What distribution do you get from this broken random shuffle? - algorithm

The famous Fisher-Yates shuffle algorithm can be used to randomly permute an array A of length N:
For k = 1 to N
Pick a random integer j from k to N
Swap A[k] and A[j]
A common mistake that I've been told over and over again not to make is this:
For k = 1 to N
Pick a random integer j from 1 to N
Swap A[k] and A[j]
That is, instead of picking a random integer from k to N, you pick a random integer from 1 to N.
What happens if you make this mistake? I know that the resulting permutation isn't uniformly distributed, but I don't know what guarantees there are on what the resulting distribution will be. In particular, does anyone have an expression for the probability distributions over the final positions of the elements?

An Empirical Approach.
Let's implement the erroneous algorithm in Mathematica:
p = 10; (* Range *)
s = {}
For[l = 1, l <= 30000, l++, (*Iterations*)
a = Range[p];
For[k = 1, k <= p, k++,
i = RandomInteger[{1, p}];
temp = a[[k]];
a[[k]] = a[[i]];
a[[i]] = temp
];
AppendTo[s, a];
]
Now get the number of times each integer is in each position:
r = SortBy[#, #[[1]] &] & /# Tally /# Transpose[s]
Let's take three positions in the resulting arrays and plot the frequency distribution for each integer in that position:
For position 1 the freq distribution is:
For position 5 (middle)
And for position 10 (last):
and here you have the distribution for all positions plotted together:
Here you have a better statistics over 8 positions:
Some observations:
For all positions the probability of
"1" is the same (1/n).
The probability matrix is symmetrical
with respect to the big anti-diagonal
So, the probability for any number in the last
position is also uniform (1/n)
You may visualize those properties looking at the starting of all lines from the same point (first property) and the last horizontal line (third property).
The second property can be seen from the following matrix representation example, where the rows are the positions, the columns are the occupant number, and the color represents the experimental probability:
For a 100x100 matrix:
Edit
Just for fun, I calculated the exact formula for the second diagonal element (the first is 1/n). The rest can be done, but it's a lot of work.
h[n_] := (n-1)/n^2 + (n-1)^(n-2) n^(-n)
Values verified from n=3 to 6 ( {8/27, 57/256, 564/3125, 7105/46656} )
Edit
Working out a little the general explicit calculation in #wnoise answer, we can get a little more info.
Replacing 1/n by p[n], so the calculations are hold unevaluated, we get for example for the first part of the matrix with n=7 (click to see a bigger image):
Which, after comparing with results for other values of n, let us identify some known integer sequences in the matrix:
{{ 1/n, 1/n , ...},
{... .., A007318, ....},
{... .., ... ..., ..},
... ....,
{A129687, ... ... ... ... ... ... ..},
{A131084, A028326 ... ... ... ... ..},
{A028326, A131084 , A129687 ... ....}}
You may find those sequences (in some cases with different signs) in the wonderful http://oeis.org/
Solving the general problem is more difficult, but I hope this is a start

The "common mistake" you mention is shuffling by random transpositions. This problem was studied in full detail by Diaconis and Shahshahani in Generating a random permutation with random transpositions (1981). They do a complete analysis of stopping times and convergence to uniformity. If you cannot get a link to the paper, then please send me an e-mail and I can forward you a copy. It's actually a fun read (as are most of Persi Diaconis's papers).
If the array has repeated entries, then the problem is slightly different. As a shameless plug, this more general problem is addressed by myself, Diaconis and Soundararajan in Appendix B of A Rule of Thumb for Riffle Shuffling (2011).

Let's say
a = 1/N
b = 1-a
Bi(k) is the probability matrix after i swaps for the kth element. i.e the answer to the question "where is k after i swaps?". For example B0(3) = (0 0 1 0 ... 0) and B1(3) = (a 0 b 0 ... 0). What you want is BN(k) for every k.
Ki is an NxN matrix with 1s in the i-th column and i-th row, zeroes everywhere else, e.g:
Ii is the identity matrix but with the element x=y=i zeroed. E.g for i=2:
Ai is
Then,
But because BN(k=1..N) forms the identity matrix, the probability that any given element i will at the end be at position j is given by the matrix element (i,j) of the matrix:
For example, for N=4:
As a diagram for N = 500 (color levels are 100*probability):
The pattern is the same for all N>2:
The most probable ending position for k-th element is k-1.
The least probable ending position is k for k < N*ln(2), position 1 otherwise

I knew I had seen this question before...
" why does this simple shuffle algorithm produce biased results? what is a simple reason? " has a lot of good stuff in the answers, especially a link to a blog by Jeff Atwood on Coding Horror.
As you may have already guessed, based on the answer by #belisarius, the exact distribution is highly dependent on the number of elements to be shuffled. Here's Atwood's plot for a 6-element deck:

What a lovely question! I wish I had a full answer.
Fisher-Yates is nice to analyze because once it decides on the first element, it leaves it alone. The biased one can repeatedly swap an element in and out of any place.
We can analyze this the same way we would a Markov chain, by describing the actions as stochastic transition matrices acting linearly on probability distributions. Most elements get left alone, the diagonal is usually (n-1)/n. On pass k, when they don't get left alone, they get swapped with element k, (or a random element if they are element k). This is 1/(n-1) in either row or column k. The element in both row and column k is also 1/(n-1). It's easy enough to multiply these matrices together for k going from 1 to n.
We do know that the element in last place will be equally likely to have originally been anywhere because the last pass swaps the last place equally likely with any other. Similarly, the first element will be equally likely to be placed anywhere. This symmetry is because the transpose reverses the order of matrix multiplication. In fact, the matrix is symmetric in the sense that row i is the same as column (n+1 - i). Beyond that, the numbers don't show much apparent pattern. These exact solutions do show agreement with the simulations run by belisarius: In slot i, The probability of getting j decreases as j raises to i, reaching its lowest value at i-1, and then jumping up to its highest value at i, and decreasing until j reaches n.
In Mathematica I generated each step with
step[k_, n_] := Normal[SparseArray[{{k, i_} -> 1/n,
{j_, k} -> 1/n, {i_, i_} -> (n - 1)/n} , {n, n}]]
(I haven't found it documented anywhere, but the first matching rule is used.)
The final transition matrix can be calculated with:
Fold[Dot, IdentityMatrix[n], Table[step[m, n], {m, s}]]
ListDensityPlot is a useful visualization tool.
Edit (by belisarius)
Just a confirmation. The following code gives the same matrix as in #Eelvex's answer:
step[k_, n_] := Normal[SparseArray[{{k, i_} -> (1/n),
{j_, k} -> (1/n), {i_, i_} -> ((n - 1)/n)}, {n, n}]];
r[n_, s_] := Fold[Dot, IdentityMatrix[n], Table[step[m, n], {m, s}]];
Last#Table[r[4, i], {i, 1, 4}] // MatrixForm

Wikipedia's page on the Fisher-Yates shuffle has a description and example of exactly what will happen in that case.

