Event driven programming with weblogic MDB - events

I am building an application which acts as an event listener and based on the events received it needs to execute certain steps or work-flow. Is it better to have events posted to a single queue and MDB invoking different business logic components based on event type or to have one queue per event type and the corresponding MDBs invoke different business logic ?
Our assumption is that a heavy workflow corresponding to a particular event will not affect the performance of other events since they are processed in separate queues.

Jms has a specific type of operation to support this use-case - message selectors.
Briefly, the business-logic message type would be set as a property of the message, and you would use a selector to filter them on a per-consumer basis.
The JMS spec assumes that the JMS implementation will perform optimizations to make these operations efficient, so that it should scale very well. This is the sort of tech that banking transactions are built on.

Related

Spring Integration order of Spring Integration Events

I'm dealing with Spring Integration Events and need to ensure proper order of event calls. I have two listeners. One is called TerminalErrorListener and catches TcpConnectionExceptionEvent and TcpDeserializationExceptionEvent. Second is called TerminalDisconnectEventListener and catches TcpConnectionCloseEvent.
In my case I use NIO and manually extended TcpNioConnection with my class which contains one extra field. This field is called Originator and carries information about what caused TcpConnectionCloseEvent and here comes my question.
I define the originator inside TerminalErrorListener and need to ensure that TerminalDisconnectEventListener is called after the TerminalErrorListener.
How can I generally ensure (probably I can guarantee that close event is called after the error) that this will happen? Is there any priority mode or default flow model which can be seen in some kind of diagram? I mean when are specific events called and what is the general sequence of all events.
Thanks for answer.
With NIO, there is no guarantee that you will get the deserialization failure event before the connection close event.

If nobody needs reliable messaging on transport level, how to implement reliable PubSub on business level?

This question is mostly out of curiosity. I read this article about WS-ReliableMessaging by Marc de Graauw some time ago and agreed that reliable messaging should be applied on the business level as whenever possible.
Now, the question is, he explains clearly what his approach is in a point-to-point fashion. However, I fail to see how you could implement reliable messaging on the business level in a Publish/Subscribe situation.
I will try to demonstrate the difference by showing commands (point-to-point) vs. events (publish/subscribe). Note that these examples are highly simplified.
Command: Transfer(uniqueId, amount, sourceAccount, recipientAccount)
If the account holder sends this transfer, he could wait for the confirmation MoneyTransferred (assuming this event will contain a reference to the uniqueId in the Transfer command.
If the account holder doesn't received the MoneyTransferred within a given timeout period, he could send the same command again. (of course assuming the command processor is idempotent)
So I see how reliable messaging could work on business level in a point-to-point fashion.
Now, say we the previous command succeeded and produced a MoneyTransferred event. Somewhere in the system we have an event processor (MoneyTransferEmailNotifier) that handles MoneyTransferred events and will send an email notification to the recipient of the transfer.
This MoneyTransferEmailNotifier is subscribed to MoneyTransferred events. But note that system sending the MoneyTransferred event does not really care who or how many listeners there are to this event. The whole point is the decoupling here. I raise an event and don't care if there zero or 20 listeners that subscribe to this event.
At this point, if there is no reliable messaging (minimally at-least-once-delivery) provided by the infrastructure, how can we prevent the loss of the MoneyTransferred event? I do want the recipient to get his e-mail notification.
I fail to see how any real 'business-level' solution will resolve this.
(1) One of the solutions I can think of is by explicitly subscribing to events on 'business level' and thereby bypassing any infrastructure component. But aren't we at that moment introducing infrastructure in our business?
(2) The other 'solution' would be by introducing a process manager that does something like this:
PM receives Transfer command
PM forwards Transfer command to the accounts subsystem
If successful, sends command SendEmailNotification(recipient) to the notification subsystem
This does seem to be the solution that DDD prescribes, correct? But doesn't this introduce more coupling?
What do you think?
Edit 2016-04-16
Maybe the root question is a little bit more simplistic: If you do not have an infrastructural component that ensures at-least or exactly-once delivery, how can you ensure (when you're in an at-most-once infrastructure) that your events emitted will be received?
Not all events need to be delivered but there are many that are key (like the example of sending the confirmation email)
This MoneyTransferEmailNotifier is subscribed to MoneyTransferred events. But note that system sending the MoneyTransferred event does not really care who or how many listeners there are to this event. The whole point is the decoupling here. I raise an event and don't care if there zero or 20 listeners that subscribe to this event.
Your tangle, I believe, is here - that only the publish subscribe middleware can deliver events to where they need to go.
Greg Young covers this in his talk on polyglot data (slides).
Summarizing: the pub/sub middleware is in the way. A pull based model, where consumers retrieve data from the durable event store gives you a reliable way to retrieve the messages from the store. So you pull the data from the store, and then use the business level data to recognize previous work as before.
For instance, upon retrieving the MoneyTransferred event with its business data, the process manager looks around for an EmailSent event with matching business data. If the second event is found, the process manager knows that at least one copy of the email was successfully delivered, and no more work need be done.
The push based models (pub/sub, UDP multicast) become latency optimizations -- the arrival of the push message tells the subscriber to pull earlier than it normally would.
In the extreme push case, you pack into the pushed message enough information that the subscriber(s) can act upon it immediately, and trust that the idempotent handling of the message will prevent problems when the redundant copy of the message arrives on the slower channel.
If nobody needs reliable messaging on transport level, how to implement reliable PubSub on business level?
The original article does not state that "nobody needs reliable messaging on transport level", it states that the ordering of messages should be enforced at the business level because, in some cases, if this ordering is an important characteristic of the business.
In any case, PubSub is at the infrastructure level, you can't say that you implement PubSub at the business level. It doesn't make sense.
But then how you could ensure only-once-delivery at the business level? By using a Saga/Process manager. On of the important responsibilities of them is exactly that. You can combine that with idempotent Aggregates. Also, you could identify terms that emphasis ordering from the Ubiquitous language like transaction phase and include them in your domain models (for example as properties of the events).
If you do not have an infrastructural component that ensures at-least
or exactly-once delivery, how can you ensure (when you're in an
at-most-once infrastructure) that your events emitted will be
received?
If you do not have at-least-once then you could use the first event that it is initiating the hole process. I would use event polling and a Saga that ensure that every important step in the process is reached at the right moment.
In your case, as the sending of the email is an important business aspect, I would include it as a step in the process.

