So we need to detect whether an image, created by a scanner, represents an empty page. I'm way out of my depth when it comes to image processing, so I have to run this by the community.
Here's what I have come up with so far:
Empty pages can be glaringly white, gray recycled paper, or yellowed old paper. The current idea is to create a histogram for a page, look for a steep increase of the curve, and get the percentage of pixels are darker than that. If that exceeds a threshold, the page is likely not empty.
Since this would likely classify a page containing a single line of text at the top as empty, we would tile the page and gather statistics about each tile.
We would need to detect scanned staplers and holes from binding (likely only in certain tiles), but this can be put off to some later stage. However, if you have an idea what to look out for besides these two, please mention it in a comment.
This needs to be fast. It's part of a document processing workflow that processes (tens of) thousands of pages per day. If processing a page takes ten seconds longer, than our customers will have to tell their customers that they'll have to wait several days longer for their results. (If this results in more false positives, some customers would rather have someone check a few dozen found "empty" pages, than have their customer wait one more day.)
So here's my questions:
Is it a good idea to take this route or is there something better?
If we do it this way, how would I do this? What's a good (cheap) algorithm for finding a threshold for a page? Could we gain significant speed by assuming a similar threshold for a batch of documents? To which precision could brightness values be rounded, before getting logged? What quirks could we expect?
If you know that a scanned page is going to fill the image entirely, then calculating the standard deviation might be a good way of doing this.
I would suggest blurring page slightly to reduce some noise. Then calculate the SD for the page, in theory, a page the is more or less all one colour will have a low SD and one with lots of text will have a higher SD. Then it's a case of 'training' the system to work out when a page is plain and when it is text. You might find that certain pages are hard for it to tell.
You could have it trained by having it process a vast number of pages, and it goes through them all, and you say if it is plain or not.
EDIT
ok, a white page with black text, if we have just the page and no surrounding stuff, will have a mean colour of grey, probably a fairly light grey. Getting the average is a for loop through all the pixels, adding their values and then dividing by the number of pixels. I'm not good with this o(logN) stuff, but suffice to say, it will not that long. Unless you have HUGE images.
SD is a second for loop, this time we are counting up how different each pixel is from the mean, and then dividing by the mean. This will take a bit longer then the mean, as we have to do something like
diff = thispixel - mean;
if(diff < 0) {
diff = -diff;
}
runningTotal += diff;
For a plain coloured page, each pixel will be close to the mean value, thus our SD will be low. If the SD is below a certain value, we can assume that this means the page is all one colour.
This might have problems if their is very minimal amount of text, as it will not have a large influence on the SD, so maybe like you suggested in the question, break the page into sections. I suggest strips horizontally, as text tends to go this way. If we do one of these strips one at a time, once one strip suggests it has text, we can stop as we don't care if the rest is blank or not.
Blurring the page will help reduce noise, as the odd pixel of noise will be reduced in its impact, thus give you a 'tighter' SD. You could also use it to reduce the resolution of your image.
Say you sauce image is 300 wide by 900 high, you could sample pixels in blocks of nine, 3 *3, and thus end up with an image that is 100 wide by 300 high, so it can actually be used to reduce the amount of calculations you need to do, in this case by a ninth!
The main problem is going to be in working out how high an SD can be with just a plain page. Maybe have it find the SD of a load of blank pages.
By the sounds of it, you are probably going to want to have a middle ground that lets it be unsure and ask for human intervention, possibly letting the human value train the system to get better?
Perform some sort of simple edge detection. If the number of pixels constituting edges is below some threshold, then there's going to be a high probability the page is empty. This could be improved by classifying certain edges that correspond with high certainty (by shape and location) to punched holes and staples as trivial and discounting them from the metric.
When I worked for a document processor (~8 years ago), we handled client projects varying from very "clean" only-US-letter-sized pages to cover-/cardstock of irregular shapes mixed with normal pages. Operators fed pre-sorted files into scanning machines and only had to watch for folded corners and similar mechanical problems. Their output was multiple streams of hundreds of images corresponding to a range of files. A single scanner operator could easily scan 15k pieces of paper in a shift (that's only 0.60 pages/sec, while a scanner at speed could handle 3 pages/sec and still scan both sides). Later operators processed those looking for key pages to mark file start and end. (Image recognition can be used here, sometimes, but people also provide a quality check on the first operators.) We had many variables that could be set per client project.
I'm basing the rough outline below on that experience and how it appears that your goals and workflow are similar.
