and b is the size of the alphabet.
Expanding on #ybungalobill's terse answer, your function is equivalent to a function that computes the Kolmogorov complexity of an arbitrary string. (The equivalence is obvious if you treat each digit of your very large numbers as characters, and the numbers as sequences of characters.)
According to the Wikipedia page on Kolmogorov complexity, the K(s) function that gives the complexity of a string s is not a computable function. (The page includes a proof.)
In other words, the algorithm you want simply does not exist.
#BlueRaja - Danny Pflughoeft: yes, it is. I'm trying to create some compression that uses this algorithm, but by the way this is impossible.
That's because it's technically impossible to compress arbitrary data, for the same reason, but that doesn't stop us from doing it :)
There are much better ways of compressing data, however. Take a look at, for instance, LZ. It is so ubiquitous that you can almost certainly find a library to do the compression for you, regardless of what language you're writing in. DEFLATE is another popular one.
Hope that helps!
If you're not looking for optimality, just a reasonably good job, then there are a bunch of heuristics you can use. For example, try to decompose n using all of the following
n = a^k + b
for k = 2, 3, ..., log n, and pick the one with the smallest a + b, say. You can compute a and b using a = floor(n^(1/k)) and b = n-a^k. Then recurse on a and b.
Of course, this uses only exponentiation and addition to find a good compression. If you allow subtraction as well, use a=round(n^(1/k)) instead and let b be negative.
Allowing multiplication as well makes it quite a bit harder because you would probably need to factor n.
Related
Is there any good invertible 1-1 function that maps an integer to another integer?
for eg, given the range 0-5, I want to find one that maps:
0->3
1->2
2->4
3->5
4->1
5->0
Also, the mapping should look random.
You can fill an array in ascending order and shuffle it. This will usually perform reasonably well, if not being the most efficient memorywise.
You can also rely on a closed discrete transformation, such as multiplication. If you have 2 numbers, P and K, then (I think) as long as P and K are coprime, P^n mod K will produce a nonrepeating, pseudorandom sequence of values of length (K - 1), ranging from 1 to K. This particular manifestation of discrete math is one of the premises of cryptography. Going backwards from sequence to exponent is known as the discrete logarithm problem and is the reason traditional RSA is secure.
You asked for a reversible algorithm. If you keep track of the exponent, you can go from P^n mod K to P^(n-1) mod K without much difficulty. You can take a few shortcuts to go backwards from power to exponent that don't work in cryptography because certain parameters of the algorithm are intentionally discarded to make it harder.
That said, if you happen to break RSA by solving the discrete log problem while you're working on this, be sure to let me know.
How about permutation polynomials? See section 3 in this article: http://webstaff.itn.liu.se/~stegu/jgt2012/article.pdf It is used for noise there, but it looks exactly like what you want.
It suggest to construct functions of the form (Ax^2 + Bx) mod M. Only a small subset of those functions are invertible/produce permutations, but it shouldn't be hard to find the actual inverse if it exists.
Something similar to this was discussed in Non-repetitive random seek in a range Algorithm. I was intrigued enough to put some ideas down at http://www.mcdowella.demon.co.uk/PermutationFromHash.html
You can generate such a permutation using a block cipher, without having to hold the entire thing in memory (as you would if you were to shuffle the list). I wrote a blog post about it some time ago, which you can find here.
Given a sequence of operations:
a*b*a*b*a*a*b*a*b
is there a way to get the optimal subdivision to enable reusage of substring.
making
a*b*a*b*a*a*b*a*b => c*a*c, where c = a*b*a*b
and then seeing that
a*b*a*b => d*d, where d = a*b
all in all reducing the 8 initial operations into the 4 described here?
(c = (d = a*b)*d)*a*c
The goal of course is to minimize the number of operations
I'm considering a suffixtree of sorts.
I'm especially interested in linear time heuristics or solutions.
The '*' operations are actually matrix multiplications.