You can compute the distribution using stochastic matrices. Let the matrix A(i,j) describe the probability of the card originally at position i ending up in position j. Then the kth swap has a matrix Ak given by Ak(i,j) = 1/N if i == k or j == k, (the card in position k can end up anywhere and any card can end up at position k with equal probability), Ak(i,i) = (N - 1)/N for all i != k (every other card will stay in the same place with probability (N-1)/N) and all other elements zero.
The result of the complete shuffle is then given by the product of the matrices AN ... A1.
I expect you're looking for an algebraic description of the probabilities; you can get one by expanding out the above matrix product, but it I imagine it will be fairly complex!
UPDATE: I just spotted wnoise's equivalent answer above! oops...

I've looked into this further, and it turns out that this distribution has been studied at length. The reason it's of interest is because this "broken" algorithm is (or was) used in the RSA chip system.
In Shuffling by semi-random transpositions, Elchanan Mossel, Yuval Peres, and Alistair Sinclair study this and a more general class of shuffles. The upshot of that paper appears to be that it takes log(n) broken shuffles to achieve near random distribution.
In The bias of three pseudorandom shuffles (Aequationes Mathematicae, 22, 1981, 268-292), Ethan Bolker and David Robbins analyze this shuffle and determine that the total variation distance to uniformity after a single pass is 1, indicating that it is not very random at all. They give asympotic analyses as well.
Finally, Laurent Saloff-Coste and Jessica Zuniga found a nice upper bound in their study of inhomogeneous Markov chains.

This question is begging for an interactive visual matrix diagram analysis of the broken shuffle mentioned. Such a tool is on the page Will It Shuffle? - Why random comparators are bad by Mike Bostock.
Bostock has put together an excellent tool that analyzes random comparators. In the dropdown on that page, choose naïve swap (random ↦ random) to see the broken algorithm and the pattern it produces.
His page is informative as it allows one to see the immediate effects a change in logic has on the shuffled data. For example:
This matrix diagram using a non-uniform and very-biased shuffle is produced using a naïve swap (we pick from "1 to N") with code like this:
function shuffle(array) {
var n = array.length, i = -1, j;
while (++i < n) {
j = Math.floor(Math.random() * n);
t = array[j];
array[j] = array[i];
array[i] = t;
}
}
But if we implement a non-biased shuffle, where we pick from "k to N" we should see a diagram like this:
where the distribution is uniform, and is produced from code such as:
function FisherYatesDurstenfeldKnuthshuffle( array ) {
var pickIndex, arrayPosition = array.length;
while( --arrayPosition ) {
pickIndex = Math.floor( Math.random() * ( arrayPosition + 1 ) );
array[ pickIndex ] = [ array[ arrayPosition ], array[ arrayPosition ] = array[ pickIndex ] ][ 0 ];
}
}

The excellent answers given so far are concentrating on the distribution, but you have asked also "What happens if you make this mistake?" - which is what I haven't seen answered yet, so I'll give an explanation on this:
The Knuth-Fisher-Yates shuffle algorithm picks 1 out of n elements, then 1 out of n-1 remaining elements and so forth.
You can implement it with two arrays a1 and a2 where you remove one element from a1 and insert it into a2, but the algorithm does it in place (which means, that it needs only one array), as is explained here (Google: "Shuffling Algorithms Fisher-Yates DataGenetics") very well.
If you don't remove the elements, they can be randomly chosen again which produces the biased randomness. This is exactly what the 2nd example your are describing does. The first example, the Knuth-Fisher-Yates algorithm, uses a cursor variable running from k to N, which remembers which elements have already been taken, hence avoiding to pick elements more than once.

Related

Shuffle a deck of card with equal likely to be 52 permutations [duplicate]