(Terminology: By client I mean our client, e.g. a specific bank. A project or client project is a set of documents from that client that contains many files, e.g. all mortgages handled by a specific branch in a given year. A file is a logical arrangement that would normally be a physical file folder for one of the client's customers, e.g. all mortgage papers for one address.)
Cut off the top, bottom, sides, and corners. Throw these out of your calculations (even though you'll probably store them in the final image). This will cover staple holes, binder holes, but also (tiny) folded corners and very minute torn edges which appear as black spots. Depending on how you're scanning, the last two may be less of a problem.
Vary the sizes of these cuts for each client project, as required. For example, even a very thin edge slice, say 1-2mm, will eliminate most ragged edges without increasing false positive rate.
Convert to black and white, 1 bit per pixel. I suspect you are already doing this for some client projects anyway, so doing this efficiently and effectively, which can be subtle, should be no extra work. (Even if you don't store the 1bpp image as the deliverable result, the conversion will be helpful in empty page detection.) Eliminate noise by dropping any black pixels with none or only one black neighbor (using all surrounding 8 as neighbors).
After cutting extremities (#1) and this simplistic noise reduction, blank pages will have a very low number of black pixels; most blanks will have no black pixels at all – exempting exceptionally poor page quality, inked stamps (when scanning back-sides, mentioned more below), or other circumstances across the whole project, and so forth.
Depending on client project, you may set hotspots to be watched – the converse of cutting off the sides. For example, watching a 1" strip where a single line at the top of the page would appear may reduce false positives. A low contrast scan or faded hardcopy (perhaps even pencil, which can be common on back-sides) with only one line of text will be distinguished from a blank page this way.
What sections are worth watching depends on each project, but do not try to divide the page up into tiles and then subdivide those tiles into areas of interest. Instead, parallelize this on the page level; e.g. 1 worker per core, each worker handles a full page at a time.
Depending on how you're keying individual files, you may find it helpful to drop blanks (before marking start-of-file pages, which is still often a manual process even at high volume) then watch for blank pages at unexpected points after files have been keyed (e.g. expected would be the last page of the file, without being two blanks in a row, etc.).
For example, if a particular project is only scanning one side of each page, then detecting two blank pages in a row is a good indication that a couple pages in a file were flipped upside-down (clients often hand over hardcopy files like this). Either the sorters (who remove things like staples and paperclips) or the first machine operators should have caught this mistake, but, regardless, it will now need a manual check to verify.
On the other hand, there were projects that had very clean files so sorters could insert (usually colored) blank pages marking file boundaries. In this case, the second set of people still did the keying by file number, but only had to examine the first page of each file. This wasn't rare, but not common either.
Before I start rambling a bit, I hope my main point comes across: you have to decide how to mitigate rates of false positives (= data loss) and false negatives (= annoying blanks and otherwise harmless, but a maximum allowed rate may still be specified in the project contract). That varies drastically by project and the type of files/documents you're handling, but it guides you in how to do the detection. You will get much better results from a tailored approach than trying one-size-fits-all, even if the tailored approaches are 80-98% similar.
If you're delivering 1bpp images to the client, for example, you might not even want/need to eliminate blanks as filesize (and ultimately size of the delivered dataset) won't be an issue. This can be an acceptable trade-off when eliminating most blanks is harder while maintaining a low false positive rate; such as for files with inked stamps ("received on", "accepted", "due date", etc.; they bleed through to the back) or other problems, for example.
My fall class does a bunch of image-processing projects.
Here's what I would try:
Project from color to grayscale
Pour all the pixels into a simple histogram with say 100 buckets between 0 and 1
Find a local minimum in the histogram such that the absoluete value of above - below is as small as possible, where above is the number of brighter pixels and below is the number of darker pixels
Force the above pixels to white and the below pixels to black
If you like, as an extra step you could remove black edges
If there are hardly any black pixels, the page is blank
The first two steps should be combined, and they are the only time-consuming steps; on a 600dpi images you may have to touch many millions of pixels. The rest will be lightning fast. I'd be very surprised if you can't classify multiple images per second—especially if you know there will be no black edges.
The only part that requires training or experiment is the last step. It's also possible that you will need to fiddle around with the number of buckets in the histogram; if there are too many buckets, you may have a bad local minimum.
Good luck, and report back to us how you make out!
