iOS: Optimised algorithm for blurring bitmap - algorithm

Following from this question, iOS / GLES2: How to achieve Glow Effect, I'm investigating making my own blurring routine.
Maybe something along the lines of:
blur8bitGreyscaleBitmap(int resX, int resY, int passes, char* src, char* dest)
{
...
}
And then filling it in with something that takes each pixel in turn, diffusing it into its neighbours, would create a subtle blur. and iterating this process several times would let the blur diffuse outwards.
Is there a better method than this?
also, this looks like just the sort of task that could be made to run 20x faster with good ( maybe NEON ) optimisation.
I am looking for alternate techniques, code, links.

After doing a bit of research, I discovered the following,
it is okay to blur horizontal, then vertical. this means if you are blurring five pixels left right up down into your target pixel, that is 11+11 operations instead of 11*11
most basic is box blur, simply averaging all of the pixels in the box. this would be the choice for real-time blur on mobile devices. this can be optimised heavily eg if the first pixel requires A+B+C+D+E, then for the next one we can simply -A then +F. ie we don't have to do all of those additions twice.
http://en.wikipedia.org/wiki/Gaussian_blur gives better results
the common technique is to do the work on the graphics chip, using GLES2 shaders eg http://www.gamerendering.com/2008/10/11/gaussian-blur-filter-shader/
I'm kind of curious whether a similar level of optimisation could be reached using accelerate framework.
I'm still curious whether there is any existing NEON code to do this, my guess is even this would not improve upon doing the work on the graphics chip, so no one has bothered.

Related

OpenGL ES, Z-Buffer, 2D sprites, discard, performance

I have a retro-looking 2D game with a lot of sprites (reminiscent of Sega's Super Scaler arcades) which do not use semi-transparency. I have thought about using the Z-Buffer over sorting to simplify things. Ok, but by default writes are done to the Z-buffer even though alpha is zero, giving the effect illustrated here:
http://i.stack.imgur.com/ubLlp.png
Now, since I'm in OpenGL ES 2, I don't have alpha testing, so from what I understand my only possibility is to discard the pixel from the fragment shader if alpha is 0 so that it doesn't get written to the Z-Buffer. But in terms of performance this is SO wrong: not only the if is slow, but the discard basically kills the purpose since it disables early depth testing and the result is way worse than doing it in software.
if (val.a < 0.5) {
discard;
}
Is there any other solution I could use which would not kill the performance? Do all 2D games sort sprites themselves and not use depth buffer?
It's a tradeoff really. If you let the z-buffer do the sorting and use discard in your shaders then it's more expensive on the GPU because of branching and late depth testing as you say.
If you do the depth sorting yourself, then you'll find it's harder to issue your draw calls in an optimal order (e.g. you'll keep having to change texture). Draw calls on GLES2 have a very significant CPU hit on lower end devices and the count will probably go up.
If performance is a big concern, then probably the second option is better if you do it in conjunction with a big effort on the texture atlasing front to minimize your draw call count, this might be particularly effective if your sprites are low resolution retro sprites because you'll be able to get a lot of sprites per texture atlas. It isn't a clear winner by any stretch and I can imagine that different games take different approaches.
Also, you should take into account that the vast majority of target hardware is going to perform just fine whichever path you choose, and maybe you should just choose the one that is faster to implement and makes your code simpler (which is probably letting the z-buffer do the sorting).
If you fancy a technical challenge, I've often thought the best approach might be divide up your sprites into fully opaque sections and sections with transparency and render the two parts as separate meshes (they won't be quads any more). You'd have to do a lot of preprocessing and draw a lot more triangles, but by being able to do some rendering with fully-opaque parts then you can take advantage of the hidden-surface-removal tech in all iOS devices and lots of Android devices. Certainly by doing this you should be able to reduce your fill rate burden, but at a cost of increased draw calls, and there might be an unnecessarily high amount of added complexity to your code and your tools.

SDL accelerated rendering

I am trying to understand the whole 2D accelerated rendering process using SDL 2.0.
So my question is which would be the most efficient way to draw circles in the screen and why?
Some ways would be:
First to create a software surface and then draw the necessary pixels on that surface then create a texture out of that surface and lastly copy that texture to the rendering target.
Also another implementation would be to draw a circle using multiple times SDL_RenderDrawLine.And I think this is the way it is being implemented in SDL 2.0 gfx
Or there is a more efficient way to do all of this?
Take this question more generally in means of if I would wanted to draw other shapes manually, which probably, couldn't be rendered easily with the 2D rendering API that SDL provides(using draw line or rectangle).
With the example of circles this is a fairly complicated question, it is more based on the visual quality you wish to achieve which will drive performance. Drawing lots of short lines will vary vastly based on how close to a circle you wish to get, if you are happy to use say, 60 lines, which will work on small shapes nearly seamlessly but if scaled up will begin to appear not to be a circle, the performance will likely be better (depending on the user's hardware). Note also SDL_RenderDrawLines will be much much faster for many lines as it avoids lots of context switches for rendering calls.
However if you need a very accurate circle with thousands of lines to get a good approximation it will be faster to simply use a bitmap and scale and blit it. This will also give you a 'smoother' feel to the circle.
In my personal opinion I do not think the hardware accelerated render API has much use outside of some special uses such as graph rendering and perhaps very simple GUI drawing. For anything more complex I would usually use bitmap based drawing.
With regards to the second part, it again depends on the accuracy of any arcs you need to draw. If you can easily approximate the shape into a few tens of lines it will be fast, otherwise the pixel method is better.

