Related
The goal is to select shapes that don't touch each other using constraints (clpfd). Calling start(Pairs,4) would return Pairs = [1,3,5,7].
One problem I noticed is that if I print Final before labeling, it prints [1,3,5,7]. Which means labeling isn't doing anything.
What could I change/add to this code in order to fix that and also remove possible backtracking?
:-use_module(library(clpfd)).
:-use_module(library(lists)).
% init initialises Pairs and Max
% Pairs - The elements inside the Nth list in Pairs,
% represent the index of the shapes that shape N can touch
init([[3,5,6,7],[4,5,7],[1,4,5,7],[2,3,7],[1,2,3,7],[1],[1,2,3,4,5]],7).
start(Final, N):-
init(Pairs, Max),
length(Final, N),
domain(Final, 1, Max),
ascending(Final),
all_different(Final),
rules(Pairs,Final),
labeling([],Final).
rules(_,[]).
rules(Pairs,[H|T]):-
nth1(H,Pairs,PairH),
secondrule(PairH,T),
rules(Pairs,T).
secondrule(_, []).
secondrule(PairH, [H|T]):-
element(_,PairH,H),
secondrule(PairH, T).
ascending([_|[]]).
ascending([H|[T1|T2]]):-
H #< T1,
ascending([T1|T2]).
This is an Independent Set problem, which is an NP-hard problem. Therefore, it is unlikely that anybody will ever find a way to do it without search (backtracking) for general instances.
Regarding your code, labeling/2 does nothing, because your rules/2 is in fact a search procedure that returns the solution it it can find it. all_different/1 is useless too, because it is implied by ascending/1.
Presumably, your goal is a program that sets up constraints (without any search) and then searches for a solution with labeling/2. For that, you need to rethink your constraint model. Read up a bit on independent sets.
I am trying to print out a matrix in the following format but I am not sure how to. So this is the format I want to print it in.
************
***35****35*
***2938**28*
**28*2358*32
*3512**23*93
*28*3258*328
**92*329*21*
*318*5913*13
*53*28**2345
*84*8125*21*
**13**5329**
**12****58**
This is how I am creating my matrix, what would I need to change in order to print out it like the above?
:- use_module(library(clpfd)).
%Create Matrix
setMatrix(N, Matrix) :-
length(Matrix, N),
maplist(length_list(N), Matrix).
length_list(L, Ls) :- length(Ls, L).
Before I answer the actual question, a few additional points:
Think in terms of relations between entities, and describe what holds. Wording like "create", "set" etc. make no sense in this view: The described entities come into existence by describing them in any number of ways, for example, by writing them down directly.
Taking into account the earlier point, you can for example use:
n_matrix(N, Matrix) :-
length(Matrix, N),
maplist(same_length(Matrix), Matrix).
Notice that n_matrix/2 can be used in all directions, including: using a partially filled matrix, determining N from a given or partially instantiated matrix, testing whether a matrix is an N×N matrix etc. Therefore, we have chosen a name that encompasses all such use cases simultaneously by stating what each argument stands for, using declarative wording.
And now in response to the actual question:
Try to answer the simpler question:
How would you print a single row of this matrix in the way you want?
One way to do it is:
print_row(Ls) :- maplist(write, Ls), nl.
And now you can easily apply this to print the entire matrix:
?- n_matrix(N, Ms), maplist(print_row, Ms).
When describing relations over lists, it is often a good strategy to first define the relation for single element, and then to use the meta-predicates maplist/2 or maplist/N to describe the relation for the whole list.
bigger(whale,shark).
bigger(shark,tiger).
bigger(tiger,dog).
bigger(dog,rat).
bigger(rat,ant).
bigger(rat,mouse).
bigger(cat,rat).
bigger(dog,cat).
smaller(X,Y) :- bigger(Y,X).
smaller(X,Y) :- bigger(Z,X),smaller(Z,Y).
When I ask prolog smaller(X,whale) it spits out all the correct animals but repeats several of them. can anyone tell me why and if there's a way to stop it repeating?
Some remarks first:
What kind of relation does the predicate bigger/2 describe, really?
Because of the name, we assume it is transitive: bigger(A, B) and bigger(B, C) ==> bigger(A, C)
We also can safely assume it is strict (and not reflexive): bigger(A, A) can never be true
And assymetric (not symmetric): bigger(A, B) ==> bigger(B, A) is not true
What we cannot know from the program as it stands, is if the relation describes either a total ordering, or a weak ordering: we don't know whether (a) bigger(mouse, ant), or (b) not bigger(mouse, ant), or (c) mouse and ant are equivalent (we assume they are definitely not equal)
All this just to say that you don't have a linear ordering for all the elements for which the bigger relation is defined. If you did, you could sort all animals (say bigger to smaller) and do something like:
animal_bigger(A, Bigger) :-
animal_list(Animals),
append(Bigger, [A|_Smaller], Animals),
member(A, Bigger).