Check out this line detection algorithm: http://homepages.inf.ed.ac.uk/rbf/HIPR2/linedet.htm. In addition to a detailed explanation of how the algo works there's a demo where you can use your own image and see the results. I tried two images: 1) a B&W scan of a receipt, 2) the B&W, "blank" back side of that same receipt. All of the edge detection algorithms I tried found edges on the "blank" page. But, this line detection algorithm was the only algorithm that correctly found lines on the front page and yet didn't find anything on the "blank" back page.
It looks as if you're trying to convert all paperwork for a company into digital documents. Some of this paper can be really old.
Say your text is black, and any other color is the background. If you take two weighted averages, one consisting of what you think is the text, and one consisting of the background, you can compare those two and see if they're distant enough to consider further evaluation. This will removing any uneven aging of the paper.
Staple holes and punched holes in paper are pretty standard in size, but they'd show up as gray or not at all if you're scanning on a white background. If not, then you can guess where these are and remove them.
Now, we look at areas of high interest, areas where the black pixels are the most dense. Select a portion of that and OCR it. Place the starting top-left closest to an area where text begins. On a typical document, a solid blank linear area going left-to-right and another going top-to-bottom denotes the top and left sides of a paragraph. You can be sure that you got a line of text because below a line of text is another blank left-to-right area. So you don't need to worry about selecting a portion that will chop text in half.
You could take the mean gray level (integer) of each few rows of the scanned image (depending on the resolution and how many lines are required to capture one line of text), then consider the spread of row means. If there is no text on the page, the spread of means should be small (i.e. background ranges from 250-255), and if there is text on the whole page or on part of the page, the spread would be much larger (i.e. 15 for text to 250 for background).
Seems to me like the solution should be computationally simple due to the large number of pages to check. Approaches requiring further processing (edge detection, filtering, etc) seem like overkill, and will take much longer to run.
There is no need to process pixel by pixel, using matrices will help this be more efficient, for example using Numpy you can calculate means, sums, etc. for entire rows, columns or matrices at once much more efficiently. There is also no need to process EVERY pixel, a good sample of rows should be able to accomplish the task with similar accuracy. 8bit accuracy should be fine, and you could even resample to large pixels before running this processing algorithm.
You can do a noisy trim, i.e. blur the image and do an auto-trim (without actually modifying the image). If the width or height of the trim result is below a threshold (e.g. 80 to 100 for a 600 dpi image) then the page is empty.
A proof of concept using the ImageMagick command line front-end:
$ convert scan.png -shave 300x0 -virtual-pixel White -blur 0x15 -fuzz 15% \
-trim info:
The above command assumes a 600 dpi DIN A4 black and white (1 Bit) image. It also ignores a margin of 300 pixels such that artifacts like perforation holes don't yield false negatives.
Related
I don't know much about image processing so please bear with me if this is not possible to implement.
I have several sets of aerial images of the same area originating from different sources. The pictures have been taken during different seasons, under different lighting conditions etc. Unfortunately some images look patchy and suffer from discolorations or are partially obstructed by clouds or pix-elated, as par example picture1 and picture2
I would like to take as an input several images of the same area and (by some kind of averaging them) produce 1 picture of improved quality. I know some C/C++ so I could use some image processing library.
Can anybody propose any image processing algorithm to achieve it or knows any research done in this field?
I would try with a "color twist" transform, i.e. a 3x3 matrix applied to the RGB components. To implement it, you need to pick color samples in areas that are split by a border, on both sides. You should fing three significantly different reference colors (hence six samples). This will allow you to write the nine linear equations to determine the matrix coefficients.
Then you will correct the altered areas by means of this color twist. As the geometry of these areas is intertwined with the field patches, I don't see a better way than contouring the regions by hand.
In the case of the second picture, the limits of the regions are blurred so that you will need to blur the region mask as well and perform blending.
In any case, don't expect a perfect repair of those problems as the transform might be nonlinear, and completely erasing the edges will be difficult. I also think that colors are so washed out at places that restoring them might create ugly artifacts.
For the sake of illustration, a quick attempt with PhotoShop using manual HLS adjustment (less powerful than color twist).
The first thing I thought of was a kernel matrix of sorts.
Do a first pass of the photo and use an edge detection algorithm to determine the borders between the photos - this should be fairly trivial, however you will need to eliminate any overlap/fading (looks like there's a bit in picture 2), you'll see why in a minute.
Do a second pass right along each border you've detected, and assume that the pixel on either side of the border should be the same color. Determine the difference between the red, green and blue values and average them along the entire length of the line, then divide it by two. The image with the lower red, green or blue value gets this new value added. The one with the higher red, green or blue value gets this value subtracted.
