GDB If statement return values? - debugging

Is there a way I can read if statements being evaluated? I mean, like get the return value of realpath in -
if(realpath(path.c_str(), realPath) == 0)

You can step into and finish realpath function. The returned value will be printed on screen.

at the gdb prompt (if you got debug symbols enabled when you compiled)
print realpath(path.c_str(),realPath)
it will print the result, very nifty.

If you had a memory pointer laying around on your code, you could use GDB to allocate new memory space for it it, and use it to store the result of the expression you want to evaluate.
Check this page for more info.
(gdb) set variable p = malloc(sizeof(int))
(gdb) print p
$2 = (int *) 0x40013f98 (address allocated by malloc)
(gdb) set variable *p = 255
(gdb) print *p
$3 = 255

Related

Declare an lldb summary-string for a sized string type

I would like to have a formatter for the buildin string type of the nim language, but somehow I fail at providing it. Nim compilis to c, and the c representation of the string type you see here:
#if defined(__GNUC__) || defined(__clang__) || defined(_MSC_VER)
# define SEQ_DECL_SIZE /* empty is correct! */
#else
# define SEQ_DECL_SIZE 1000000
#endif
typedef char NIM_CHAR;
typedef long long int NI64;
typedef NI64 NI;
struct TGenericSeq {NI len; NI reserved; };
struct NimStringDesc {TGenericSeq Sup; NIM_CHAR data[SEQ_DECL_SIZE]; };
and here is the output of what I have tried in the lldb session:
(lldb) frame variable *longstring
(NimStringDesc) *longstring = {
Sup = (len = 9, reserved = 15)
data = {}
}
(lldb) frame variable longstring->data
(NIM_CHAR []) longstring->data = {}
(lldb) type summary add --summary-string "${&var[0]%s}" "NIM_CHAR []"
(lldb) frame variable longstring->data
(NIM_CHAR []) longstring->data = {}
(lldb) type summary add --summary-string "${var%s}" "NIM_CHAR *"
(lldb) frame variable longstring->data
(NIM_CHAR []) longstring->data = {}
(lldb) frame variable &longstring->data[0]
(NIM_CHAR *) &[0] = 0x00007ffff7f3a060 "9 - 3 - 2"
(lldb) frame variable *longstring
(lldb) type summary add --summary-string "${var.data%s}" "NimStringDesc"
(lldb) frame variable *longstring
(NimStringDesc) *longstring = NIM_CHAR [] # 0x7ffff7f3a060
(lldb) type summary add --summary-string "${&var.data[0]%s}" "NimStringDesc"
(lldb) frame variable *longstring
(NimStringDesc) *longstring = {
Sup = (len = 9, reserved = 15)
data = {}
}
(lldb)
I simply can't manage, that the output will just be data interpreted as a '\0' terminated c-string
The summary string syntax you've tried is (by design) not as syntax rich as C.
And since you're using a zero-sized array, I don't think we have any magic provision to treat that as a pointer-to string. You might want to file a bug about it, but in this case, it's arguable whether it would help you. Since your string is length-encoded it doesn't really need to be zero-terminated, and that is the only hint LLDB would understand out of the box to know when to stop reading out of a pointer-to characters.
In your case, you're going to have to resort to Python formatters
The things you need are:
the memory location of the string buffer
the length of the string buffer
a process to read memory out of
This is a very small Python snippet that does it - I'll give you enhancement suggestions as well, but let's start with the basics:
def NimStringSummary(valobj,stuff):
l = valobj.GetChildMemberWithName('Sup').GetChildMemberWithName('len').GetValueAsUnsigned(0)
s = valobj.GetChildMemberWithName('data').AddressOf()
return '"%s"'% valobj.process.ReadMemory(s.GetValueAsUnsigned(0),l,lldb.SBError())
As you can see, first of all it reads the value of the length field;
then it reads the address-of the data buffer; then it uses the process that the value comes from to read the string content, and returns it in quotes
Now, this is a proof of concept. If you used it in production, you'd quickly run into a few issues:
What if your string buffer hasn't been initialized yet, and it says the size of the buffer is 20 gigabytes? You're going to have to limit the size of the data you're willing to read. For string-like types it has builtin knowledge of (char*, std::string, Swift.String, ...) LLDB prints out the truncated buffer followed by ..., e.g.
(const char*) buffer = "myBufferIsVeryLong"...
What if the pointer to the data is invalid? You should check that s.GetValueAsUnsigned(0) isn't actually zero - if it is you might want to print an error message like "null buffer".
Also, here I just passed an SBError that I then ignore - it would be better to pass one and then check it
All in all, you'd end up with something like:
import lldb
import os
def NimStringSummary(valobj,stuff):
l = valobj.GetChildMemberWithName('Sup').GetChildMemberWithName('len').GetValueAsUnsigned(0)
if l == 0: return '""'
if l > 1024: l = 1024
s = valobj.GetChildMemberWithName('data').AddressOf()
addr = s.GetValueAsUnsigned(0)
if addr == 0: return '<null buffer>'
err = lldb.SBError()
buf = valobj.process.ReadMemory(s.GetValueAsUnsigned(0),l,err)
if err.Fail(): return '<error: %s>' % str(err)
return '"%s"' % buf
def __lldb_init_module(debugger, internal_dict):
debugger.HandleCommand("type summary add NimStringDesc -F %s.NimStringSummary" % os.path.splitext(os.path.basename(__file__))[0])
The one extra trick is the __lldb_init_module function - this function is automatically called by LLDB whenever you 'command script import' a python file. This will allow you to add the 'command script import ' to your ~/.lldbinit file and automatically get the formatter to be picked up in all debug sessions
Hope this helps!