Listening on multiple events

How to deal with correlated events in an Event Driven Architecture? Concretely, what if multiple events must be triggered in order for some action to be performed. For example, I have a microservice that listens to two events foo and bar and only performs an action when both of the events arrive and have the same correlation id.
One way would be to keep an internal data structure inside the microservice that does the book keeping and when everything is satisfied an appropriate action is triggered. However, the problem with this approach is that the microservice is not immutable anymore.
Is there a better approach?
A classic example is where an order comes in at sales and an event is published. Both Finance and Shipping are subscribed to the event, but shipping is also subscribed to the event coming from finance.
The funny thing is that you have no idea on the order in which the messages arrive. The event from sales might cause a technical error, because the database is offline. It might get queued again or end up in an error queue for operations to retry it. In the meantime the event from finance might arrive. So theoretically
the event from sales should arrive first and then the finance event, but in practice it can be the other way around.
There are a number of solutions here, but I've never liked the graphical ones. As a .NET developer I've used K2 and Windows Workflow Foundation in the past, but the solutions most flexible are created in code, not via a graphical interface.
I currently would use NServiceBus or MassTransit for this. On a sidenote, I currently work at Particular Software and we make NServiceBus. NServiceBus has Sagas for this kind of work (documentation) and you can also read on my weblog about a presentation, incl. code on GitHub.
The term saga is kind of loaded, but it basically handles long running (business) processes. Gregor Hohpe calls it a Process Manager (link).
To summarize what sagas do : they are instantiated by incoming messages and have state. Incoming messages are bound/dispatched to a specific saga instance based on a correlationid, for example a customer id or order id. Once the message (event) is processed, state is stored until a new message arrives, or until the code marks the saga as completed and the state is removed from storage.
As said, in the .NET world MassTransit and NServiceBus support this, but there are most likely alternatives in other environments.
If i understand correctly, it looks like you need a CEP ( complex event processor), like ws02 cep or other , which does exactly that.
cep's can aggregate events and perform actions when certain conditions
have been met.

Different message types (XMLs) on one TIBCO queue?

I am trying to implement an application(Java) which will subscribe to different message types (XMLs) from other different applications via TIBCO EMS. Each of these message types will have a specific purpose. I am of the opinion that I should have multiple queues with multiple subscribers in my application, however, the TIBCO guy is adamant that there should be only one queue where all of these messages will be published and I will have one subscriber and the subscriber then should have logic to different tasks based on the XML received.
Which approach is better? One with multiple queues and subscribers OR the one queue and one subscriber? Please let me know reasons for the choice.
Thanks!
-Naveen
In general, if the same application is reading all the messages, it is much cleaner for that application to have a single input queue instead of multiple input queues. With multiple then the application will need to have logic to know which order to process the queues and so on. With one input queue, the messaging system can deal with the order of the messages - whether FIFO or by priority etc, and the application can just read the next message and process it.
Use unique message header for each type of xml while sending the message. And use message selectors / filters while receiving the same, so that it can be routed / delegated to the respective handler based on the header value. This way, you will be able to handle different type of xml messages by single queue as well.

Approach for taking action on reception of two different JMS messages

Say I have one JMS message FooCompleted
{"businessId": 1,"timestamp": "20140101 01:01:01.000"}
and another JMS message BazCompleted
{"businessId": 1,"timestamp": "20140101 01:02:02.000"}
The use case is that I want some action triggered when both messages have been received for the business id in question - essentially a join point of reception of the two messages. The two messages are published on two different queues and order between reception of FooCompleted and BazCompleted may change. In reality, I may need to have join of reception of several different messages for the businessId in question.
The naive approach was that to store the reception of the message in a db and check if message(s) its dependent join arm(s) have been received and only then kick off the action desired. Given that the problem seems generic enough, we were wondering if there is a better way to solve this.
Another thought was to move messages from these two queues into a third queue on reception. The listener on this third queue will be using a special avataar of DefaultMessageListenerContainer which overrides the doReceiveAndExecute to call receiveMessage for all outstanding messages in the queue and adding messages back to the queue whose all dependent messages have not yet arrived - the remaining ones will be acknowledged and hence removed. Given that the quantum of messages will be low, probing the queue over and adding messages again should not be a problem. The advantage would be avoiding the DB dependency and the associated scaffolding code. Wanted to see if there is something glaringly bad with this
Gurus, please critique and point out better ways to achieve this.
Thanks in advance!
Spring Integration with a JMS message-driven adapter and an aggregator with custom correlation and release strategies, and a peristent (JDBC) message store will provide your first solution without writing much (or any) code.

Resources