On either side of this line, every pixel should now be the exact same. You can remove one of these rows if you'd like, but if the lines don't run the length of the image this could cause size issues, and the line will likely not be very noticeable.
This could be made far more complicated by generating a filter by passing along this line - I'll leave that to you.
The issue with this could be where there was development/ fall colors etc, this might mess with your algorithm, but there's only one way to find out!
I am trying to count the number of hairs transplanted in the following image. So practically, I have to count the number of spots I can find in the center of image.
(I've uploaded the inverted image of a bald scalp on which new hairs have been transplanted because the original image is bloody and absolutely disgusting! To see the original non-inverted image click here. To see the larger version of the inverted image just click on it). Is there any known image processing algorithm to detect these spots? I've found out that the Circle Hough Transform algorithm can be used to find circles in an image, I'm not sure if it's the best algorithm that can be applied to find the small spots in the following image though.
P.S. According to one of the answers, I tried to extract the spots using ImageJ, but the outcome was not satisfactory enough:
I opened the original non-inverted image (Warning! it's bloody and disgusting to see!).
Splited the channels (Image > Color > Split Channels). And selected the blue channel to continue with.
Applied Closing filter (Plugins > Fast Morphology > Morphological Filters) with these values: Operation: Closing, Element: Square, Radius: 2px
Applied White Top Hat filter (Plugins > Fast Morphology > Morphological Filters) with these values: Operation: White Top Hat, Element: Square, Radius: 17px
However I don't know what to do exactly after this step to count the transplanted spots as accurately as possible. I tried to use (Process > Find Maxima), but the result does not seem accurate enough to me (with these settings: Noise tolerance: 10, Output: Single Points, Excluding Edge Maxima, Light Background):
As you can see, some white spots have been ignored and some white areas which are not actually hair transplant spots, have been marked.
What set of filters do you advise to accurately find the spots? Using ImageJ seems a good option since it provides most of the filters we need. Feel free however, to advise what to do using other tools, libraries (like OpenCV), etc. Any help would be highly appreciated!
I do think you are trying to solve the problem in a bit wrong way. It might sound groundless, so I'd better show my results first.
Below I have a crop of you image on the left and discovered transplants on the right. Green color is used to highlight areas with more than one transplant.
The overall approach is very basic (will describe it later), but still it provides close to be accurate results. Please note, it was a first try, so there is a lot of room for enhancements.
Anyway, let's get back to the initial statement saying you approach is wrong. There are several major issues:
the quality of your image is awful
you say you want to find spots, but actually you are looking for hair transplant objects
you completely ignores the fact average head is far from being flat
it does look like you think filters will add some important details to your initial image
you expect algorithms to do magic for you
Let's review all these items one by one.
1. Image quality
It might be very obvious statement, but before the actual processing you need to make sure you have best possible initial data. You might spend weeks trying to find a way to process photos you have without any significant achievements. Here are some problematic areas:
I bet it is hard for you to "read" those crops, despite the fact you have the most advanced object recognition algorithms in your brain.
Also, your time is expensive and you still need best possible accuracy and stability. So, for any reasonable price try to get: proper contrast, sharp edges, better colors and color separation.
2. Better understanding of the objects to be identified
Generally speaking, you have a 3D objects to be identified. So you can analyze shadows in order to improve accuracy. BTW, it is almost like a Mars surface analysis :)
3. The form of the head should not be ignored
Because of the form of the head you have distortions. Again, in order to get proper accuracy those distortions should be corrected before the actual analysis. Basically, you need to flatten analyzed area.
3D model source
4. Filters might not help
Filters do not add information, but they can easily remove some important details. You've mentioned Hough transform, so here is interesting question: Find lines in shape
I will use this question as an example. Basically, you need to extract a geometry from a given picture. Lines in shape looks a bit complex, so you might decide to use skeletonization
All of a sadden, you have more complex geometry to deal with and virtually no chances to understand what actually was on the original picture.
5. Sorry, no magic here
Please be aware of the following:
You must try to get better data in order to achieve better accuracy and stability. The model itself is also very important.
Results explained
As I said, my approach is very simple: image was posterized and then I used very basic algorithm to identify areas with a specific color.
Posterization can be done in a more clever way, areas detection can be improved, etc. For this PoC I just have a simple rule to highlight areas with more than one implant. Having areas identified a bit more advanced analysis can be performed.
Anyway, better image quality will let you use even simple method and get proper results.