Print the value of a local variable through GDB

while debugging I need to print the value of a variable that is declared in the else block. something like this :
if(condition){
}
else {
string str = "abcd";
strcpy(globalvariable,str,sizeOf(str));
}
I want to see the value of str.
Run the program inside the debugger.
Set break point to stop the execution of program sequence using break command. In your case, (gdb) break strcpy to break every time it is being called strcpy in else.
To print you can use any of the following, x str, x/s str, print str, print "%s", str.
You can't see the value of str if condition is true during program flow because it does not exist in memory in this case.
You have to enter else block somehow, either during normal program flow or using gdb jump command.

How can I find out what is changing an object (or a simple variable) in Xcode 4 / lldb?

In some debuggers this is called "setting a trap" on a variable. What I want to do is trigger a breakpoint on any statement that changes the object. Or changes a property of the object.
I have an NSMutableDictionary that gets a value/key added to it but I can't find any statement that could be doing that.
You can set a watchpoint (from here):
Set a watchpoint on a variable when it is written to.
(lldb) watchpoint set variable -w write global_var
(lldb) watch set var -w write global_var
(gdb) watch global_var
Set a watchpoint on a memory location when it is written into. The size of the region to watch for defaults to the pointer size if no '-x byte_size' is specified. This command takes raw input, evaluated as an expression returning an unsigned integer pointing to the start of the region, after the '--' option terminator.
(lldb) watchpoint set expression -w write -- my_ptr
(lldb) watch set exp -w write -- my_ptr
(gdb) watch -location g_char_ptr
Set a condition on a watchpoint.
(lldb) watch set var -w write global
(lldb) watchpoint modify -c '(global==5)'
(lldb) c
...
(lldb) bt
* thread #1: tid = 0x1c03, 0x0000000100000ef5 a.out`modify + 21 at main.cpp:16, stop reason = watchpoint 1
frame #0: 0x0000000100000ef5 a.out`modify + 21 at main.cpp:16
frame #1: 0x0000000100000eac a.out`main + 108 at main.cpp:25
frame #2: 0x00007fff8ac9c7e1 libdyld.dylib`start + 1
(lldb) frame var global
(int32_t) global = 5
List all watchpoints.
(lldb) watchpoint list
(lldb) watch l
(gdb) info break
Delete a watchpoint.
(lldb) watchpoint delete 1
(lldb) watch del 1
(gdb) delete 1
Watchpoints are used to track a write to an address in memory (the default behavior). If you know where an object is in memory (you have a pointer to it), and you know the offset into the object that you care about, that's what watchpoints are for. For instance, in a simple C example, if you have:
struct info
{
int a;
int b;
int c;
};
int main()
{
struct info variable = {5, 10, 20};
variable.a += 5; // put a breakpoint on this line, run to the breakpoint
variable.b += 5;
variable.c += 5;
return variable.a + variable.b + variable.c;
}
Once you're at a breakpoint on variable.a, do:
(lldb) wa se va variable.c
(lldb) continue
And the program will pause when variable.c has been modified. (I didn't bother to type out the full "watch set variable" command).
With a complex object like an NSMutableDictionary, for instance, I don't think watchpoints will do what you need. You would need to know the implementation details of the NSMutableDictionary object layout to know which word (or words) of memory to set a watchpoint.