This whole problem is known as "Common Subexpression Elimination" or CSE. It is a slightly smaller version of the problem called "Graph Reduction" faced by the implementer of compilers for functional programming languages. Googling "Common Subexpression elimination algorithm" gives lots of solutions, though none that I can see especially for the constraints given by matrix multiplication.
The pages linked to give a lot of references.
My old answer is below. However, having researched a bit more, the solution is simply building a suffix tree. This can be done in O(N) time (lots of references on the wikipedia page). Having done this, the sub-expressions (c, d etc. in your question) are just nodes in the suffix tree - just pull them out.
However, I think MarcoS is on to something with the suggestion of Longest repeating Substring, as graph reduction precedence might not allow optimisations that can be allowed here.
sketch of algorithm:
optimise(s):
let sub = longestRepeatingSubstring(s).
optimisedSub = optimise(sub)
return s with sub replaced by optimisedSub
Each run of longest repeating substring takes time N. You can probably re-use the suffix tree you build to solve the whole thing in time N.
edit: The orders-of-growth in this answer are needed in addition to the accepted answer in order to run CSE or matrix-chain multiplication
Interestingly, a compression algorithm may be what you want: a compression algorithm seeks to reduce the size of what it's compressing, and if the only way it can do that is substitution, you can trace it and obtain the necessary subcomponents for your algorithm. This may not give nice results though for small inputs.
What subsets of your operations are commutative will be an important consideration in choosing such an algorithm. [edit: OP says no operations are commutative in his/her situation]
We can also define an optimal solution, if we ignore effects such as caching:
input: [some product of matrices to compute]
given that multiplying two NxN matrices is O(N^2.376)
given we can visualize the product as follows:
[[AxB][BxC][CxD][DxE]...]
we must for example perform O(max(A,B,C)^2.376) or so operations in order to combine
[AxB][BxC] -> [AxC]
The max(...) is an estimate based on how fast it is to multiply two square matrices;
a better estimate of cost(A,B,C) for multiplying an AxB * BxC matrix can be gotten
from actually looking at the algorithm, or running benchmarks if you don't know the
algorithm used.
However note that multiplying the same matrix with itself, i.e. calculating
a power, can be much more efficient, and we also need to take that into account.
At worst, it takes log_2(power) multiplies each of O(N^2.376), but this could be
made more efficient by diagonalizing the matrix first.
There is the question about whether a greedy approach is feasible for not: whether one SHOULD compress repeating substrings at each step. This may not be the case, e.g.
aaaaabaab
compressing 'aa' results in ccabcb and compressing 'aab' is now impossible
However I have a hunch that, if we try all orders of compressing substrings, we will probably not run into this issue too often.
Thus having written down what we want (the costs) and considered possibly issues, we already have a brute-force algorithm which can do this, and it will run for very small numbers of matrices:
# pseudocode
def compress(problem, substring)
x = new Problem(problem)
x.string.replaceall(substring, newsymbol)
x.subcomputations += Subcomputation(newsymbol=substring)
def bestCompression(problem)
candidateCompressions = [compress(problem,substring) for each substring in problem.string]
# etc., recursively return problem with minimum cost
# dynamic programming may help make this more efficient, but one must watch
# out for the note above, how it may be hard to be greedy
Note: according to another answer by Asgeir, this is known as the Matrix Chain Multiplication optimization problem. Nick Fortescue notes this is also known more generally as http://en.wikipedia.org/wiki/Common_subexpression_elimination -- thus one could find any generic CSE or Matrix-Chain-Multiplication algorithm/library from the literature, and plug in the cost orders-of-magnitude I mentioned earlier (you will need those nomatter which solution you use). Note that the cost of the above calculations (multiplication, exponentiation, etc.) assume that they are being done efficiently with state-of-the-art algorithms; if this is not the case, replace the exponents with appropriate values which correspond to the way the operations will be carried out.
If you want to use the fewest arithmetic operations then you should have a look at matrix chain multiplication which can be reduced to O(n log n)
From the top of the head the problem seems in NP for me. Depending on the substitutions you are doing other substitions will be possible or impossible for example for the string
d*e*a*b*c*d*e*a*b*c*d*e*a there are several possibilities.
