Artificial Intelligence/Rules to guess user taste in Apparel/Clothing - algorithm

Are there standard rules engine/algorithms around AI that would predict the user taste on a particular kind of product like clothes.
I know it's one thing all e-commerce website will kill for. But I am looking out for theoretical patterns defined out there which would help make that prediction in a better way, if not accurately.

Two books that cover recommender systems:
Programming Collective Intelligence: Python, does a good job explaining the algorithm, but doesn't provide enough help IMO in terms of understanding how to scale.
Algorithms of the Intelligent Web: Java, harder to follow, but also covers using persistence, in this case MySQL, to facilitate scaling and identifiers areas in example code that will not scale as-is.
Basically two ways of approaching the problem, user or item based. Netflix appears to use the former, while Amazon the latter. Typically user based requires more time and/or processing power to generate recommendations because you tend to have more users than items to consider.

Not sure how to answer this, as this question is overly broad. What you are describing is a Machine Learning kind of task, and thus would fall under that (very broad) umbrella. There are a number of different algorithms that can be used for something like this, but most texts would tell you that the definition of the problem is the important part.
What parts of fashion are important? What parts are not? How are you going to gather the data? How noisy is the data? All of these are important considerations to the problem space. Pandora does a similar type of thing with music, with their big benefit being that their users tell them initially what they like and don't like.
To categorize their music, they actually have trained musicians listening to the music to identify all sorts of stuff. See the article on Ars Technica here for more information about that. Based on what I know about fashion tastes, I would say that it is a similar problem space, and would probably require experts to "codify" the information before you could attempt to draw parallels.
Sorry for the vague answer - if you want more specifics, I would recommend asking a more specific question, about specific algorithms or data sets, etc.

Related

QA Algorithm for Q Processing

What Algorithm/method do I use for a Question Answering System's Question Processing?
I have been searching possible algorithms for my Question Answering System, the only thing that I think that would be possible to use is Parsing but I have asked about parsing in my last question and with the answers there i think its not possible to be used?(I'm not sure).
My idea of using Parsing is by Cutting the question into pieces word per word and then it will go through a Storage of Words that would determine what Kind of Word(noun,adjective,verb,etc) is being said. My purpose of using Parsing is to remove or rather to determine the Topic of the question.
The other idea of mine is the ChatterBot. A Chatterbot uses a query of words? Correct me if I'm not mistaken and those words are assigned to another Word. It would randomly choose a word from its Query.
Example: User's Statement: Hello > ChatterBot's Possible Replies: Hi,Hello,Hey
I'm not quite sure what is the possible method/algorithm to use in a Question Answering, I have read the Wikipedia post : http://en.wikipedia.org/wiki/Question_answering but I do not quite understand what algorithm to use in Question Processing.
Thank you.
PS: I'm developing in Javascript. Q = Question
You could use a naive bayes classifier in order to look at the questions and determine their subject. You'd need a lot of training data and a fairly narrow domain.
The sophisticated responses to this problem involve a lot of machine inference techniques which are a bit out of my skill level to explain extremely well. My idea is to use a markov network in which each word has an edge to one or two words next to it. A series of tests are applied to each word which indicate likely memberhood of that word to one of its possible meanings (For example, Mark is more likely a name if it's capitalized, but if the next word is 'a' it probably is used in the sense of a verb.) From there the machine can attempt to determine the actual meaning of the sentence, which will rely on the use of, again, unimaginably large amounts of training data.
Coursera's Probabilistic Graphical Models class (Probably their NLP class too) would probably be the best resource if you're interested in becoming skilled in this area. (PGM is the only reason I know anything about this!)
here's a great book, you may need to read to get a lot of stuff related to NLP, and Question answering systems http://www.amazon.com/Speech-Language-Processing-2nd-Edition/dp/0131873210
the book has a full section (V.Applications) that will help you a lot to develop a good system.
but note that the book is discussing theories and algorithms only (no code)
it's not about parsing text only, you'll need to understand the context to provide better answer. actually you need to extract some keywords and ignore everything else.
also you may read in topics Keywords (Bag of words), algorithms like (TF/IDF).