how could the const char * changed?

I am writing a program which can print the directory recursively,
below is the gdb debug segment
note that the d_path (it is a const char * passed as a parameter to print_dir_tree)
is "/home/cifer/.gftp" before step to "if (dr == NULL) {"
however, it is printed "/home/cifer/!\200" after this clause
who can tell me why?
thanks a lot!
Breakpoint 1, print_dir_tree (d_path=0x805b058 "/home/cifer/.gftp", depth=4)
at dir_demo.c:15
15 DIR *dr = opendir(d_path);
(gdb) print d_path
$2 = 0x805b058 "/home/cifer/.gftp"
(gdb) print d_path
$3 = 0x805b058 "/home/cifer/.gftp"
(gdb) step
16 if (dr == NULL) {
(gdb) print d_path
$4 = 0x805b058 "/home/cifer/!\200"
(gdb) step
20 struct dirent *de = NULL;
(gdb) print d_path
$5 = 0x805b058 "/home/cifer/!\200"
(gdb) step
21 while((de = readdir(dr)) != NULL) {
(gdb) print d_path
$6 = 0x805b058 "/home/cifer/!\200"
(gdb)
I would need to see your code to tell for sure but if you are asking if a const can be changed the answer is yes. If you are asking how it can be changed, that is simple, it is treated just like a regular variable but it will give you a warning when it is changed. If you are trying to change it and avoid a warning you can copy the variable and then make changes to it.