The famous Fisher-Yates shuffle algorithm can be used to randomly permute an array A of length N:
For k = 1 to N
Pick a random integer j from k to N
Swap A[k] and A[j]
A common mistake that I've been told over and over again not to make is this:
For k = 1 to N
Pick a random integer j from 1 to N
Swap A[k] and A[j]
That is, instead of picking a random integer from k to N, you pick a random integer from 1 to N.
What happens if you make this mistake? I know that the resulting permutation isn't uniformly distributed, but I don't know what guarantees there are on what the resulting distribution will be. In particular, does anyone have an expression for the probability distributions over the final positions of the elements?
An Empirical Approach.
Let's implement the erroneous algorithm in Mathematica:
p = 10; (* Range *)
s = {}
For[l = 1, l <= 30000, l++, (*Iterations*)
a = Range[p];
For[k = 1, k <= p, k++,
i = RandomInteger[{1, p}];
temp = a[[k]];
a[[k]] = a[[i]];
a[[i]] = temp
];
AppendTo[s, a];
]
Now get the number of times each integer is in each position:
r = SortBy[#, #[[1]] &] & /# Tally /# Transpose[s]
Let's take three positions in the resulting arrays and plot the frequency distribution for each integer in that position:
For position 1 the freq distribution is:
For position 5 (middle)
And for position 10 (last):
and here you have the distribution for all positions plotted together:
Here you have a better statistics over 8 positions:
Some observations:
For all positions the probability of
"1" is the same (1/n).
The probability matrix is symmetrical
with respect to the big anti-diagonal
So, the probability for any number in the last
position is also uniform (1/n)
You may visualize those properties looking at the starting of all lines from the same point (first property) and the last horizontal line (third property).
The second property can be seen from the following matrix representation example, where the rows are the positions, the columns are the occupant number, and the color represents the experimental probability:
For a 100x100 matrix:
Edit
Just for fun, I calculated the exact formula for the second diagonal element (the first is 1/n). The rest can be done, but it's a lot of work.
h[n_] := (n-1)/n^2 + (n-1)^(n-2) n^(-n)
Values verified from n=3 to 6 ( {8/27, 57/256, 564/3125, 7105/46656} )
Edit
Working out a little the general explicit calculation in #wnoise answer, we can get a little more info.
Replacing 1/n by p[n], so the calculations are hold unevaluated, we get for example for the first part of the matrix with n=7 (click to see a bigger image):
Which, after comparing with results for other values of n, let us identify some known integer sequences in the matrix:
{{ 1/n, 1/n , ...},
{... .., A007318, ....},
{... .., ... ..., ..},
... ....,
{A129687, ... ... ... ... ... ... ..},
{A131084, A028326 ... ... ... ... ..},
{A028326, A131084 , A129687 ... ....}}
You may find those sequences (in some cases with different signs) in the wonderful http://oeis.org/
Solving the general problem is more difficult, but I hope this is a start
The "common mistake" you mention is shuffling by random transpositions. This problem was studied in full detail by Diaconis and Shahshahani in Generating a random permutation with random transpositions (1981). They do a complete analysis of stopping times and convergence to uniformity. If you cannot get a link to the paper, then please send me an e-mail and I can forward you a copy. It's actually a fun read (as are most of Persi Diaconis's papers).
If the array has repeated entries, then the problem is slightly different. As a shameless plug, this more general problem is addressed by myself, Diaconis and Soundararajan in Appendix B of A Rule of Thumb for Riffle Shuffling (2011).
Let's say
a = 1/N
b = 1-a
Bi(k) is the probability matrix after i swaps for the kth element. i.e the answer to the question "where is k after i swaps?". For example B0(3) = (0 0 1 0 ... 0) and B1(3) = (a 0 b 0 ... 0). What you want is BN(k) for every k.
Ki is an NxN matrix with 1s in the i-th column and i-th row, zeroes everywhere else, e.g:
Ii is the identity matrix but with the element x=y=i zeroed. E.g for i=2:
Ai is
Then,
But because BN(k=1..N) forms the identity matrix, the probability that any given element i will at the end be at position j is given by the matrix element (i,j) of the matrix:
For example, for N=4:
As a diagram for N = 500 (color levels are 100*probability):
The pattern is the same for all N>2:
The most probable ending position for k-th element is k-1.
The least probable ending position is k for k < N*ln(2), position 1 otherwise
I knew I had seen this question before...
" why does this simple shuffle algorithm produce biased results? what is a simple reason? " has a lot of good stuff in the answers, especially a link to a blog by Jeff Atwood on Coding Horror.
As you may have already guessed, based on the answer by #belisarius, the exact distribution is highly dependent on the number of elements to be shuffled. Here's Atwood's plot for a 6-element deck:
What a lovely question! I wish I had a full answer.
Fisher-Yates is nice to analyze because once it decides on the first element, it leaves it alone. The biased one can repeatedly swap an element in and out of any place.
We can analyze this the same way we would a Markov chain, by describing the actions as stochastic transition matrices acting linearly on probability distributions. Most elements get left alone, the diagonal is usually (n-1)/n. On pass k, when they don't get left alone, they get swapped with element k, (or a random element if they are element k). This is 1/(n-1) in either row or column k. The element in both row and column k is also 1/(n-1). It's easy enough to multiply these matrices together for k going from 1 to n.
We do know that the element in last place will be equally likely to have originally been anywhere because the last pass swaps the last place equally likely with any other. Similarly, the first element will be equally likely to be placed anywhere. This symmetry is because the transpose reverses the order of matrix multiplication. In fact, the matrix is symmetric in the sense that row i is the same as column (n+1 - i). Beyond that, the numbers don't show much apparent pattern. These exact solutions do show agreement with the simulations run by belisarius: In slot i, The probability of getting j decreases as j raises to i, reaching its lowest value at i-1, and then jumping up to its highest value at i, and decreasing until j reaches n.
In Mathematica I generated each step with
step[k_, n_] := Normal[SparseArray[{{k, i_} -> 1/n,
{j_, k} -> 1/n, {i_, i_} -> (n - 1)/n} , {n, n}]]
(I haven't found it documented anywhere, but the first matching rule is used.)
The final transition matrix can be calculated with:
Fold[Dot, IdentityMatrix[n], Table[step[m, n], {m, s}]]
ListDensityPlot is a useful visualization tool.
Edit (by belisarius)
Just a confirmation. The following code gives the same matrix as in #Eelvex's answer:
step[k_, n_] := Normal[SparseArray[{{k, i_} -> (1/n),
{j_, k} -> (1/n), {i_, i_} -> ((n - 1)/n)}, {n, n}]];
r[n_, s_] := Fold[Dot, IdentityMatrix[n], Table[step[m, n], {m, s}]];
Last#Table[r[4, i], {i, 1, 4}] // MatrixForm
Wikipedia's page on the Fisher-Yates shuffle has a description and example of exactly what will happen in that case.
You can compute the distribution using stochastic matrices. Let the matrix A(i,j) describe the probability of the card originally at position i ending up in position j. Then the kth swap has a matrix Ak given by Ak(i,j) = 1/N if i == k or j == k, (the card in position k can end up anywhere and any card can end up at position k with equal probability), Ak(i,i) = (N - 1)/N for all i != k (every other card will stay in the same place with probability (N-1)/N) and all other elements zero.
The result of the complete shuffle is then given by the product of the matrices AN ... A1.
I expect you're looking for an algebraic description of the probabilities; you can get one by expanding out the above matrix product, but it I imagine it will be fairly complex!
UPDATE: I just spotted wnoise's equivalent answer above! oops...
I've looked into this further, and it turns out that this distribution has been studied at length. The reason it's of interest is because this "broken" algorithm is (or was) used in the RSA chip system.
In Shuffling by semi-random transpositions, Elchanan Mossel, Yuval Peres, and Alistair Sinclair study this and a more general class of shuffles. The upshot of that paper appears to be that it takes log(n) broken shuffles to achieve near random distribution.
In The bias of three pseudorandom shuffles (Aequationes Mathematicae, 22, 1981, 268-292), Ethan Bolker and David Robbins analyze this shuffle and determine that the total variation distance to uniformity after a single pass is 1, indicating that it is not very random at all. They give asympotic analyses as well.
Finally, Laurent Saloff-Coste and Jessica Zuniga found a nice upper bound in their study of inhomogeneous Markov chains.
This question is begging for an interactive visual matrix diagram analysis of the broken shuffle mentioned. Such a tool is on the page Will It Shuffle? - Why random comparators are bad by Mike Bostock.
Bostock has put together an excellent tool that analyzes random comparators. In the dropdown on that page, choose naïve swap (random ↦ random) to see the broken algorithm and the pattern it produces.
His page is informative as it allows one to see the immediate effects a change in logic has on the shuffled data. For example:
This matrix diagram using a non-uniform and very-biased shuffle is produced using a naïve swap (we pick from "1 to N") with code like this:
function shuffle(array) {
var n = array.length, i = -1, j;
while (++i < n) {
j = Math.floor(Math.random() * n);
t = array[j];
array[j] = array[i];
array[i] = t;
}
}
But if we implement a non-biased shuffle, where we pick from "k to N" we should see a diagram like this:
where the distribution is uniform, and is produced from code such as:
function FisherYatesDurstenfeldKnuthshuffle( array ) {
var pickIndex, arrayPosition = array.length;
while( --arrayPosition ) {
pickIndex = Math.floor( Math.random() * ( arrayPosition + 1 ) );
array[ pickIndex ] = [ array[ arrayPosition ], array[ arrayPosition ] = array[ pickIndex ] ][ 0 ];
}
}
The excellent answers given so far are concentrating on the distribution, but you have asked also "What happens if you make this mistake?" - which is what I haven't seen answered yet, so I'll give an explanation on this:
The Knuth-Fisher-Yates shuffle algorithm picks 1 out of n elements, then 1 out of n-1 remaining elements and so forth.
You can implement it with two arrays a1 and a2 where you remove one element from a1 and insert it into a2, but the algorithm does it in place (which means, that it needs only one array), as is explained here (Google: "Shuffling Algorithms Fisher-Yates DataGenetics") very well.
If you don't remove the elements, they can be randomly chosen again which produces the biased randomness. This is exactly what the 2nd example your are describing does. The first example, the Knuth-Fisher-Yates algorithm, uses a cursor variable running from k to N, which remembers which elements have already been taken, hence avoiding to pick elements more than once.