If you take the longest common string it will be:
f = d*e*a*b*c and you could substitute f*f*e*a leaving you with three multiplications in the end and four intermediate ones (total seven).
If you instead substitute the following way:
f = d*e*a you get f*b*c*f*b*c*f which you can further substitute using g = f*b*c to
g*g*f for a total of six multiplication.
There are other possible substitutions in this problem, but I do not have the time to count them all right now.
I am guessing for a complete minimal substitution it is not only necessary to figure out the longest common substring but also the number of times each substring repeats, which probably means you have to track all substitutions so far and do backtracking. Still it might be faster than the actual multiplications.
Isn't this the Longest repeated substring problem?
Question from Programming Pearls, 2nd edition:
Given a sequential file containing 4,300,000,000 32-bit integers, how can you find one that appears at least twice?
Solution provided in the book:
Binary search find an element that occurs at least twice by recursively searching the subinterval that contains more than half of the integers. My original solution did not guarantee that the number of integers is halved in each iteration, so the worst case run time of its log2 n passes was proportional to n·log n. Jim Saxe reduced that to linear time by observing that the search can avoid carrying too many duplicates.
When his search knows that a
duplicate must be in a current range
of m integers, it will only store m+1
integers on its current work tape;
If more integers would have gone on the tape, his program discards them. Although his method frequently ignores input variables, its strategy is conservative enough to ensure that it finds at least one duplicate.
Above is content from the book. I don't understand the sentences quoted. How exactly can it be implemented? I mean, how can he know that "a duplicate must be in the current range of m integers"?
Thanks for your help!
2 ^ 32 = 4,294,967,296. You have a file with 4,300,000,000 integers, guaranteeing duplicates.
Find the central number, it should 2^31 = 2147483648. If it is less, the duplicates are most probably in the second half. If not, duplicates have occurred in the first half.
Find the central number again, it should 2^30 = 1073741824...
Repeat until you find the duplicate.
I think it refers to the pigeonhole principle, that if the difference between the minimum and the maximum element in a set is less than the cardinality of the set, there must be a duplicate.
And you can check this as you're building your subsets and stop building them as soon as you're certain a duplicate has to exist in that subset.
Wow. I think that book might be a bit old. This is a basic binary search problem.
And I think the book is kind of awkward. Maybe try wikipedia
http://en.wikipedia.org/wiki/Binary_search_algorithm
I do not know a whole lot about math, so I don't know how to begin to google what I am looking for, so I rely on the intelligence of experts to help me understand what I am after...
I am trying to find the smallest string of equations for a particular large number. For example given the number
"39402006196394479212279040100143613805079739270465446667948293404245721771497210611414266254884915640806627990306816"
The smallest equation is 64^64 (that I know of) . It contains only 5 bytes.
Basically the program would reverse the math, instead of taking an expression and finding an answer, it takes an answer and finds the most simplistic expression. Simplistic is this case means smallest string, not really simple math.
Has this already been created? If so where can I find it? I am looking to take extremely HUGE numbers (10^10000000) and break them down to hopefully expressions that will be like 100 characters in length. Is this even possible? are modern CPUs/GPUs not capable of doing such big calculations?
Edit:
Ok. So finding the smallest equation takes WAY too much time, judging on answers. Is there anyway to bruteforce this and get the smallest found thus far?
For example given a number super super large. Sometimes taking the sqaureroot of number will result in an expression smaller than the number itself.
As far as what expressions it would start off it, well it would naturally try expressions that would the expression the smallest. I am sure there is tons of math things I dont know, but one of the ways to make a number a lot smaller is powers.
Just to throw another keyword in your Google hopper, see Kolmogorov Complexity. The Kolmogorov complexity of a string is the size of the smallest Turing machine that outputs the string, given an empty input. This is one way to formalize what you seem to be after. However, calculating the Kolmogorov complexity of a given string is known to be an undecidable problem :)
Hope this helps,
TJ
There's a good program to do that here:
http://mrob.com/pub/ries/index.html
I asked the question "what's the point of doing this", as I don't know if you're looking at this question from a mathemetics point of view, or a large number factoring point of view.