Why is speech recognition difficult? [closed]

Closed. This question is off-topic. It is not currently accepting answers.
Want to improve this question? Update the question so it's on-topic for Stack Overflow.
Closed 11 years ago.
Improve this question
Why is speech recognition so difficult? What are the specific challenges involved? I've read through a question on speech recognition, which did partially answer some of my questions, but the answers were largely anecdotal rather than technical. It also still didn't really answer why we still can't just throw more hardware at the problem.
I've seen tools that perform automated noise reduction using neural nets and ambient FFT analysis with excellent results, so I can't see a reason why we're still struggling with noise except in difficult scenarios like ludicrously loud background noise or multiple speech sources.
Beyond this, isn't it just a case of using very large, complex, well-trained neural nets to do the processing, then throwing hardware at it to make it work fast enough?
I understand that strong accents are a problem and that we all have our colloquialisms, but these recognition engines still get basic things wrong when the person is speaking in a slow and clear American or British accent.
So, what's the deal? What technical problems are there that make it still so difficult for a computer to understand me?
Some technical reasons:
You need lots of tagged training data, which can be difficult to acquire once you take into account all the different accents, sounds etc.
Neural networks and similar gradient descent algorithms don't scale that well - just making them bigger (more layers, more nodes, more connections) doesn't guarantee that they will learn to solve your problem in a reasonable time. Scaling up machine learning to solve complex tasks is still a hard, unsolved problem.
Many machine learning approaches require normalised data (e.g. a defined start point, a standard pitch, a standard speed). They don't work well once you move outside these parameters. There are techniques such as convolutional neural networks etc. to tackle these problems, but they all add complexity and require a lot of expert fine-tuning.
Data size for speech can be quite large - the size of the data makes the engineering problems and computational requirements a little more challenging.
Speech data usually needs to be interpreted in context for full understanding - the human brain is remarkably good at "filling in the blanks" based on understood context. Missing informations and different interpretations are filled in with the help of other modalities (like vision). Current algorithms don't "understand" context so they can't use this to help interpret the speech data. This is particularly problematic because many sounds / words are ambiguous unless taken in context.
Overall, speech recognition is a complex task. Not unsolvably hard, but hard enough that you shouldn't expect any sudden miracles and it will certainly keep many reasearchers busy for many more years.....
Humans use more than their ears when listening, they use the knowledge they
have about the speaker and the subject. Words are not arbitrarily sequenced
together, there is a grammatical structure and redundancy that humans use
to predict words not yet spoken. Furthermore, idioms and how we ’usually’
say things makes prediction even easier.
In Speech Recognition we only have the speech signal. We can of course construct a
model for the grammatical structure and use some kind of statistical model
to improve prediction, but there are still the problem of how to model world
knowledge, the knowledge of the speaker and encyclopedic knowledge. We
can, of course, not model world knowledge exhaustively, but an interesting
question is how much we actually need in the ASR to measure up to human
comprehension.
Speech is uttered in an environment of sounds, a clock ticking, a computer
humming, a radio playing somewhere down the corridor, another human
speaker in the background etc. This is usually called noise, i.e., unwanted
information in the speech signal. In Speech Recognition we have to identify and filter out
these noises from the speech signal. Spoken language != Written language
1: Continuous speech
2: Channel variability
3: Speaker variability
4: Speaking style
5: Speed of speech
6: Ambiguity
All this points have to be considered while building a speech recognition, That's why its a quite difficult.
-------------Refered from http://www.speech.kth.se/~rolf/gslt_papers/MarkusForsberg.pdf
I suspect you are interested in 'countinuous' speech recognition, where the speaker speaks sentences (not single words) at normal speed.
The problem is not simply one of signal analysis, but there is a large natural language component as well. Most of us understand spoken language not by analyzing every single thing that we hear, as that would never work because each person speaks differently, phonemes are suppressed, pronunciations are different, etc. We just interpret a portion of what we hear and the rest is 'interpolated' by our brain once the context of what is being said is established. When you have no context, it is difficult to understand spoken language.
Lots of major problems in speech recognition are not directly related to the language itself:
different people (women, men, children, elders etc.) have different voices
sometimes the same person sounds different for example when the person has a cold
different background noises
everyday speech sometimes contains words from other languages (like you have the german word Kindergarden in the US/English)
some persons not from the country itself learned the language (they usually sound different)
some persons speak faster, others speak slower
quality of the microphone
etc.
Solving these things always is pretty hard... on top of that you have the language/pronounciation to take care of...
For reference see the Wikipedia article http://en.wikipedia.org/wiki/Speech_recognition - it has a good overview including some links and book references which are a good starting point...
From the technical POV the "audio preprocessing" is just one step in a long process... let's say the audio is "crytal clear", then several of the above mentioned aspects (like having a cold, having a mixup in languages etc.) still need to be solved.
All this means that for good speech recognition you need to have a model of the langauge(s) that is thorough enough to account for slight differences (like "ate" versus "eight") which usually involves some context-analysis (i.e. semantic and fact/world knowledge, see http://en.wikipedia.org/wiki/Semantic%5Fgap) etc.
Since almost all relevant languages have evolved and were not designed as mathematical models you basically need to "reverse engineer" the available implicit and explicit knowlegde about a language into a model which is a big challenge IMHO.
Having worked myself with neural nets I can assure you that while they provide good results in some cases they are not "magical tools"... almost always a good neural net has been carefully designed and optimized for the specific requirement... in this context it needs both extensive experience/knowledge of languages and neural nets PLUS extensive training to achieve usable results...
Its been a decade since I took a language class in college, but from what I recall language can be broken up into phonemes. Language processors do their best to identify these phonemes, but they are unique to every individual. Even once they are broken up they must then be reassembled into a meaningful construct.
Take this example, humans are quite capable of reading with no punctuation and no capital letters and no spaces. It takes a second, but we can do it quite readily. This is kind of what a computer has to look at when it gets a block of phonemes. However, computers are not nearly as good at parsing this data out. One of the reasons is it is difficult for computers to have context. Humans can even understand babies despite the fact that their phonemes can be completely wrong.
Even if you have all the phonemes correct, then arranging them into an order that makes sense is also difficult.