How to find pair with kth largest sum?

Given two sorted arrays of numbers, we want to find the pair with the kth largest possible sum. (A pair is one element from the first array and one element from the second array). For example, with arrays
[2, 3, 5, 8, 13]
[4, 8, 12, 16]
The pairs with largest sums are
13 + 16 = 29
13 + 12 = 25
8 + 16 = 24
13 + 8 = 21
8 + 12 = 20
So the pair with the 4th largest sum is (13, 8). How to find the pair with the kth largest possible sum?
Also, what is the fastest algorithm? The arrays are already sorted and sizes M and N.
I am already aware of the O(Klogk) solution , using Max-Heap given here .
It also is one of the favorite Google interview question , and they demand a O(k) solution .
I've also read somewhere that there exists a O(k) solution, which i am unable to figure out .
Can someone explain the correct solution with a pseudocode .
P.S.
Please DON'T post this link as answer/comment.It DOESN'T contain the answer.
I start with a simple but not quite linear-time algorithm. We choose some value between array1[0]+array2[0] and array1[N-1]+array2[N-1]. Then we determine how many pair sums are greater than this value and how many of them are less. This may be done by iterating the arrays with two pointers: pointer to the first array incremented when sum is too large and pointer to the second array decremented when sum is too small. Repeating this procedure for different values and using binary search (or one-sided binary search) we could find Kth largest sum in O(N log R) time, where N is size of the largest array and R is number of possible values between array1[N-1]+array2[N-1] and array1[0]+array2[0]. This algorithm has linear time complexity only when the array elements are integers bounded by small constant.
Previous algorithm may be improved if we stop binary search as soon as number of pair sums in binary search range decreases from O(N2) to O(N). Then we fill auxiliary array with these pair sums (this may be done with slightly modified two-pointers algorithm). And then we use quickselect algorithm to find Kth largest sum in this auxiliary array. All this does not improve worst-case complexity because we still need O(log R) binary search steps. What if we keep the quickselect part of this algorithm but (to get proper value range) we use something better than binary search?
We could estimate value range with the following trick: get every second element from each array and try to find the pair sum with rank k/4 for these half-arrays (using the same algorithm recursively). Obviously this should give some approximation for needed value range. And in fact slightly improved variant of this trick gives range containing only O(N) elements. This is proven in following paper: "Selection in X + Y and matrices with sorted rows and columns" by A. Mirzaian and E. Arjomandi. This paper contains detailed explanation of the algorithm, proof, complexity analysis, and pseudo-code for all parts of the algorithm except Quickselect. If linear worst-case complexity is required, Quickselect may be augmented with Median of medians algorithm.
This algorithm has complexity O(N). If one of the arrays is shorter than other array (M < N) we could assume that this shorter array is extended to size N with some very small elements so that all calculations in the algorithm use size of the largest array. We don't actually need to extract pairs with these "added" elements and feed them to quickselect, which makes algorithm a little bit faster but does not improve asymptotic complexity.
If k < N we could ignore all the array elements with index greater than k. In this case complexity is equal to O(k). If N < k < N(N-1) we just have better complexity than requested in OP. If k > N(N-1), we'd better solve the opposite problem: k'th smallest sum.
I uploaded simple C++11 implementation to ideone. Code is not optimized and not thoroughly tested. I tried to make it as close as possible to pseudo-code in linked paper. This implementation uses std::nth_element, which allows linear complexity only on average (not worst-case).
A completely different approach to find K'th sum in linear time is based on priority queue (PQ). One variation is to insert largest pair to PQ, then repeatedly remove top of PQ and instead insert up to two pairs (one with decremented index in one array, other with decremented index in other array). And take some measures to prevent inserting duplicate pairs. Other variation is to insert all possible pairs containing largest element of first array, then repeatedly remove top of PQ and instead insert pair with decremented index in first array and same index in second array. In this case there is no need to bother about duplicates.
OP mentions O(K log K) solution where PQ is implemented as max-heap. But in some cases (when array elements are evenly distributed integers with limited range and linear complexity is needed only on average, not worst-case) we could use O(1) time priority queue, for example, as described in this paper: "A Complexity O(1) Priority Queue for Event Driven Molecular Dynamics Simulations" by Gerald Paul. This allows O(K) expected time complexity.
Advantage of this approach is a possibility to provide first K elements in sorted order. Disadvantages are limited choice of array element type, more complex and slower algorithm, worse asymptotic complexity: O(K) > O(N).
EDIT: This does not work. I leave the answer, since apparently I am not the only one who could have this kind of idea; see the discussion below.
A counter-example is x = (2, 3, 6), y = (1, 4, 5) and k=3, where the algorithm gives 7 (3+4) instead of 8 (3+5).
Let x and y be the two arrays, sorted in decreasing order; we want to construct the K-th largest sum.
The variables are: i the index in the first array (element x[i]), j the index in the second array (element y[j]), and k the "order" of the sum (k in 1..K), in the sense that S(k)=x[i]+y[j] will be the k-th greater sum satisfying your conditions (this is the loop invariant).
Start from (i, j) equal to (0, 0): clearly, S(1) = x[0]+y[0].
for k from 1 to K-1, do:
if x[i+1]+ y[j] > x[i] + y[j+1], then i := i+1 (and j does not change) ; else j:=j+1
To see that it works, consider you have S(k) = x[i] + y[j]. Then, S(k+1) is the greatest sum which is lower (or equal) to S(k), and such as at least one element (i or j) changes. It is not difficult to see that exactly one of i or j should change.
If i changes, the greater sum you can construct which is lower than S(k) is by setting i=i+1, because x is decreasing and all the x[i'] + y[j] with i' < i are greater than S(k). The same holds for j, showing that S(k+1) is either x[i+1] + y[j] or x[i] + y[j+1].