As other answers have considered the factoring point of view, I'll look at the maths angle. In particular, the problem you are describing is a compressibility problem. This is where you have a number, and want to describe it in the smallest algorithm. Highly random numbers have very poor compressibility, as to describe them you either have to write out all of the digits, or describe a deterministic algorithm which is only slightly smaller than the number itself.
There is currently no general mathemetical theorem which can determine if a representation of a number is the smallest possible for that number (although a lower bound can be discovered by understanding shannon's information theory). (I said general theorem, as special cases do exist).
As you said you don't know a whole lot of math, this is perhaps not a useful answer for you...
You're doing a form of lossless compression, and lossless compression doesn't work on random data. Suppose, to the contrary, that you had a way of compressing N-bit numbers into N-1-bit numbers. In that case, you'd have 2^N values to compress into 2^N-1 designations, which is an average of 2 values per designation, so your average designation couldn't be uncompressed. Lossless compression works well on relatively structured data, where data we're likely to get is compressed small, and data we aren't going to get actually grows some.
It's a little more complicated than that, since you're compressing partly by allowing more information per character. (There are a greater number of N-character sequences involving digits and operators than digits alone.) Still, you're not going to get lossless compression that, on the average, is better than just writing the whole numbers in binary.
It looks like you're basically wanting to do factoring on an arbitrarily large number. That is such a difficult problem that it actually serves as the cornerstone of modern-day cryptography.
This really appears to be a mathematics problem, and not programming or computer science problem. You should ask this on https://math.stackexchange.com/
While your question remains unclear, perhaps integer relation finding is what you are after.
EDIT:
There is some speculation that finding a "short" form is somehow related to the factoring problem. I don't believe that is true unless your definition requires a product as the answer. Consider the following pseudo-algorithm which is just sketch and for which no optimization is attempted.
If "shortest" is a well-defined concept, then in general you get "short" expressions by using small integers to large powers. If N is my integer, then I can find an integer nearby that is 0 mod 4. How close? Within +/- 2. I can find an integer within +/- 4 that is 0 mod 8. And so on. Now that's just the powers of 2. I can perform the same exercise with 3, 5, 7, etc. We can, for example, easily find the nearest integer that is simultaneously the product of powers of 2, 3, 5, 7, 11, 13, and 17, call it N_1. Now compute N-N_1, call it d_1. Maybe d_1 is "short". If so, then N_1 (expressed as power of the prime) + d_1 is the answer. If not, recurse to find a "short" expression for d_1.
We can also pick integers that are maybe farther away than our first choice; even though the difference d_1 is larger, it might have a shorter form.
The existence of an infinite number of primes means that there will always be numbers that cannot be simplified by factoring. What you're asking for is not possible, sorry.
Imagine, there are two same-sized sets of numbers.
Is it possible, and how, to create a function an algorithm or a subroutine which exactly maps input items to output items? Like:
Input = 1, 2, 3, 4
Output = 2, 3, 4, 5
and the function would be:
f(x): return x + 1
And by "function" I mean something slightly more comlex than [1]:
f(x):
if x == 1: return 2
if x == 2: return 3
if x == 3: return 4
if x == 4: return 5
This would be be useful for creating special hash functions or function approximations.
Update:
What I try to ask is to find out is whether there is a way to compress that trivial mapping example from above [1].
Finding the shortest program that outputs some string (sequence, function etc.) is equivalent to finding its Kolmogorov complexity, which is undecidable.
If "impossible" is not a satisfying answer, you have to restrict your problem. In all appropriately restricted cases (polynomials, rational functions, linear recurrences) finding an optimal algorithm will be easy as long as you understand what you're doing. Examples:
polynomial - Lagrange interpolation
rational function - Pade approximation
boolean formula - Karnaugh map
approximate solution - regression, linear case: linear regression
general packing of data - data compression; some techniques, like run-length encoding, are lossless, some not.