Finally
How did the clinic manage to get Yondu as client? :)
Update (tools and techniques)
Posterization - GIMP (default settings,min colors)
Transplant identification and visualization - Java program, no libraries or other dependencies
Having areas identified it is easy to find average size, then compare to other areas and mark significantly bigger areas as multiple transplants.
Basically, everything is done "by hand". Horizontal and vertical scan, intersections give areas. Vertical lines are sorted and used to restore the actual shape. Solution is homegrown, code is a bit ugly, so do not want to share it, sorry.
The idea is pretty obvious and well explained (at least I think so). Here is an additional example with different scan step used:
Yet another update
A small piece of code, developed to verify a very basic idea, evolved a bit, so now it can handle 4K video segmentation in real-time. The idea is the same: horizontal and vertical scans, areas defined by intersected lines, etc. Still no external libraries, just a lot of fun and a bit more optimized code.
Additional examples can be found on YouTube: RobotsCanSee
or follow the progress in Telegram: RobotsCanSee
I've just tested this solution using ImageJ, and it gave good preliminary result:
On the original image, for each channel
Small (radius 1 or 2) closing in order to get rid of the hairs (black part in the middle of the white one)
White top-hat of radius 5 in order to detect the white part around each black hair.
Small closing/opening in order to clean a little bit the image (you can also use a median filter)
Ultimate erode in order to count the number of white blob remaining. You can also certainly use a LoG (Laplacian of Gaussian) or a distance map.
[EDIT]
You don't detect all the white spots using the maxima function, because after the closing, some zones are flat, so the maxima is not a point, but a zone. At this point, I think that an ultimate opening or an ultimate eroded would give you the center or each white spot. But I am not sure that there is a function/pluggin doing it in ImageJ. You can take a look to Mamba or SMIL.
A H-maxima (after white top-hat) may also clean a little bit more your results and improve the contrast between the white spots.
As Renat mentioned, you should not expect algorithms to do magic for you, however I'm hopeful to come up with a reasonable estimate of the number of spots. Here, I'm going to give you some hints and resources, check them out and call me back if you need more information.
First, I'm kind of hopeful to morphological operations, but I think a perfect pre-processing step may push the accuracy yielded by them dramatically. I want you put my finger on the pre-processing step. Thus I'm going ti work with this image:
That's the idea:
Collect and concentrate the mass around the spot locations. What do I mean my concentrating the masses? Let's open the book from the other side: As you see, the provided image contains some salient spots surrounded by some noisy gray-level dots.
By dots, I mean the pixels that are not part of a spot, but their gray-value are larger than zero (pure black) - which are available around the spots. It is clear that if you clear these noisy dots, you surely will come up with a good estimate of spots using other processing tools such as morphological operations.
Now, how to make the image more sharp? What if we could make the dots to move forward to their nearest spots? This is what I mean by concentrating the masses over the spots. Doing so, only the prominent spots will be present in the image and hence we have made a significant step toward counting the prominent spots.
How to do the concentrating thing? Well, the idea that I just explained is available in this paper, which its code is luckily available. See the section 2.2. The main idea is to use a random walker to walk on the image for ever. The formulations is stated such that the walker will visit the prominent spots far more times and that can lead to identifying the prominent spots. The algorithm is modeled Markov chain and The equilibrium hitting times of the ergodic Markov chain holds the key for identifying the most salient spots.
What I described above is just a hint and you should read that short paper to get the detailed version of the idea. Let me know if you need more info or resources.
That is a pleasure to think on such interesting problems. Hope it helps.
You could do the following:
Threshold the image using cv::threshold
Find connected components using cv::findcontour
Reject the connected components of size larger than a certain size as you seem to be concerned about small circular regions only.
Count all the valid connected components.
Hopefully, you have a descent approximation of the actual number of spots.
To be statistically more accurate, you could repeat 1-4 for a range of thresholds and take the average.
This is what you get after applying unsharpen radius 22, amount 5, threshold 2 to your image.
This increases the contrast between the dots and the surrounding areas. I used the ballpark assumption that the dots are somewhere between 18 and 25 pixels in diameter.
Now you can take the local maxima of white as a "dot" and fill it in with a black circle until the circular neighborhood of the dot (a circle of radius 10-12) erases the dot. This should let you "pick off" the dots joined to each other in clusters more than 2. Then look for local maxima again. Rinse and repeat.
The actual "dot" areas are in stark contrast to the surrounding areas, so this should let you pick them off as well as you would by eyeballing it.
I am currently working on OCR software and my idea is to use templates to try to recognize data inside invoices.