Name of the concept of designing an interface to allow expert users to become more efficient?

I'm searching for sources and further information on a particular concept in user experience design. It's not a particularly complicated concept, just that when designing user interfaces, you should both make it intuitive and simple for new users, but also provide way for users to become more efficient as they become more familiar with the application.
An example could be including a prominent button for a common action for new users, but also providing a keyboard shortcut / mnemonic for expert users. However, that's just an example, another example could be providing full functionality through a GUI, but allow expert users to script the same actions. The point is it's more difficult to learn, but it makes them more efficient.
I'm pretty sure there's a name for that which I can't recall, and I'm having trouble searching for sources and references on it.
Name of the concept of designing an interface to allow expert users to become more efficient?
Accelerators?
Flexibility and efficiency of use:
Accelerators -- unseen by the novice
user -- may often speed up the
interaction for the expert user such
that the system can cater to both
inexperienced and experienced users.
Allow users to tailor frequent
actions.
(source: Ten Usability Heuristics by Jakob Nielsen)
Well, reading only your question "Name of the concept of designing an interface to allow expert users to become more efficient?" I'm inclined to point you toward The Humane Interface: New Directions for Designing Interactive Systems by Jef Raskin, in which there is the concept of habituation:
2-3-1 Formation of Habits
When you perform a task repeatedly, it
tends to become easier to do.
Juggling, table tennis, and playing
piano are everyday examples in my
life; they all seemed impossible when
I first attempted them. Walking is a
more widely practiced example. With
repetition, or practice, your
competence becomes habitual, and you
can do the task without having to
think about it. ...
...
... The ideal humane interface would
reduce the interface component of a
user's work to benign habituation.
Many of the problems that make
products difficult and unpleasant to
use are caused by human-machine design
that fails to take into account the
helpful and injurious properties of
habit formation. One notable example
is the tendency to provide many ways
of accomplishing the same task. Having
multiple options can shift your locus
of attention from the task to the
choice of method...
But is contrary to what you describe in your question, as evidenced by the last 2 sentences. In fact in that book there is also a sub-chapter dedicated to dispel the myth of beginner-expert dichotomy:
3-6 Myth of the Beginner-Expert Dichotomy
... This dichotomy is invalid. As a user
of a complex system, you are neither
a beginner nor an expert, and you cannot
be placed on a single continuum between
these two poles. You independently know
or do not know each feature or each related
set of features that work similarly to one
another. You may know how to use many
commands and features of a software package;
you may even work with the package professionally,
and people may seek your advice on using it.
Yet you may not know how to use or even know
about the existence of certain other commands
or even whole categories of commands in that
same package. ...
So, perhaps is not such a good term/concept that you are looking for.
Update: were you looking for the term Adaptive User Interfaces, perhaps? Well, I think that, as usually understood and implemented, it is not such a great idea (for example, disappearing menu items in Microsoft products). But my impression is that researchers use the term for something quite different.
Update: but Adaptive User Interfaces does not cover scripting.
The answer is in your question: Efficiency. It's a fundamental component of usability that Jakob Nielsen long ago defined as "Once users have learned the design, how quickly can they perform tasks." A UI with expert-supporting elements like accelerators, context menus, and double-click-for-defaults is an efficient UI.
It is also correct to simply say that making things fast for experienced users is part of usability -just as usability also includes making it easy for users to accomplish basic tasks on the first encounter, and making it satisfying, and tolerating errors.