OpenGL (ES): Can an implementation optimize fragments resulting from overdraw?

I wanted to come up with a crude way to "benchmark" the performance improvement of a tweak I made to a fragment shader (to be specific, I wanted to test the performance impact of the removal of the computation of the gamma for the resulting color using pow in the fragment shader).
So I figured that if a frame was taking 1ms to render an opaque cube model using my shader that if I set glDisable(GL_DEPTH_TEST) and loop my render call 100 times, that the frame would take 100ms to render.
I was wrong. Rendering it 100 times only results in about a 10x slowdown. Obviously if depth test is still enabled, most if not all of the fragments in the second and subsequent draw calls would not be computed because they would all fail the depth test.
However I must still be experiencing a lot of fragment culls even with depth test off.
My question is about whether my hardware (in this particular situation it is an iPad3 on iOS6.1 that I am experiencing this on -- a PowerVR SGX543MP4) is just being incredibly smart and is actually able to use the geometry of later draw calls to occlude and discard fragments from the earlier geometry. If this is not what's happening, then I cannot explain the better-than-expected performance that I am seeing. The question applies to all flavors of OpenGL and desktop GPUs as well, though.
Edit: I think an easy way to "get around" this optimization might be glEnable(GL_BLEND) or something of that sort. I will try this and report back.
PowerVR hardware is based on tile-based deferred rendering. It does not begin drawing fragments until after it receives all of the geometry information for a tile on screen. This is a more advanced hidden-surface removal technique than z-buffering, and what you have actually discovered here is that enabling alpha blending breaks the hardware's ability to exploit this.
Alpha blending is very order-dependent, and so no longer can rasterization and shading be deferred to the point where only the top-most geometry in a tile has to be drawn. Without alpha blending, since there is no data dependency on the order things are drawn in, completely obscured geometry can be skipped before expensive per-fragment operations occur. It is only when you start blending fragments that a true order-dependent situation arises and completely destroys the hardware's ability to defer/cull fragment processing for hidden surfaces.
In all honesty, if you are trying to optimize for a platform based on PowerVR hardware you should probably make this one of your goals. By that, I mean, before optimizing shaders first consider whether you are drawing things in an order and/or with states that hurt the PowerVR hardware's ability to do TBDR. As you have just discovered, blending is considerably more expensive on PowerVR hardware than other hardware... the operation itself is no more complicated, it just prevents PVR hardware from working the special way it was designed to.
I can confirm that only after adding both lines:
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA,GL_ONE_MINUS_SRC_ALPHA);
did the frame render time increase in a linear fashion in response to the repeated draw calls. Now back to my crude benchmarking.