However scanned invoices can have several 'flaws' with them:
Not all invoices, based on a single template, are correctly aligned under the scanner.
People can write on invoices
etc.
Example of invoice: (Have to google it, sadly cannot add a more concrete version as client data is confidential obviously)
I find my data in the invoices based on the x-values of the text.
However I need to know the scale of the invoice and the offset from left/right, before I can do any real calculations with all data that I have retrieved.
What have I tried so far?
1) Making the image monochrome and use the left and right bounds of the first appearance of a black pixel. This fails due to the fact that people can write on invoices.
2) Divide the invoice up in vertical sections, use the sections that have the highest amount of black pixels. Fails due to the fact that the distribution is not always uniform amongst similar templates.
I could really use your help on (1) how to identify important points in invoices and (2) on what I should focus as the important points.
I hope the question is clear enough as it is quite hard to explain.
Detecting rotation
I would suggest you start by detecting straight lines.
Look (perhaps randomly) for small areas with high contrast, i.e. mostly white but a fair amount of very black pixels as well. Then try to fit a line to these black pixels, e.g. using least squares method. Drop the outliers, and fit another line to the remaining points. Iterate this as required. Evaluate how good that fit is, i.e. how many of the pixels in the observed area are really close to the line, and how far that line extends beyond the observed area. Do this process for a number of regions, and you should get a weighted list of lines.
For each line, you can compute the direction of the line itself and the direction orthogonal to that. One of these numbers can be chosen from an interval [0°, 90°), the other will be 90° plus that value, so storing one is enough. Take all these directions, and find one angle which best matches all of them. You can do that using a sliding window of e.g. 5°: slide accross that (cyclic) region and find a value where the maximal number of lines are within the window, then compute the average or median of the angles within that window. All of this computation can be done taking the weights of the lines into account.
Once you have found the direction of lines, you can rotate your image so that the lines are perfectly aligned to the coordinate axes.
Detecting translation
Assuming the image wasn't scaled at any point, you can then try to use a FFT-based correlation of the image to match it to the template. Convert both images to gray, pad them with zeros till the originals take up at most 1/2 the edge length of the padded image, which preferrably should be a power of two. FFT both images in both directions, multiply them element-wise and iFFT back. The resulting image will encode how much the two images would agree for a given shift relative to one another. Simply find the maximum, and you know how to make them match.
Added text will cause no problems at all. This method will work best for large areas, like the company logo and gray background boxes. Thin lines will provide a poorer match, so in those cases you might have to blur the picture before doing the correlation, to broaden the features. You don't have to use the blurred image for further processing; once you know the offset you can return to the rotated but unblurred version.
Now you know both rotation and translation, and assumed no scaling or shearing, so you know exactly which portion of the template corresponds to which portion of the scan. Proceed.
If rotation is solved already, I'd just sum up all pixel color values horizontally and vertically to a single horizontal / vertical "line". This should provide clear spikes where you have horizontal and vertical lines in the form.
p.s. Generated a corresponding horizontal image with Gimp's scaling capabilities, attached below (it's a bit hard to see because it's only one pixel high and may get scaled down because it's > 700 px wide; the url is http://i.stack.imgur.com/Zy8zO.png ).
I have a web cam that takes a picture every N seconds. This gives me a collection of images of the same scene over time. I want to process that collection of images as they are created to identify events like someone entering into the frame, or something else large happening. I will be comparing images that are adjacent in time and fixed in space - the same scene at different moments of time.
I want a reasonably sophisticated approach. For example, naive approaches fail for outdoor applications. If you count the number of pixels that change, for example, or the percentage of the picture that has a different color or grayscale value, that will give false positive reports every time the sun goes behind a cloud or the wind shakes a tree.
I want to be able to positively detect a truck parking in the scene, for example, while ignoring lighting changes from sun/cloud transitions, etc.
I've done a number of searches, and found a few survey papers (Radke et al, for example) but nothing that actually gives algorithms that I can put into a program I can write.
Use color spectroanalisys, without luminance: when the Sun goes down for a while, you will get similar result, colors does not change (too much).
Don't go for big changes, but quick changes. If the luminance of the image changes -10% during 10 min, it means the usual evening effect. But when the change is -5%, 0, +5% within seconds, its a quick change.
Don't forget to adjust the reference values.
Split the image to smaller regions. Then, when all the regions change same way, you know, it's a global change, like an eclypse or what, but if only one region's parameters are changing, then something happens there.
Use masks to create smart regions. If you're watching a street, filter out the sky, the trees (blown by wind), etc. You may set up different trigger values for different regions. The regions should overlap.