Therefore, at the end of the loop you found the K-th greater sum.
tl;dr: If you look ahead and look behind at each iteration, you can start with the end (which is highest) and work back in O(K) time.
Although the insight underlying this approach is, I believe, sound, the code below is not quite correct at present (see comments).
Let's see: first of all, the arrays are sorted. So, if the arrays are a and b with lengths M and N, and as you have arranged them, the largest items are in slots M and N respectively, the largest pair will always be a[M]+b[N].
Now, what's the second largest pair? It's going to have perhaps one of {a[M],b[N]} (it can't have both, because that's just the largest pair again), and at least one of {a[M-1],b[N-1]}. BUT, we also know that if we choose a[M-1]+b[N-1], we can make one of the operands larger by choosing the higher number from the same list, so it will have exactly one number from the last column, and one from the penultimate column.
Consider the following two arrays: a = [1, 2, 53]; b = [66, 67, 68]. Our highest pair is 53+68. If we lose the smaller of those two, our pair is 68+2; if we lose the larger, it's 53+67. So, we have to look ahead to decide what our next pair will be. The simplest lookahead strategy is simply to calculate the sum of both possible pairs. That will always cost two additions, and two comparisons for each transition (three because we need to deal with the case where the sums are equal);let's call that cost Q).
At first, I was tempted to repeat that K-1 times. BUT there's a hitch: the next largest pair might actually be the other pair we can validly make from {{a[M],b[N]}, {a[M-1],b[N-1]}. So, we also need to look behind.
So, let's code (python, should be 2/3 compatible):
def kth(a,b,k):
M = len(a)
N = len(b)
if k > M*N:
raise ValueError("There are only %s possible pairs; you asked for the %sth largest, which is impossible" % M*N,k)
(ia,ib) = M-1,N-1 #0 based arrays
# we need this for lookback
nottakenindices = (0,0) # could be any value
nottakensum = float('-inf')
for i in range(k-1):
optionone = a[ia]+b[ib-1]
optiontwo = a[ia-1]+b[ib]
biggest = max((optionone,optiontwo))
#first deal with look behind
if nottakensum > biggest:
if optionone == biggest:
newnottakenindices = (ia,ib-1)
else: newnottakenindices = (ia-1,ib)
ia,ib = nottakenindices
nottakensum = biggest
nottakenindices = newnottakenindices
#deal with case where indices hit 0
elif ia <= 0 and ib <= 0:
ia = ib = 0
elif ia <= 0:
ib-=1
ia = 0
nottakensum = float('-inf')
elif ib <= 0:
ia-=1
ib = 0
nottakensum = float('-inf')
#lookahead cases
elif optionone > optiontwo:
#then choose the first option as our next pair
nottakensum,nottakenindices = optiontwo,(ia-1,ib)
ib-=1
elif optionone < optiontwo: # choose the second
nottakensum,nottakenindices = optionone,(ia,ib-1)
ia-=1
#next two cases apply if options are equal
elif a[ia] > b[ib]:# drop the smallest
nottakensum,nottakenindices = optiontwo,(ia-1,ib)
ib-=1
else: # might be equal or not - we can choose arbitrarily if equal
nottakensum,nottakenindices = optionone,(ia,ib-1)
ia-=1
#+2 - one for zero-based, one for skipping the 1st largest
data = (i+2,a[ia],b[ib],a[ia]+b[ib],ia,ib)
narrative = "%sth largest pair is %s+%s=%s, with indices (%s,%s)" % data
print (narrative) #this will work in both versions of python
if ia <= 0 and ib <= 0:
raise ValueError("Both arrays exhausted before Kth (%sth) pair reached"%data[0])
return data, narrative
For those without python, here's an ideone: http://ideone.com/tfm2MA
At worst, we have 5 comparisons in each iteration, and K-1 iterations, which means that this is an O(K) algorithm.
Now, it might be possible to exploit information about differences between values to optimise this a little bit, but this accomplishes the goal.
Here's a reference implementation (not O(K), but will always work, unless there's a corner case with cases where pairs have equal sums):
import itertools
def refkth(a,b,k):
(rightia,righta),(rightib,rightb) = sorted(itertools.product(enumerate(a),enumerate(b)), key=lamba((ia,ea),(ib,eb):ea+eb)[k-1]
data = k,righta,rightb,righta+rightb,rightia,rightib
narrative = "%sth largest pair is %s+%s=%s, with indices (%s,%s)" % data
print (narrative) #this will work in both versions of python
return data, narrative
This calculates the cartesian product of the two arrays (i.e. all possible pairs), sorts them by sum, and takes the kth element. The enumerate function decorates each item with its index.
The max-heap algorithm in the other question is simple, fast and correct. Don't knock it. It's really well explained too. https://stackoverflow.com/a/5212618/284795
Might be there isn't any O(k) algorithm. That's okay, O(k log k) is almost as fast.
If the last two solutions were at (a1, b1), (a2, b2), then it seems to me there are only four candidate solutions (a1-1, b1) (a1, b1-1) (a2-1, b2) (a2, b2-1). This intuition could be wrong. Surely there are at most four candidates for each coordinate, and the next highest is among the 16 pairs (a in {a1,a2,a1-1,a2-1}, b in {b1,b2,b1-1,b2-1}). That's O(k).
(No it's not, still not sure whether that's possible.)
[2, 3, 5, 8, 13]
[4, 8, 12, 16]
Merge the 2 arrays and note down the indexes in the sorted array. Here is the index array looks like (starting from 1 not 0)
[1, 2, 4, 6, 8]
[3, 5, 7, 9]
Now start from end and make tuples. sum the elements in the tuple and pick the kth largest sum.
public static List<List<Integer>> optimization(int[] nums1, int[] nums2, int k) {
// 2 * O(n log(n))
Arrays.sort(nums1);
Arrays.sort(nums2);
List<List<Integer>> results = new ArrayList<>(k);
int endIndex = 0;
// Find the number whose square is the first one bigger than k
for (int i = 1; i <= k; i++) {
if (i * i >= k) {
endIndex = i;
break;
}
}
// The following Iteration provides at most endIndex^2 elements, and both arrays are in ascending order,
// so k smallest pairs must can be found in this iteration. To flatten the nested loop, refer
// 'https://stackoverflow.com/questions/7457879/algorithm-to-optimize-nested-loops'
for (int i = 0; i < endIndex * endIndex; i++) {
int m = i / endIndex;
int n = i % endIndex;
List<Integer> item = new ArrayList<>(2);
item.add(nums1[m]);
item.add(nums2[n]);
results.add(item);
}
results.sort(Comparator.comparing(pair->pair.get(0) + pair.get(1)));
return results.stream().limit(k).collect(Collectors.toList());
}
Key to eliminate O(n^2):
Avoid cartesian product(or 'cross join' like operation) of both arrays, which means flattening the nested loop.
Downsize iteration over the 2 arrays.
So:
Sort both arrays (Arrays.sort offers O(n log(n)) performance according to Java doc)
Limit the iteration range to the size which is just big enough to support k smallest pairs searching.