What metrics would be usable to determine expertise level in a particular programming language

I am interesting in the raw (or composite) metrics used to get a handle on how well a person can program in a particular language.
Scenario: George knows a few programming languages and wants to learn "foobar", but He would like to know when he has a reasonable amount of experience in "foobar".
I am really interesting in something broader than just the LOC (lines of code) metric.
My hope for this question is to understand how engineers quantify the programming language experiences of others and if this can be mechanically measured.
Thanks in Advance!
In reply to the previous two posters, I'd guess that there is a way to get a handle on how well a person can program in a particular language: you can test how well someone knows English, or Maths, or Music, or Medicine, or Fine Art, so what's so special about a programming language?
In reply to the OP, I guess the tests must assess:
How well you can program
How well you can use the programming language
Therefore the metrics might be:
What's the goodness of the person's programming (and there are various dimensions of goodness such as bug-free, maintainable, quick/cheap to write, runs quickly, meets user requirements, etc.)?
Does the person use appropriate/idiomatic features of the programming language in question in order to do that good programming?
It would be difficult to make the test 'mechanical', though: most exams that I know of are graded by a human examiner. In the case of programming, part of the test could be graded mechanically (i.e. "does it run?") but part of it ("is it understandable and idiomatic?") is intended to benefit, and is better judged by, other human programmers.
The best indicator of your expertise in a particular language, in my opinion, is how productive you are in it.
Productivity is not just how fast you can work but, importantly, how few bugs you create and how little refactoring/rework is required later on.
For example, if you took two languages you have similar level of experience with, and were (in parallel universes) to build the same system with both, I would say the language you build the system with faster and with fewer defects/design flaws, is the language you have more expertise in.
Sorry it's not a "hard" metric for you, it's a more practical approach.
I don't believe that this can be "mechanically measured". I've thought about this a lot though.
Hang on...
Even the "LOC" of a program is a heavily disputed topic!
(Are we talking about the output of cat *.{h,c} | wc -l or some other mechnanism, for instance? What about blank lines? Comments? Are comments important? Is good code documented?)
Until you've realised how pointless a LOC comparison is, you've no hope of realising how pointless other metrics are.
It's a rather qualitative thing that is rarely measured with any great accuracy. It's like asking "how smart was Einstein?". Certification is one (and a reasonably thorough) quantitative indicator, but even it falls drastically short of identifying "good programmers" as many recruiters discover.
What are you ultimately trying to achieve? General programming aptitude can be more important than language expertise in some situations.
If you are language-focussed, taking on a challenge like Project Euler using that language may be a way to track progress.
How proficient they are in debugging complex problems in that language.
Ask them about projects they have worked on in the past, difficult problems they encountered and how they solved them. Ask them about debugging techniques they have used - you'll be surprised at what you'll hear, and you might even learn something new ;-)
A lot of places have a person or two who is a superstar in their field - the person everyone else goes to when they can't figure out what is wrong with their program. I'm guessing thats the person you are looking for :-)
Facility with a programming language is not enough. What is required is facility with a programming language in the context of a partiular suite of libraries on a particular platform
C++ on winapi on Windows 32bit
C++ on KDE on Linux
C++ on Symbian on a Nokia S60 phone
C# on MS .NET on Windows
C# on Mono on Linux
Within such a context, the measures of competence using the target language on the target platform are as follows:
The ability to express common
patterns succinctly and robustly.
The ability to debug common but subtle bugs like race conditions.
It would be possible to develope a suite of benchmark exercises for a programmer. One might also, once significant samples were available, determine the bell curve for ability. Preparing these things would take literally years and they would rapidly be obsoleted. This (and general tightness) is why organisations don't bother.
It would also be necessary to grade people in both "tool maker" and "tool user" modes. Tool makers are very different people with a much higher level of competence but they are often unsuited to monkey work, for which you really want a tool user.
