Approach for taking action on reception of two different JMS messages - jms

Say I have one JMS message FooCompleted
{"businessId": 1,"timestamp": "20140101 01:01:01.000"}
and another JMS message BazCompleted
{"businessId": 1,"timestamp": "20140101 01:02:02.000"}
The use case is that I want some action triggered when both messages have been received for the business id in question - essentially a join point of reception of the two messages. The two messages are published on two different queues and order between reception of FooCompleted and BazCompleted may change. In reality, I may need to have join of reception of several different messages for the businessId in question.
The naive approach was that to store the reception of the message in a db and check if message(s) its dependent join arm(s) have been received and only then kick off the action desired. Given that the problem seems generic enough, we were wondering if there is a better way to solve this.
Another thought was to move messages from these two queues into a third queue on reception. The listener on this third queue will be using a special avataar of DefaultMessageListenerContainer which overrides the doReceiveAndExecute to call receiveMessage for all outstanding messages in the queue and adding messages back to the queue whose all dependent messages have not yet arrived - the remaining ones will be acknowledged and hence removed. Given that the quantum of messages will be low, probing the queue over and adding messages again should not be a problem. The advantage would be avoiding the DB dependency and the associated scaffolding code. Wanted to see if there is something glaringly bad with this
Gurus, please critique and point out better ways to achieve this.
Thanks in advance!

Spring Integration with a JMS message-driven adapter and an aggregator with custom correlation and release strategies, and a peristent (JDBC) message store will provide your first solution without writing much (or any) code.

Related

Is it possible to define a single saga which will process many messages

My team is considering if we can use mass transit as a primary solution for sagas in RabbitMq (vs NServiceBus). I admit that our experience which solution like masstransit and nserviceBus are minimal and we have started to introduce messaging into our system. So I sorry if my question will be simple or even stupid.
However, when I reviewed the mass transit documentation I noticed that I am not sure if that is possible to solve one of our cases.
The case looks like:
One of our components will produce up to 100 messages which will be "sent" to queue. These messages are a result of a single operation in a system. All of the messages will have the same Correlated Id and our internal publication id (same too).
1) is it possible to define a single instance saga (by correlated id) which will wait until it receives all messages from a queue and then process them as a single batch?
2) otherwise, is there any solution to ensure all of the sent messages was processed? (Consistency batch?) I assume that correlated Id will serve as a way to found an existing saga instance (singleton). In the ideal case, I would like to complete an instance of a saga When the system will process every message which belongs to a single group (to one publication)
I look at CompositeEvent too but I do not sure if I could use it to "ensure" that every message was processed and then I would let to complete saga for specific correlated Id.
Can you explain how could it be achieved? And into what mechanism I should look at in order to correlated id a lot of messages with the same id to the single saga and then complete if all of msg will be consumed?
Thank you in advance for any response
What you describe is how correlation by id works. It is like that out of the box.
So, in short - when you configure correlation for your messages correctly, all messages with the same correlation id will be handled by the same saga instance.
Concerning the second question - unless you publish a separate event that would inform the saga about how messages it should expect, how would it know that? You can definitely schedule a long timeout, attempting and assuming that within the timeout all the messages will be received by the saga, but it's not reliable.
Composite events won't help here since they are for messages with different types to be handled as one when all of them arrive and it doesn't count for the number of messages of each type. It just waits for one message of each type.
The ability to receive a series of messages and then operate on them in a batch is a common case, so much so that there is a sample showing how to do just that:
Batch Sample
Each saga instance has a unique correlation identifier, and as long as those messages can be correlated to that single instance, MassTransit will manage the concurrency (either optimistic or pessimistic, and depending upon the saga storage engine).
I'd suggest reviewing the state machine in the sample, and seeing how that compares to your scenario.

How to create unique messages to rabbitmq queue - spring-amp

I am putting a message containing string data to rabbitmq queue.
Message publishing is called as a part of a service and the service can be called with same data (data goes to the queue) multiple times, thus chances for having duplicated data in the queue is very likely.
We have issues with this as the consumer code is inserting this data to table where this data is primary key. Consumer will be called from 4 different nodes simultaneously thus chances for having consumers consuming same data (from different messages) can happen.
I want to know if rabbitMQ publishing has any way to avoid message duplication.
Read "define a property "x-unique-message-code" to compare them is an easy and simple way" , but don't know how to do it.
I am using spring-amqp
Any help is highly appreciated.
Thank you
There is a good article from RabbitMQ about reliability: https://www.rabbitmq.com/reliability.html
There is a note like:
In the event of network failure (or a node crashing), messages can be duplicated, and consumers must be prepared to handle them. If possible, the simplest way to handle this is to ensure that your consumers handle messages in an idempotent way rather than explicitly deal with deduplication.
For this purpose the message to produce can be supplied with a messageId property.

Why is Queue/FIFO ordering important in Message Queue?