Since you do not have a linear ordering, it is not possible to sort all elements and simplify the questions "what is smaller/bigger" to "what comes before/after". Instead, we need to traverse the graph described by bigger/2. At least we can safely assume that it is a directed, acyclic graph. I leave it as an exercise how to traverse a graph. To solve this problem, we can instead use library(ugraphs) (you can see the source here), and to answer, "which animals are smaller than X", we can instead ask, "which nodes are reachable from X":
Here is the complete program:
bigger(whale,shark).
bigger(shark,tiger).
bigger(tiger,dog).
bigger(dog,rat).
bigger(rat,ant).
bigger(rat,mouse).
bigger(cat,rat).
bigger(dog,cat).
:- use_module(library(ugraphs)).
animal_graph(G) :-
findall(A-B, bigger(A, B), Edges),
vertices_edges_to_ugraph([], Edges, G).
animal_smaller(A, B) :-
animal_graph(G),
reachable(A, G, R),
select(A, R, Smaller),
member(B, Smaller).
You can transpose the graph and look for reachable nodes if you want to find all elements that are bigger instead.
I hope you take the time to read this answer...
EDIT
At the end, the message is:
Your bigger/2 does not describe a list (it is not a linear ordering), and it does not describe a tree (you have more than one path to the same node). So, an algorithm that would work on a list does not work here, and an algorithm that would work on a tree does not work, either. So you either have to implement your smaller/2 to work with a graph, or use a library that can deal with graphs.
Using library solution_sequences
In recent versions of the SWI-Prolog development branch this has been made particularly easy:
?- use_module(library(solution_sequences)).
true.
?- distinct(X, smaller(X, whale)).
X = shark ;
X = tiger ;
X = dog ;
X = rat ;
X = ant ;
X = mouse ;
X = cat ;
false.
The library that allows this is documented over here.
Using library aggregate
Another way in which this can be done (also supported in older versions of SWI-Prolog):
?- aggregate_all(set(X), smaller(X, whale), Xs), member(X, Xs).
a possible standard Prolog usage:
?- X=whale,setof(Y,smaller(Y,X),L).
X = whale,
L = [ant, cat, dog, mouse, rat, shark, tiger].
I've attempted to evidence the 'functional dependencies' with the choice of symbols. When you have a list, you can use member/2 to enumerate elements.
I'm trying to re-familiarize myself with Prolog and I thought this could be the type of problem with an elegant solution in Prolog.
I'm following along this example:
http://home.deib.polimi.it/matteucc/Clustering/tutorial_html/hierarchical.html
I've tried a variety of data formats:
dist('BA','FI',662).
dist(0,'BA','FI',662).
dist(['BA'],['FI'],662).
but I haven't found any particular one most suitable.
Here's all the data in the first format:
%% Graph distances
dist('BA','FI',662).
dist('BA','MI',877).
dist('BA','NA',255).
dist('BA','RM',412).
dist('BA','TO',996).
dist('FI','MI',295).
dist('FI','NA',468).
dist('FI','RM',268).
dist('FI','TO',400).
dist('MI','NA',754).
dist('MI','RM',564).
dist('MI','TO',138).
dist('NA','RM',219).
dist('NA','TO',869).
dist('RM','TO',669).
Now, there seems to be some awesome structure to this problem to exploit, but I'm really struggling to get a grasp of it. I think I've got the first cluster here (thought it may not be the most elegant way of doing it ;)
minDist(A,B,D) :- dist(A,B,D), dist(X,Y,Z), A \= X, A \= Y, B \= X, B \= Y, D < Z.
min(A,B,B) :- B < A
min(A,B,A) :- A < B
dist([A,B],C, D) :- minDist(A,B,D), dist(A,C,Q), dist(B,C,W), min(Q,W,D)
The problem I have here is the concept of "replacing" the dist statements involving A and B with the cluster.
This just quickly become a brainteaser for me and I'm stuck. Any ideas on how to formulate this? Or is this perhaps just not the kind of problem elegantly solved with Prolog?