John
There are a couple of ways to approach your question:
1) If you are interviewing candidates for a particular position requiring a particular language, then the only measure to compare candidates is 'how long has this person been writing in this language.' It's not perfect - it's not even very good - but it's reality. Unless you want to give the candidate a problem, a computer, and a compiler to test them on the spot there's no other measure. And then most programmer-types don't do well in "someone's watching you" scenarios.
2) I interpret your question to be more of 'when can I call MYSELF profecient in a language?' For this I would refer to levels of learning a non-native language: first level is you need to look up words/phrases in a dictionary (book) in order to say or understand anything; second level would be that you can understand hearing the language(or reading code) with only the occasional lookup in your trusted and now well-worn dictionary; third level you can now speak (or write code) with only the occasional lookup; fourth level is where you dream in the language; and the final levels is where fool native speakers into thinking that you're a native speaker also (in programming, other experts would think that you may have helped develop the language syntax).
Note that this doesn't help determine how good of a programmer you are - just like knowing English without having to look up words in the dictionary doesn't show "how gooder you is at writin' stuff" - that's subjective and has nothing to do with a particular language as people that are good at programming are good in any language you give them.
The phrase "a reasonable amount of experience" is dependent upon the language being considered and what that language can be used for.
A metric is the result of a measurement. Stevens (see wikipedia: Level Of Measurement) proposed that measurements use four different scale types: nominal (assigning a label), ordinal (assigning a ranking), interval (ordering the measurements) and ratio (having a non-arbitrary zero starting point). LOC is a ratio measurement. Although far from perfect, I think LOC is a relevant, objective number indicating how much experience you have in a language and can be compared to quantifiable values in the software industry. But, this begs the question: where do these industry values come from?
Personally, I would say that "George" will know that he has a reasonable amount of experience when he has designed, implemented and tested a project, maybe of his own choosing on his personal time on his home computer if need be. For example: database, business application, web page, GUI test tool, etc.
From the hiring managers point of view, I would start off by asking the programmer how good s/he is in the language, but this is not a metric. I have always thought that the best way to measure a persons ability to write programs is to give the programmer several small programming problems that are thought-out in advance and solved in a given amount of time, say, 5 minutes each. I have never objected to this being done to me in job interviews. Several metrics are available: Was the programmer able to solve the problem (yes or no - nominal)? How much time did it take (number of minutes - ratio)? How effective was their approach to solving the problem (good, fair, poor - ordinal)? You learn not only the persons ability to write code, but can observe several subjective things as well, such as their behaviour as they go about solving the problem, the questions s/he asks while solving the problem, the ability to work under pressure, etc, From a "quality" perspective though, remember that people do not like being measured.
Still, I believe there are some good metrics like the McCabe Cyclomatic Metric for cyclomatic complexity or the amount of useful commentary per block of code or even the average amount of code written between two consecutive tests.
I know of no such thing. I don't believe there's concensus on how to quantify experience or what "reasonable" means. Maybe I'll learn something too, but if I do it'll be a great surprise.
This may be pertinent.
I find that testing the ability to debug is a more accurate gauge of programming skill than any test aimed at straightforward programming problems that I have encountered. Given the source for a reasonably sized class or function with a stated (or unstated, in some cases) misbehavior, can the testee locate the problem?
Well, they try that in job interviews. There's no metric, but you can assess a person's abilities through questioning and quizzing.
WTF/s * LOC, smaller is best.
there are none; expertise can only be judged subjectively relative to others, or tested on specifics (which has its own level of inaccuracy)
see what is the fascination with code metrics for more information