A special case of the region is the line. A line (a narrow region) contains less and more homogeneous pixels than a flat area. Mark, say, a green fence, it's easy to detect wheter someone crosses it, it makes bigger change in the line than in a flat area.
If you can, change the IRL world. Repaint the fence to a strange color to create a color spectrum, which can be identified easier. Paint tags to the floor and wall, which can be OCRed by the program, so you can detect wheter something hides it.
I believe you are looking for Template Matching
Also i would suggest you to look on to Open CV
We had to contend with many of these issues in our interactive installations. It's tough to not get false positives without being able to control some of your environment (sounds like you will have some degree of control). In the end we looked at combining some techniques and we created an open piece of software named OpenTSPS (Open Toolkit for Sensing People in Spaces - http://www.opentsps.com). You can look at the C++ source in github (https://github.com/labatrockwell/openTSPS/).
We use ‘progressive background relearn’ to adjust to the changing background over time. Progressive relearning is particularly useful in variable lighting conditions – e.g. if lighting in a space changes from day to night. This in combination with blob detection works pretty well and the only way we have found to improve is to use 3D cameras like the kinect which cast out IR and measure it.
There are other algorithms that might be relevant, like SURF (http://achuwilson.wordpress.com/2011/08/05/object-detection-using-surf-in-opencv-part-1/ and http://en.wikipedia.org/wiki/SURF) but I don't think it will help in your situation unless you know exactly the type of thing you are looking for in the image.
Sounds like a fun project. Best of luck.
The problem you are trying to solve is very interesting indeed!
I think that you would need to attack it in parts:
As you already pointed out, a sudden change in illumination can be problematic. This is an indicator that you probably need to achieve some sort of illumination-invariant representation of the images you are trying to analyze.
There are plenty of techniques lying around, one I have found very useful for illumination invariance (applied to face recognition) is DoG filtering (Difference of Gaussians)
The idea is that you first convert the image to gray-scale. Then you generate two blurred versions of this image by applying a gaussian filter, one a little bit more blurry than the first one. (you could use a 1.0 sigma and a 2.0 sigma in a gaussian filter respectively) Then you subtract from the less-blury image, the pixel intensities of the more-blurry image. This operation enhances edges and produces a similar image regardless of strong illumination intensity variations. These steps can be very easily performed using OpenCV (as others have stated). This technique has been applied and documented here.
This paper adds an extra step involving contrast equalization, In my experience this is only needed if you want to obtain "visible" images from the DoG operation (pixel values tend to be very low after the DoG filter and are veiwed as black rectangles onscreen), and performing a histogram equalization is an acceptable substitution if you want to be able to see the effect of the DoG filter.
Once you have illumination-invariant images you could focus on the detection part. If your problem can afford having a static camera that can be trained for a certain amount of time, then you could use a strategy similar to alarm motion detectors. Most of them work with an average thermal image - basically they record the average temperature of the "pixels" of a room view, and trigger an alarm when the heat signature varies greatly from one "frame" to the next. Here you wouldn't be working with temperatures, but with average, light-normalized pixel values. This would allow you to build up with time which areas of the image tend to have movement (e.g. the leaves of a tree in a windy environment), and which areas are fairly stable in the image. Then you could trigger an alarm when a large number of pixles already flagged as stable have a strong variation from one frame to the next one.
If you can't afford training your camera view, then I would suggest you take a look at the TLD tracker of Zdenek Kalal. His research is focused on object tracking with a single frame as training. You could probably use the semistatic view of the camera (with no foreign objects present) as a starting point for the tracker and flag a detection when the TLD tracker (a grid of points where local motion flow is estimated using the Lucas-Kanade algorithm) fails to track a large amount of gridpoints from one frame to the next. This scenario would probably allow even a panning camera to work as the algorithm is very resilient to motion disturbances.
Hope this pointers are of some help. Good Luck and enjoy the journey! =D
Use one of the standard measures like Mean Squared Error, for eg. to find out the difference between two consecutive images. If the MSE is beyond a certain threshold, you know that there is some motion.
Also read about Motion Estimation.
if you know that the image will remain reletivly static I would reccomend:
1) look into neural networks. you can use them to learn what defines someone within the image or what is a non-something in the image.
2) look into motion detection algorithms, they are used all over the place.
3) is you camera capable of thermal imaging? if so it may be worthwile to look for hotspots in the images. There may be existing algorithms to turn your webcam into a thermal imager.