Find subset with elements that are furthest apart from eachother

I have an interview question that I can't seem to figure out. Given an array of size N, find the subset of size k such that the elements in the subset are the furthest apart from each other. In other words, maximize the minimum pairwise distance between the elements.
Example:
Array = [1,2,6,10]
k = 3
answer = [1,6,10]
The bruteforce way requires finding all subsets of size k which is exponential in runtime.
One idea I had was to take values evenly spaced from the array. What I mean by this is
Take the 1st and last element
find the difference between them (in this case 10-1) and divide that by k ((10-1)/3=3)
move 2 pointers inward from both ends, picking out elements that are +/- 3 from your previous pick. So in this case, you start from 1 and 10 and find the closest elements to 4 and 7. That would be 6.
This is based on the intuition that the elements should be as evenly spread as possible. I have no idea how to prove it works/doesn't work. If anyone knows how or has a better algorithm please do share. Thanks!
This can be solved in polynomial time using DP.
The first step is, as you mentioned, sort the list A. Let X[i,j] be the solution for selecting j elements from first i elements A.
Now, X[i+1, j+1] = max( min( X[k,j], A[i+1]-A[k] ) ) over k<=i.
I will leave initialization step and memorization of subset step for you to work on.
In your example (1,2,6,10) it works the following way:
1 2 6 10
1 - - - -
2 - 1 5 9
3 - - 1 4
4 - - - 1
The basic idea is right, I think. You should start by sorting the array, then take the first and the last elements, then determine the rest.
I cannot think of a polynomial algorithm to solve this, so I would suggest one of the two options.
One is to use a search algorithm, branch-and-bound style, since you have a nice heuristic at hand: the upper bound for any solution is the minimum size of the gap between the elements picked so far, so the first guess (evenly spaced cells, as you suggested) can give you a good baseline, which will help prune most of the branches right away. This will work fine for smaller values of k, although the worst case performance is O(N^k).
The other option is to start with the same baseline, calculate the minimum pairwise distance for it and then try to improve it. Say you have a subset with minimum distance of 10, now try to get one with 11. This can be easily done by a greedy algorithm -- pick the first item in the sorted sequence such that the distance between it and the previous item is bigger-or-equal to the distance you want. If you succeed, try increasing further, if you fail -- there is no such subset.
The latter solution can be faster when the array is large and k is relatively large as well, but the elements in the array are relatively small. If they are bound by some value M, this algorithm will take O(N*M) time, or, with a small improvement, O(N*log(M)), where N is the size of the array.
As Evgeny Kluev suggests in his answer, there is also a good upper bound on the maximum pairwise distance, which can be used in either one of these algorithms. So the complexity of the latter is actually O(N*log(M/k)).
You can do this in O(n*(log n) + n*log(M)), where M is max(A) - min(A).
The idea is to use binary search to find the maximum separation possible.
First, sort the array. Then, we just need a helper function that takes in a distance d, and greedily builds the longest subarray possible with consecutive elements separated by at least d. We can do this in O(n) time.
If the generated array has length at least k, then the maximum separation possible is >=d. Otherwise, it's strictly less than d. This means we can use binary search to find the maximum value. With some cleverness, you can shrink the 'low' and 'high' bounds of the binary search, but it's already so fast that sorting would become the bottleneck.
Python code:
def maximize_distance(nums: List[int], k: int) -> List[int]:
"""Given an array of numbers and size k, uses binary search
to find a subset of size k with maximum min-pairwise-distance"""
assert len(nums) >= k
if k == 1:
return [nums[0]]
nums.sort()
def longest_separated_array(desired_distance: int) -> List[int]:
"""Given a distance, returns a subarray of nums
of length k with pairwise differences at least that distance (if
one exists)."""
answer = [nums[0]]
for x in nums[1:]:
if x - answer[-1] >= desired_distance:
answer.append(x)
if len(answer) == k:
break
return answer
low, high = 0, (nums[-1] - nums[0])
while low < high:
mid = (low + high + 1) // 2
if len(longest_separated_array(mid)) == k:
low = mid
else:
high = mid - 1
return longest_separated_array(low)
I suppose your set is ordered. If not, my answer will be changed slightly.
Let's suppose you have an array X = (X1, X2, ..., Xn)
Energy(Xi) = min(|X(i-1) - Xi|, |X(i+1) - Xi|), 1 < i <n
j <- 1
while j < n - k do
X.Exclude(min(Energy(Xi)), 1 < i < n)
j <- j + 1
n <- n - 1
end while
$length = length($array);
sort($array); //sorts the list in ascending order
$differences = ($array << 1) - $array; //gets the difference between each value and the next largest value
sort($differences); //sorts the list in ascending order
$max = ($array[$length-1]-$array[0])/$M; //this is the theoretical max of how large the result can be
$result = array();
for ($i = 0; i < $length-1; $i++){
$count += $differences[i];
if ($length-$i == $M - 1 || $count >= $max){ //if there are either no more coins that can be taken or we have gone above or equal to the theoretical max, add a point
$result.push_back($count);
$count = 0;
$M--;
}
}
return min($result)
For the non-code people: sort the list, find the differences between each 2 sequential elements, sort that list (in ascending order), then loop through it summing up sequential values until you either pass the theoretical max or there arent enough elements remaining; then add that value to a new array and continue until you hit the end of the array. then return the minimum of the newly created array.
This is just a quick draft though. At a quick glance any operation here can be done in linear time (radix sort for the sorts).
For example, with 1, 4, 7, 100, and 200 and M=3, we get:
$differences = 3, 3, 93, 100
$max = (200-1)/3 ~ 67
then we loop:
$count = 3, 3+3=6, 6+93=99 > 67 so we push 99
$count = 100 > 67 so we push 100
min(99,100) = 99
It is a simple exercise to convert this to the set solution that I leave to the reader (P.S. after all the times reading that in a book, I've always wanted to say it :P)