One option for a Messaging Provider is a Message Queue, which provides FIFO ordering, i.e. Queue. Why would the ordering of messages be important? I wonder if is it because of the priority of the messages or anything similar to that. i would appreciate if anyone could explain with example.
Your answer is right - logically some operations are interdependent and you must maintain the order of calls.
But I think that there is an even more important purely technical aspect to this that I want to point out: You need to know the order to be able to achieve ACID transactions.
Take the following scenario:
You have a process service that orchestrates 5 other entity/utility services. The process gets triggered and starts executing but 3rd call fails. More often than not it is too expensive to have a common transactional context between services (in order to have 2-phase commit), so the solution is to use Compensation i.e. to call the opposite operations of all services that already did a write operation before the failure. If you cannot guarantee the order of the messages, you cannot possibly know what you should rollback and what not (if you don't explicitly look in the underlying systems and track the change yourself - but this is not a sane approach).
Hope this helps!
Here's what I wrote for my answer:
By implementing a Queue data structure, Consumers will receive messages in order by which they were sent. For example, An Order System in Enterprise systems sends some messages to Sales System. Let these be "GetPayment" and "Make a Shipment". If these messages are not queued, the Sales System could malfunction by notifying to "Make a Shipment" before "Getting a Payment".
The idea is to maintain the enterprise level workflow.
PS: Plamen has more in-depth answer.
Whatsoever gets into the message buffer first should be served first. Message queues are used to retain the order of the messages received. Queues are First in and first out.

Camel JMS ensuring ordering when unsidelining from dead letter channel

I am using camel to integrate with ActiveMQ JMS. I am receiving prices for products on this queue. I am using JMSXGroupID on productId to ensure ordering across a productId. Now if I fail to process this message I move it to a DeadLetterQueue. This could be because of a connection error on a dependent service or because of error with the message itself.
In case of the former I would have to manually remove it from the DLQ and put it back into the JMS queue.
Now the problem is that I dont know if any other message on that groupId has been received and processed or not. And hence unsidelining from DLQ will disrupt the order. On the other hand if I dont unsideline it and no other message has been received the product Id will not get the correct price.
1 solution that I have in mind is to use a fast key-value store(Redis) to store the last messageId or JMSTimestamp against a productId(message group). This is updated everytime I dequeue a message. Any other solution for this?
Relying on message order in JMS is a risky business - at best.
The best thing to do is to make the receiver handle messages out of sequence as a special case (but may take advantage message order during normal operation).
You may also want to distinguish between two errors: posion messages and temporary connection problems, maybe even use two different error queues for them. In the case of a posion message (invalid payload etc.) then there is nothing you can really do about it except starting a bug investigation. In such cases, you can probably send along "something else", such as dummy message to not interfere with order.
For the issues with connection problems, you can have another strategy - ActiveMQ Redelivery Policies. If there is network trouble, it's usually no use in trying to process the second message until the first has been handled. A Redelivery Policy ensures that (given you have a single consumer, that is). There is another question at SO where the poster actually has a solution to your problem and wants to avoid it. Read it. :)

Is there an enterprise message queue which can drop duplicate messages (first value stays)?

I am looking looking for a message queue with these requirements. Couldn't find it; maybe the closest was the rabbitmq-lvc plugin (but I need the first value in the line to stick and stay in front).
Would anyone know a technology to support these?
message queue is FIFO
if a duplicate message is being enqueued, the message queue itself either rejects or drops it.
For example, producers put these three messages (each with a discriminator value) into the queue in this sequence: M1(discriminator=7654), M2(discriminator=2435), M3(discriminator=7654).
Now I want the message queue to see that M3 has the same discriminator value as M1 and thus drop/reject M3. Consumers receive only: M1, M2.
Thanks
Tom
I don't know the other transports but I know that WebSphere MQ doesn't do this and I believe that the explanation why would apply broadly across the category. I'd be very surprised to find that any messaging transport actually provides this. Here are a few reasons why:
Async messages are supposed to be atomic. Different vendors make their own accommodations for message affinity (a relationship between two or more messages) but as a rule, message affinity is to be avoided. Your use case not only requires the transport to deal with message affinity, but to do so over an indeterminate interval between related messages.
Message payload is a blob. For performance reasons, WMQ doesn't touch message payloads except for things like compression or code page conversion. Anything that requires parsing the message payload is a job for WebSphere Message Broker, DataPower or WebSphere ESB. I would expect any messaging transport which claims to be performant would face similar issues because parsing payloads results in longer code paths and non-linear performance degradation. The exception is message properties but WMQ uses these for selection only and I expect that is generally the case.
Stateless operation. As a transport, the state of the application may be stored in a persistent message but the state of the transport layer should not depend on the state of the application across different units of work. Again, an ESB type of product is best suited when you want to delegate management of some of the application state to the messaging layer and especially when such management spans many units of work.
Assured delivery. WMQ was designed to never lose your persistent message. If the app explicitly sets expiry the message might go away because the sender said it was OK to do so. If the message is non-persistent it might go away, but only in an exceptional condition and, again, because the sender said it was OK to do so. The use case you describe might result in a message going away not because the sender said it was OK, or even because the recipient said it was OK but because of an interaction with some unrelated 3rd party who happened to beat you to the queue with a duplicate value. What if that first message has an invalid header or code page problem and gets rolled back? What if I as an attacker spew out garbage messages with all possible 4-digit values for discriminator?
As I said, I don't know the other messaging products so there may be something out there which meets your requirement and if so I'll be interested to read about it. However in the event hat nobody replies, this post may shed some light on the reasons why.

Resources