Minimum CompSci Knowledge Needed for Writing Desktop Apps

Having been a hobbyist programmer for 3 years (mainly Python and C) and never having written an application longer than 500 lines of code, I find myself faced with two choices :
(1) Learn the essentials of data structures and algorithm design so I can become a l33t computer scientist.
(2) Learn Qt, which would help me build projects I have been itching to build for a long time.
For learning (1), everyone seems to recommend reading CLRS. Unfortunately, reading CLRS would take me at least an year of study (or more, I'm not Peter Krumins). I also understand that to accomplish any moderately complex task using (2), I will need to understand at least the fundamentals of (1), which brings me to my question : assuming I use C++ as the programming language of choice, which parts of CLRS would give me sufficient knowledge of algorithms and data structures to work on large projects using (2)?
In other words, I need a list of theoretical CompSci topics absolutely essential for everyday application programming tasks. Also, I want to use CLRS as a handy reference, so I don't want to skip any material critical to understanding the later sections of the book.
Don't get me wrong here. Discrete math and the theoretical underpinnings of CompSci have been on my "TODO: URGENT" list for about 6 months now, but I just don't have enough time owing to college work. After a long time, I have 15 days off to do whatever the hell I like, and I want to spend these 15 days building applications I really want to build rather than sitting at my desk, pen and paper in hand, trying to write down the solution to a textbook problem.
(BTW, a less-math-more-code resource on algorithms will be highly appreciated. I'm just out of high school and my math is not at the level it should be.)
Thanks :)
This could be considered heresy, but the vast majority of application code does not require much understanding of algorithms and data structures. Most languages provide libraries which contain collection classes, searching and sorting algorithms, etc. You generally don't need to understand the theory behind how these work, just use them!
However, if you've never written anything longer than 500 lines, then there are a lot of things you DO need to learn, such as how to write your application's code so that it's flexible, maintainable, etc.
For a less-math, more code resource on algorithms than CLRS, check out Algorithms in a Nutshell. If you're going to be writing desktop applications, I don't consider CLRS to be required reading. If you're using C++ I think Sedgewick is a more appropriate choice.
Try some online comp sci courses. Berkeley has some, as does MIT. Software engineering radio is a great podcast also.
See these questions as well:
What are some good computer science resources for a blind programmer?
https://stackoverflow.com/questions/360542/plumber-programmers-vs-computer-scientists#360554
Heed the wisdom of Don and just do it. Can you define the features that you want your application to have? Can you break those features down into smaller tasks? Can you organize the code produced by those tasks into a coherent structure?
Of course you can. Identify any 'risky' areas (areas that you do not understand, e.g. something that requires more math than you know, or special algorithms you would have to research) and either find another solution, prototype a solution, or come back to SO and ask specific questions.
Moving from 500 loc to a real (eve if small) application it's not that easy.
As Don was pointing out, you'll need to learn a lot of things about code (flexibility, reuse, etc), you need to learn some very basic of configuration management as well (visual source safe, svn?)
But the main issue is that you need a way to don't be overwhelmed by your functiononalities/code pair. That it's not easy. What I can suggest you is to put in place something to 'automatically' test your code (even in a very basic way) via some regression tests. Otherwise it's going to be hard.
As you can see I think it's no related at all to data structure, algorithms or whatever.
Good luck and let us know
I must say that sitting down with a dry old textbook and reading it through is not the way to learn how to do anything effectively, even if you are making notes. Doing it is the best way to learn, using the textbooks as a reference. Indeed, using sites like this as a reference.
As for data structures - learn which one is good for whatever situation you envision: Sets (sorted and unsorted), Lists (ArrayList, LinkedList), Maps (HashMap, TreeMap). Complexity of doing basic operations - adding, removing, searching, sorting, etc. That will help you to select an appropriate library data structure to use in your application.
And also make sure you're reasonably warm with MVC - i.e., ensure your model is separate from your view (the QT front-end) as best as possible. Best would be to have the model and algorithms working on their own, and then put the GUI on top. Or a unit test on top. Etc...
Good luck!
It's like saying you want to move to France, so should you learn french from a book, and what are the essential words - or should you just go to France and find out which words you need to know from experience and from copying the locals.
Writing code is part of learning computer science. I was writing code long before I'd even heard of the term, and lots of people were writing code before the term was invented.
Besides, you say you're itching to write certain applications. That can't be taught, so just go ahead and do it. Some things you only learn by doing.
(The theoretical foundations will just give you a deeper understanding of what you wind up doing anyway, which will mainly be copying other people's approaches. The only caveat is that in some cases the theoretical stuff will tell you what's futile to attempt - e.g. if one of your itches is to solve an NP complete problem, you probably won't succeed :-)
I would say the practical aspects of coding are more important. In particular, source control is vital if you don't use that already. I like bzr as an easy to set up and use system, though GUI support isn't as mature as it could be.
I'd then move on to one or both of the classics about the craft of coding, namely
The Pragmatic Programmer
Code Complete 2
You could also check out the list of recommended books on Stack Overflow.

Resources