Finding even numbers in an array without using feedback

I saw this post: Finding even numbers in an array and I was thinking about how you could do it without feedback. Here's what I mean.
Given an array of length n containing at most e even numbers and a
function isEven that returns true if the input is even and false
otherwise, write a function that prints all the even numbers in the
array using the fewest number of calls to isEven.
The answer on the post was to use a binary search, which is neat since it doesn't mean the array has to be in order. The number of times you have to check if a number is even is e log n instead if n because you do a binary search (log n) to find one even number each time (e times).
But that idea means that you divide the array in half, test for evenness, then decide which half to keep based on the result.
My question is whether or not you can beat n calls on a fixed testing scheme where you check all the numbers you want for evenness without knowing the outcome, and then figure out where the even numbers are after you've done all the tests based on the results. So I guess it's no-feedback or blind or some term like that.
I was thinking about this for a while and couldn't come up with anything. The binary search idea doesn't work at all with this constraint, but maybe something else does? Even getting down to n/2 calls instead of n (yes, I know they are the same big-O) would be good.
The technical term for "no-feedback or blind" is "non-adaptive". O(e log n) calls still suffice, but the algorithm is rather more involved.
Instead of testing the evenness of products, we're going to test the evenness of sums. Let E ≠ F be distinct subsets of {1, …, n}. If we have one array x1, …, xn with even numbers at positions E and another array y1, …, yn with even numbers at positions F, how many subsets J of {1, …, n} satisfy
(∑i in J xi) mod 2 ≠ (∑i in J yi) mod 2?
The answer is 2n-1. Let i be an index such that xi mod 2 ≠ yi mod 2. Let S be a subset of {1, …, i - 1, i + 1, … n}. Either J = S is a solution or J = S union {i} is a solution, but not both.
For every possible outcome E, we need to make calls that eliminate every other possible outcome F. Suppose we make 2e log n calls at random. For each pair E ≠ F, the probability that we still cannot distinguish E from F is (2n-1/2n)2e log n = n-2e, because there are 2n possible calls and only 2n-1 fail to distinguish. There are at most ne + 1 choices of E and thus at most (ne + 1)ne/2 pairs. By a union bound, the probability that there exists some indistinguishable pair is at most n-2e(ne + 1)ne/2 < 1 (assuming we're looking at an interesting case where e ≥ 1 and n ≥ 2), so there exists a sequence of 2e log n calls that does the job.
Note that, while I've used randomness to show that a good sequence of calls exists, the resulting algorithm is deterministic (and, of course, non-adaptive, because we chose that sequence without knowledge of the outcomes).
You can use the Chinese Remainder Theorem to do this. I'm going to change your notation a bit.
Suppose you have N numbers of which at most E are even. Choose a sequence of distinct prime powers q1,q2,...,qk such that their product is at least N^E, i.e.
qi = pi^ei
where pi is prime and ei > 0 is an integer and
q1 * q2 * ... * qk >= N^E
Now make a bunch of 0-1 matrices. Let Mi be the qi x N matrix where the entry in row r and column c has a 1 if c = r mod qi and a 0 otherwise. For example, if qi = 3^2, then row 2 has ones in columns 2, 11, 20, ... 2 + 9j and 0 elsewhere.
Now stack these matrices vertically to get a Q x N matrix M, where Q = q1 + q2 + ... + qk. The rows of M tell you which numbers to multiply together (the nonzero positions). This gives a total of Q products that you need to test for evenness. Call each row a "trial", and say that a "trial involves j" if the jth column of that row is nonempty. The theorem you need is the following:
THEOREM: The number in position j is even if and only if all trials involving j are even.
So you do a total of Q trials and then look at the results. If you choose the prime powers intelligently, then Q should be significantly smaller than N. There are asymptotic results that show you can always get Q on the order of
(2E log N)^2 / 2log(2E log N)
This theorem is actually a corollary of the Chinese Remainder Theorem. The only place that I've seen this used is in Combinatorial Group Testing. Apparently the problem originally arose when testing soldiers coming back from WWII for syphilis.
The problem you are facing is a form of group testing, type of a problem with the objective of reducing the cost of identifying certain elements of a set (up to d elements of a set of N elements).
As you've already stated, there are two basic principles via which the testing may be carried out:
Non-adaptive Group Testing, where all the tests to be performed are decided a priori.
Adaptive Group Testing, where we perform several tests, basing each test on the outcome of previous tests. Obviously, adaptive testing has a potential to reduce the cost, compared to non-adaptive testing.
Theoretical bounds for both principles have been studied, and are available in this Wiki article, or this paper.
For adaptive testing, the upper bound is O(d*log(N)) (as already described in this answer).
For non-adaptive testing, it can be shown that the upper bound is O(d*d/log(d)*log(N)), which is obviously larger than the upper bound for adaptive testing by a factor of d/log(d).
This upper bound for non-adaptive testing comes from an algorithm which uses disjunct matrices: matrices of dimension T x N ("number of tests" x "number of elements"), where each item can be either true (if an element was included in a test), or false (if it wasn't), with a property that any subset of d columns must differ from all other columns by at least a single row (test inclusion). This allows linear time of decoding (there are also "d-separable" matrices where fewer test are needed, but the time complexity for their decoding is exponential and not computationaly feasible).
Conclusion:
My question is whether or not you can beat n calls on a fixed testing scheme [...]
For such a scheme and a sufficiently large value of N, a disjunct matrix can be constructed which would have less than K * [d*d/log(d)*log(N)] rows. So, for large values of N, yes, you can beat it.
The underlying question (challenge) is kind of silly. If the binary search answer is acceptable (where it sums sub arrays and sends them to IsEven) then I can think of a way to do it with E or less calls to IsEven (assuming the numbers are integers of course).
JavaScript to demonstrate
// sort the array by only the first bit of the number
A.sort(function(x,y) { return (x & 1) - (y & 1); });
// all of the evens will be at the beginning
for(var i=0; i < E && i < A.length; i++) {
if(IsEven(A[i]))
Print(A[i]);
else
break;
}
Not exactly a solution, but just few thoughts.
It is easy to see that if a solution exists for array length n that takes less than n tests, then for any array length m > n it is easy to see that there is always a solution with less than m tests. So, if you have a solution for n = 2 or 3 or 4, then the problem is solved.
You can split the array into pairs of numbers and for each pair: if the sum is odd, then exactly one of them is even, otherwise if one of the numbers is even, then both of them are even. This way for each pair it takes either one or two tests. Best case:n/2 tests, worse case:n tests, if even and odd numbers are chosen with equal probability, then: 3n/4 tests.
My hunch is there is no solution with less than n tests. Not sure how to prove it.
UPDATE: The second solution can be extended in the following way.
Check if the sum of two numbers is even. If odd, then exactly one of them is even. Otherwise label the set as "homogeneous set of size 2". Take two "homogenous set"s of same size n. Pick one number from each set and check if their sum is even. If it is even, combine these two sets to a "homogeneous set of size 2n". Otherwise, it implies that one of those sets purely consists of even numbers and the other one purely odd numbers.
Best case:n/2 tests. Average case: 3*n/2. Worst case is still n. Worst case exists only when all the numbers are even or all the numbers are odd.
If we can add and multiply array elements, then we can compute every Boolean function (up to complementation) on the low-order bits. Simulate a circuit that encodes the positions of the even numbers as a number from 0 to nC0 + nC1 + ... + nCe - 1 represented in binary and use calls to isEven to read off the bits.
Number of calls used: within 1 of the information-theoretic optimum.
See also fully homomorphic encryption.