View array in LLDB: equivalent of GDB's '#' operator in Xcode 4.1

I would like to view an array of elements pointed to by a pointer. In GDB this can be done by treating the pointed memory as an artificial array of a given length using the operator '#' as
*pointer # length
where length is the number of elements I want to view.
The above syntax does not work in LLDB supplied with Xcode 4.1.
Is there any way how to accomplish the above in LLDB?
There are two ways to do this in lldb.
Most commonly, you use the parray lldb command which takes a COUNT and an EXPRESSION; EXPRESSION is evaluated and should result in a pointer to memory. lldb will then print COUNT items of that type at that address. e.g.
parray 10 ptr
where ptr is of type int *.
Alternatively, it can be done by casting the pointer to a pointer-to-array.
For example, if you have a int* ptr, and you want to view it as an array of ten integers, you can do
p *(int(*)[10])ptr
Because it relies only on standard C features, this method works without any plugins or special settings. It likewise works with other debuggers like GDB or CDB, even though they also have specialized syntaxes for printing arrays.
Starting with the lldb in Xcode 8.0, there is a new built-in parray command. So you can say:
(lldb) parray <COUNT> <EXPRESSION>
to print the memory pointed to by the result of the EXPRESSION as an array of COUNT elements of the type pointed to by the expression.
If the count is stored in a variable available in the current frame, then remember you can do:
(lldb) parray `count_variable` pointer_to_malloced_array
That's a general lldb feature, any command-line argument in lldb surrounded in backticks gets evaluated as an expression that returns an integer, and then the integer gets substituted for the argument before command execution.
The only way I found was via a Python scripting module:
""" File: parray.py """
import lldb
import shlex
def parray(debugger, command, result, dict):
args = shlex.split(command)
va = lldb.frame.FindVariable(args[0])
for i in range(0, int(args[1])):
print va.GetChildAtIndex(i, 0, 1)
Define a command "parray" in lldb:
(lldb) command script import /path/to/parray.py
(lldb) command script add --function parray.parray parray
Now you can use "parray variable length":
(lldb) parray a 5
(double) *a = 0
(double) [1] = 0
(double) [2] = 1.14468
(double) [3] = 2.28936
(double) [4] = 3.43404
With Xcode 4.5.1 (which may or may not help you now), you can do this in the lldb console:
(lldb) type summary add -s "${var[0-63]}" "float *"
(lldb) frame variable pointer
(float *) pointer = 0x000000010ba92950 [0.0,1.0,2.0,3.0, ... ,63.0]
This example assumes that 'pointer' is an array of 64 floats: float pointer[64];
It doesn't seem to be supported yet.
You could use the memory read function (memory read / x), like
(lldb) memory read -ff -c10 `test`
to print a float ten times from that pointer. This should be the same functionality as gdb's #.
Starting with Martin R answer I improved it as follow:
If the pointer is not a simple variable, e.g.:
struct {
int* at;
size_t size;
} a;
Then "parray a.at 5" fails.
I fixed this by replacing "FindVariable" with "GetValueForVariablePath".
Now what if the elements in your array are aggregates, e.g.:
struct {
struct { float x; float y; }* at;
size_t size;
} a;
Then "parray a.at 5" prints: a.at->x, a.at->y, a.at[2], a.at[3], a.at[4] because GetChildAtIndex() returns members of aggregates.
I fixed this by resolving "a.at" + "[" + str(i) + "]" inside the loop instead of resolving "a.at" and then retrieving its children.
Added an optional "first" argument (Usage: parray [FIRST] COUNT), which is useful when you have a huge number of elements.
Made it do the "command script add -f parray.parray parray" at init
Here is my modified version:
import lldb
import shlex
def parray(debugger, command, result, dict):
args = shlex.split(command)
if len(args) == 2:
count = int(args[1])
indices = range(count)
elif len(args) == 3:
first = int(args[1]), count = int(args[2])
indices = range(first, first + count)
else:
print 'Usage: parray ARRAY [FIRST] COUNT'
return
for i in indices:
print lldb.frame.GetValueForVariablePath(args[0] + "[" + str(i) + "]")
def __lldb_init_module(debugger, internal_dict):
debugger.HandleCommand('command script add -f parray.parray parray')
I tried to add a comment but that wasn't great for posting a full answer so I made my own answer. This solves the problem with getting "No Value". You need to get the current frame as I believe lldb.frame is set at module import time so it doesn't have the current frame when you stop at a breakpoint if you load the module from .lldbinit. The other version would work if you import or reloaded the script when you stopped at the breakpoint. The version below should always work.
import lldb
import shlex
#lldb.command('parray', 'command script add -f parray.parray parray')
def parray(debugger, command, result, dict):
target = debugger.GetSelectedTarget()
process = target.GetProcess()
thread = process.GetSelectedThread()
frame = thread.GetSelectedFrame()
args = shlex.split(command)
if len(args) == 2:
count = int(args[1])
indices = range(count)
elif len(args) == 3:
first = int(args[1])
count = int(args[2])
indices = range(first, first + count)
else:
print 'Usage: parray ARRAY [FIRST] COUNT'
return
for i in indices:
print frame.GetValueForVariablePath(args[0] + "[" + str(i) + "]")
To inspect variables you can use the frame variable command (fr v is the shortest unique prefix) which has a -Z flag which does exactly what you want:
(lldb) fr v buffer -Z5
(int64_t *) buffer = 0x000000010950c000 {
(int64_t) [0] = 0
(int64_t) [1] = 0
(int64_t) [2] = 0
(int64_t) [3] = 0
(int64_t) [4] = 0
}
unfortunately expression does not support that flag
Well at that point, you may as well write your own custom C function and invoke it with:
call (int)myprint(args)

Resources