How to work with pixels using Direct2D

Could somebody provide an example of an efficient way to work with pixels using Direct2D?
For example, how can I swap all green pixels (RGB = 0x00FF00) with red pixels (RGB = 0xFF0000) on a render target? What is the standard approach? Is it possible to use ID2D1HwndRenderTarget for that? Here I assume using some kind of hardware acceleration. Should I create a different object for direct pixels manipulations?
Using DirectDraw I would use BltFast method on the IDirectDrawSurface7 with logical operation. Is there something similar with Direct2D?
Another task is to generate complex images dynamically where each point location and color is a result of a mathematical function. For the sake of an example let's simplify everything and draw Y = X ^ 2. How to do that with Direct2D? Ultimately I'm going to need to draw complex functions but if somebody could give me a simple example for Y = X ^ 2.
First, it helps to think of ID2D1Bitmap as a "device bitmap". It may or may not live in local, CPU-addressable memory, and it doesn't give you any convenient (or at least fast) way to read/write the pixels from the CPU side of the bus. So approaching from that angle is probably the wrong approach.
What I think you want is a regular WIC bitmap, IWICBitmap, which you can create with IWICImagingFactory::CreateBitmap(). From there you can call Lock() to get at the buffer, and then read/write using pointers and do whatever you want. Then, when you need to draw it on-screen with Direct2D, use ID2D1RenderTarget::CreateBitmap() to create a new device bitmap, or ID2D1Bitmap::CopyFromMemory() to update an existing device bitmap. You can also render into an IWICBitmap by making use of ID2D1Factory::CreateWicBitmapRenderTarget() (not hardware accelerated).
You will not get hardware acceleration for these types of operations. The updated Direct2D in Win8 (should also be available for Win7 eventually) has some spiffy stuff for this but it's rather complex looking.
Rick's answer talks about the methods you can use if you don't care about losing hardware acceleration. I'm focusing on how to accomplish this using a substantial amount of GPU acceleration.
In order to keep your rendering hardware accelerated and to get the best performance, you are going to want to switch from ID2DHwndRenderTarget to using the newer ID2DDevice and ID2DDeviceContext interfaces. It honestly doesn't add that much more logic to your code and the performance benefits are substantial. It also works on Windows 7 with the Platform Update. To summarize the process:
Create a DXGI factory when you create your D2D factory.
Create a D3D11 device and a D2D device to match.
Create a swap chain using your DXGI factory and the D3D device.
Ask the swap chain for its back buffer and wrap it in a D2D bitmap.
Render like before, between calls to BeginDraw() and EndDraw(). Remember to unbind the back buffer and destroy the D2D bitmap wrapping it!
Call Present() on the swap chain to see the results.
Repeat from 4.
Once you've done that, you have unlocked a number of possible solutions. Probably the simplest and most performant way to solve your exact problem (swapping color channels) is to use the color matrix effect as one of the other answers mentioned. It's important to recognize that you need to use the newer ID2DDeviceContext interface rather than the ID2DHwndRenderTarget to get this however. There are lots of other effects that can do more complicated operations if you so choose. Here are some of the most useful ones for simple pixel manipulation:
Color matrix effect
Arithmetic operation
Blend operation
For generally solving the problem of manipulating the pixels directly without dropping hardware acceleration or doing tons of copying, there are two options. The first is to write a pixel shader and wrap it in a completely custom D2D effect. It's more work than just getting the pixel buffer on the CPU and doing old-fashioned bit mashing, but doing it all on the GPU is substantially faster. The D2D effects framework also makes it super simple to reuse your effect for other purposes, combine it with other effects, etc.
For those times when you absolutely have to do CPU pixel manipulation but still want a substantial degree of acceleration, you can manage your own mappable D3D11 textures. For example, you can use staging textures if you want to asynchronously manipulate your texture resources from the CPU. There is another answer that goes into more detail. See ID3D11Texture2D for more information.
The specific issue of swapping all green pixels with red pixels can be addressed via ID2D1Effect as of Windows 8 and Platform Update for Windows 7.
More specifically, Color matrix effect.

Rendering realistic electric lightning using OpenGl

I'm implementing a simple lightning effect for my 3D game, something like this:
http://www.krazydad.com/bestiary/bestiary_lightning.html
I'm using opengl ES 2.0. I'm pondering what the best looking and most performance efficient way to render this in a 3D environment is though, as the lines making up the electric bolt needs to be looking "solid" when viewed from any angle.
I was thinking to generate two planes for each line segment, in an X cross to create an effect of line thickness. Rendering by disabling depth buffer writes, using some kind off additive blending mode. Texturing each line segment using an electric looking texture with an alpha channel.
I'm a bit worried about the performance hit from generating the necessary triangle lists using this method though, as my game will potentially have a lot of lightning bolts generated at the same time. But as the length and thickness of the lightning bolts will vary a lot, I doubt it would look good to simply use an animated 3D object of an lightning bolt, stretched and pointing to the right location, which was my initial idea.
I was thinking of an alternative approach where I render the lightning bolts using 2D lines between projected end points in a post processing pass. That should work well since the perspective effect in my case is negligible, except then it would be tricky to have the lines appear behind occluding objects.
Any good ideas on the best approach here?
Edit: I found this white paper from nVidia:
http://developer.download.nvidia.com/SDK/10/direct3d/Source/Lightning/doc/lightning_doc.pdf
Which uses an approach with having billboards for each line segment, then apply some filtering to smooth the resulting gaps and overlaps from each billboard.
Seems to yield pretty good visual results, however I am not too happy about the additional filtering pass as the game is for mobile phones where such a step is quite costly. And, as it turns out, billboarding is quite CPU expensive too, due to the additional matrix calculation overhead, which is slow on mobile devices.
I ended up doing something like the nVidia paper suggested, but to prevent the need for a postprocessing step I used different kind of textures for different kind of branching angles, to avoid gaps and overlaps of the segment corners, which turned out quite well. And to avoid the expensive billboard matrix calculation I instead drew the line segments using a more 2D approach, but calculating the depth value manually for each vertex in the segments. This yields both acceptable performance and visuals.
An animated texture, possibly powered by a shader, is likely the fastest way to handle this.
Any geometry generation and rendering will limit the quality of the effect, and may take significantly more CPU time, memory bandwidth and draw calls.
Using a single animated texture on a quad, or a shader creating procedural lightning, will give constant speed and make the effect much simpler to implement. For that, this question may be of interest.

Resources