General: I'm hoping that the use-case I'm about to describe is a simple case of an optical flow problem and since I don't have much knowledge on the subject, I was wondering if anyone has any suggestions on how I can approach solving my problem.
Research I've already done: I have began reading the High Accuracy Optical Flow Estimation Based on a Theory for Warping paper and am planning on looking over the Particle Video paper. I have found a MATLAB High Accuracy Optical Flow implementation of optical flow. However, the papers (and the code) seem to describe concepts that are very involved and may require a lot of time for me to dig in and understand. I am hoping that the solution to my problem may be more simple.
Problem: I have a sequence of images. The images depict a material breakage process, where the material and background are black and the cracks are white. I am interested in traversing the sequence of images in reverse in an attempt to map all of the cracks that have formed in the breakage process to the first black image. You can think of the material as a large puzzle and I am trying to put the pieces back together in the reverse order that they broke.
In each image, there can be some cracks that are just emerging and/or some cracks that have been fully formed (and thus created a fragment). Throughout the breakage process, some fragments may separate and break further. The fragments can also move farther away from one another (the change is slight between subsequent frames).
Desired Output: All of the cracks/lines in the sequence mapped to the first image in the sequence.
Additional Notes: Images are available in grayscale format (i.e. original) as well as in binary format, where the cracks have been outlined in white and the background is completely black. See below for some image examples.
The top row shows the original images and the bottom row shows the binary images. As you can see, the crack that goes down the middle grows wider and wider as the image sequence progresses. Thus, the bottom crack moves together with the lower fragment. When traversing the sequence in reverse, I hope to algorithmically realize that the middle crack comes together as one (and map it correctly to the first image), and also map the bottom crack correctly, keeping its correct correspondence (size and position) with the bottom fragment.
A sequence typically contains about 30~40 images, so I've just shown the beginning subset. Also, although these images don't show it, it is possible that a particular image only contains the beginning of the crack (i.e. its initial appearance) and in subsequent images it gets longer and longer and may join with other cracks.
Language: Although not necessary, I would like to implement the solution using MATLAB (just because most of the other code that relates to the project has been done in MATLAB). However, if OpenCV may be easier, I am flexible in my language/library usage.
Any ideas are greatly appreciated.
Traverse forward rather than reverse, and don't use optical flow. Use the fracture lines to segment the black parts, track the centroid of each black segment over time. Whenever a new fracture line appears that cuts across a black segment, split the segment into two and continue tracking each segment separately.
From this you should be able to construct a tree structure representing the segmentation of the black parts over time. The fracture lines can be added as metadata to this tree, perhaps assigning fracture lines to the segment node in which they first appeared.
I would advise you to follow your initial idea of backtracking the cracks. Yo kind of know how the cracks look like so you can track all the points that belong to the crack. You just track all the white points with an optical flow tracker, start with Lukas-Kanade tracker and see where you get. The high-accuracy optical flow method is a global one and more general, I'll track all the pixels in the image trying to keep some smoothness everywhere. The LK is a local method that will just use a small window around each point to do the tracking. The problem is that appart from the cracks all the pixels are plain black so nothing to track there, you'll just waist time trying to track something that you can't track and you don't need to track.
If lines are very straight you might end up with what's called the aperture problem and you'll get inaccurate results. You can also try some shape fitting/deformation based on snakes.
I agree to damian. Most optical flow methods like the HAOF rely on the first-order taylor approximation of the intensity constancy constrian equation I(x,t)=I(x+v,t+dt). That mean the solution depends on image derivatives where the gradient determine the motion vector magnitude and angle i.e. you need a certain amount of texture. However the very low texture of your non-binarised images could be enough. You could try histogram equalization to increase the contrast of your input data but it is important to apply the same transformation for both input images. e.g. as follows:
cv::Mat equalizeMat(grayInp1.rows, grayInp1.cols * 2 , CV_8UC1);
grayInp1.copyTo(equalizeMat(cv::Rect(0,0,grayInp1.cols,grayInp1.rows)));
grayInp2.copyTo(equalizeMat(cv::Rect(grayInp1.cols,0,grayInp2.cols,grayInp2.rows)));
cv::equalizeHist(equalizeMat,equalizeMat);
equalizeMat(cv::Rect(0,0,grayInp1.cols,grayInp1.rows)).copyTo(grayInp1);
equalizeMat(cv::Rect(grayInp1.cols,0,grayInp2.cols,grayInp2.rows)).copyTo(grayInp2);
// estimate optical flow