Distance measure between two sets of possibly different size

I have 2 sets of integers, A and B, not necessarily of the same size. For my needs, I take the distance between each 2 elements a and b (integers) to be just abs(a-b).
I am defining the distance between the two sets as follows:
If the sets are of the same size, minimize the sum of distances of all pairs [a,b] (a from A and b from B), minimization over all possible 'pairs partitions' (there are n! possible partitions).
If the sets are not of the same size, let's say A of size m and B of size n, with m < n, then minimize the distance from (1) over all subsets of B which are of size m.
My question is, is the following algorithm (just an intuitive guess) gives the right answer, according to the definition written above.
Construct a matrix D of size m X n, with D(i,j) = abs(A(i)-B(j))
Find the smallest element of D, accumulate it, and delete the row and the column of that element. Accumulate the next smallest entry, and keep accumulating until all rows and columns are deleted.
for example, if A={0,1,4} and B={3,4}, then D is (with the elements above and to the left):
3 4
0 3 4
1 2 3
4 1 0
And the distance is 0 + 2 = 2, coming from pairing 4 with 4 and 3 with 1.
Note that this problem is referred to sometimes as the skis and skiers problem, where you have n skis and m skiers of varying lengths and heights. The goal is to match skis with skiers so that the sum of the differences between heights and ski lengths is minimized.
To solve the problem you could use minimum weight bipartite matching, which requires O(n^3) time.
Even better, you can achieve O(n^2) time with O(n) extra memory using the simple dynamic programming algorithm below.
Optimally, you can solve the problem in linear time if the points are already sorted using the algorithm described in this paper.
O(n^2) dynamic programming algorithm:
if (size(B) > size(A))
swap(A, B);
sort(A);
sort(B);
opt = array(size(B));
nopt = array(size(B));
for (i = 0; i < size(B); i++)
opt[i] = abs(A[0] - B[i]);
for (i = 1; i < size(A); i++) {
fill(nopt, infinity);
for (j = 1; j < size(B); j++) {
nopt[j] = min(nopt[j - 1], opt[j - 1] + abs(A[i] - B[j]));
swap(opt, nopt);
}
return opt[size(B) - 1];
After each iteration i of the outer for loop above, opt[j] contains the optimal solution matching {A[0],..., A[i]} using the elements {B[0],..., B[j]}.
The correctness of this algorithm relies on the fact that in any optimal matching if a1 is matched with b1, a2 is matched with b2, and a1 < a2, then b1 <= b2.
In order to get the optimum, solve the assignment problem on D.
The assignment problem finds a perfect matching in a bipartite graph such that the total edge weight is minimized, which maps perfectly to your problem. It is also in P.
EDIT to explain how OP's problem maps onto assignment.
For simplicity of explanation, extend the smaller set with special elements e_k.
Let A be the set of workers, and B be the set of tasks (the contents are just labels).
Let the cost be the distance between an element in A and B (i.e. an entry of D). The distance between e_k and anything is 0.
Then, we want to find a perfect matching of A and B (i.e. every worker is matched with a task), such that the cost is minimized. This is the assignment problem.
No It's not a best answer, for example:
A: {3,7} and B:{0,4} you will choose: {(3,4),(0,7)} and distance is 8 but you should choose {(3,0),(4,7)} in this case distance is 6.
Your answer gives a good approximation to the minimum, but not necessarily the best minimum. You are following a "greedy" approach which is generally much easier, and gives good results, but can not guarantee the best answer.

Resources