In case of polynomial sequences, it often helps to consider the sequence bn=an+1-an; this reduces quadratic relation to linear one, and a linear one to a constant sequence etc. But there's no silver bullet. You might build some heuristics (e.g. Mathematica has FindSequenceFunction - check that page to get an impression of how complex this can get) using genetic algorithms, random guesses, checking many built-in sequences and their compositions and so on. No matter what, any such program - in theory - is infinitely distant from perfection due to undecidability of Kolmogorov complexity. In practice, you might get satisfactory results, but this requires a lot of man-years.
See also another SO question. You might also implement some wrapper to OEIS in your application.
Fields:
Mostly, the limits of what can be done are described in
complexity theory - describing what problems can be solved "fast", like finding shortest path in graph, and what cannot, like playing generalized version of checkers (they're EXPTIME-complete).
information theory - describing how much "information" is carried by a random variable. For example, take coin tossing. Normally, it takes 1 bit to encode the result, and n bits to encode n results (using a long 0-1 sequence). Suppose now that you have a biased coin that gives tails 90% of time. Then, it is possible to find another way of describing n results that on average gives much shorter sequence. The number of bits per tossing needed for optimal coding (less than 1 in that case!) is called entropy; the plot in that article shows how much information is carried (1 bit for 1/2-1/2, less than 1 for biased coin, 0 bits if the coin lands always on the same side).
algorithmic information theory - that attempts to join complexity theory and information theory. Kolmogorov complexity belongs here. You may consider a string "random" if it has large Kolmogorov complexity: aaaaaaaaaaaa is not a random string, f8a34olx probably is. So, a random string is incompressible (Volchan's What is a random sequence is a very readable introduction.). Chaitin's algorithmic information theory book is available for download. Quote: "[...] we construct an equation involving only whole numbers and addition, multiplication and exponentiation, with the property that if one varies a parameter and asks whether the number of solutions is finite or infinite, the answer to this question is indistinguishable from the result of independent tosses of a fair coin." (in other words no algorithm can guess that result with probability > 1/2). I haven't read that book however, so can't rate it.
Strongly related to information theory is coding theory, that describes error-correcting codes. Example result: it is possible to encode 4 bits to 7 bits such that it will be possible to detect and correct any single error, or detect two errors (Hamming(7,4)).
The "positive" side are:
symbolic algorithms for Lagrange interpolation and Pade approximation are a part of computer algebra/symbolic computation; von zur Gathen, Gerhard "Modern Computer Algebra" is a good reference.
data compresssion - here you'd better ask someone else for references :)
Ok, I don't understand your question, but I'm going to give it a shot.
If you only have 2 sets of numbers and you want to find f where y = f(x), then you can try curve-fitting to give you an approximate "map".
In this case, it's linear so curve-fitting would work. You could try different models to see which works best and choose based on minimizing an error metric.
Is this what you had in mind?
Here's another link to curve-fitting and an image from that article:
It seems to me that you want a hashtable. These are based in hash functions and there are known hash functions that work better than others depending on the expected input and desired output.
If what you want a algorithmic way of mapping arbitrary input to arbitrary output, this is not feasible in the general case, as it totally depends on the input and output set.
For example, in the trivial sample you have there, the function is immediately obvious, f(x): x+1. In others it may be very hard or even impossible to generate an exact function describing the mapping, you would have to approximate or just use directly a map.
In some cases (such as your example), linear regression or similar statistical models could find the relation between your input and output sets.
Doing this in the general case is arbitrarially difficult. For example, consider a block cipher used in ECB mode: It maps an input integer to an output integer, but - by design - deriving any general mapping from specific examples is infeasible. In fact, for a good cipher, even with the complete set of mappings between input and output blocks, you still couldn't determine how to calculate that mapping on a general basis.
Obviously, a cipher is an extreme example, but it serves to illustrate that there's no (known) general procedure for doing what you ask.
Discerning an underlying map from input and output data is exactly what Neural Nets are about! You have unknowingly stumbled across a great branch of research in computer science.