Your table is actually perfect! The problem is that you don't have an intermediate data structure. I'm guessing you'll find the following code pretty surprising. In Prolog, you can simply use whatever structures you want, and it will actually work. First let's get the preliminary we need for calculating distance without regard for argument order:
distance(X, Y, Dist) :- dist(X, Y, Dist) ; dist(Y, X, Dist).
This just swaps the order if it doesn't get a distance on the first try.
Another utility we'll need: the list of cities:
all_cities(['BA','FI','MI','NA','RM','TO']).
This is just helpful; we could compute it, but it would be tedious and weird looking.
OK, so the end of the linked article makes it clear that what is actually being created is a tree structure. The article doesn't show you the tree at all until you get to the end, so it isn't obvious that's what's going on in the merges. In Prolog, we can simply use the structure we want and there it is, and it will work. To demonstrate, let's enumerate the items in a tree with something like member/2 for lists:
% Our clustering forms a tree. So we need to be able to do some basic
% operations on the tree, like get all of the cities in the tree. This
% predicate shows how that is done, and shows what the structure of
% the cluster is going to look like.
cluster_member(X, leaf(X)).
cluster_member(X, cluster(Left, Right)) :-
cluster_member(X, Left) ; cluster_member(X, Right).
So you can see we're going to be making use of trees using leaf('FI') for instance, to represent a leaf-node, a cluster of N=1, and cluster(X,Y) to represent a cluster tree with two branches. The code above lets you enumerate all the cities within a cluster, which we'll need to compute the minimum distance between them.
% To calculate the minimum distance between two cluster positions we
% need to basically pair up each city from each side of the cluster
% and find the minimum.
cluster_distance(X, Y, Distance) :-
setof(D,
XCity^YCity^(
cluster_member(XCity, X),
cluster_member(YCity, Y),
distance(XCity, YCity, D)),
[Distance|_]).
This probably looks pretty weird. I'm cheating here. The setof/3 metapredicate finds solutions for a particular goal. The calling pattern is something like setof(Template, Goal, Result) where the Result will become a list of Template for each Goal success. This is just like bagof/3 except that setof/3 gives you unique results. How does it do that? By sorting! My third argument is [Distance|_], saying just give me the first item in the result list. Because the result is sorted, the first item in the list will be the smallest. It's a big cheat!
The XCity^YCity^ notation says to setof/3: I don't care what these variables actually are. It marks them as "existential variables." This means Prolog will not provide multiple solutions for each city combination; they will all be thrown together and sorted once.
This is all we need to perform the clustering!
From the article, the base case is when you have two clusters left: just combine them:
% OK, the base case for clustering is that we have two items left, so
% we cluster them together.
cluster([Left,Right], cluster(Left,Right)).
The inductive case takes the list of results and finds the two which are nearest and combines them. Hold on!
% The inductive case is: pair up each cluster and find the minimum distance.
cluster(CityClusters, FinalCityClusters) :-
CityClusters = [_,_,_|_], % ensure we have >2 clusters
setof(result(D, cluster(N1,N2), CC2),
CC1^(select(N1, CityClusters, CC1),
select(N2, CC1, CC2),
cluster_distance(N1, N2, D)),
[result(_, NewCluster, Remainder)|_]),
cluster([NewCluster|Remainder], FinalCityClusters).
Prolog's built-in sorting is to sort a structure on the first argument. We cheat again here by creating a new structure, result/3, which will contain the distance, the cluster with that distance, and the remaining items to be considered. select/3 is extremely handy. It works by pulling an item out of the list and then giving you back the list without that item. We use it twice here to select two items from the list (I don't have to worry about comparing a place to itself as a result!). CC1 is marked as a free variable. The result structures will be created for considering each possible cluster with the items we were given. Again, setof/3 will sort the list to make it unique, so the first item in the list will happen to be the one with the shortest distance. It's a lot of work for one setof/3 call, but I like to cheat!
The last line says, take the new cluster and append it to the remaining items, and forward it on recursively to ourself. The result of that invocation will eventually be the base case.
Now does it work? Let's make a quick-n-dirty main procedure to test it:
main :-
setof(leaf(X), (all_cities(Cities), member(X, Cities)), Basis),
cluster(Basis, Result),
write(Result), nl.
Line one is a cheesy way to construct the initial conditions (all cities in their own cluster of one). Line two calls our predicate to cluster things. Then we write it out. What do we get? (Output manually indented for readability.)
cluster(
cluster(
leaf(FI),
cluster(
leaf(BA),
cluster(
leaf(NA),
leaf(RM)))),
cluster(
leaf(MI),
leaf(TO)))
The order is slightly different, but the result is the same!
If you're perplexed by my use of setof/3 (I would be!) then consider rewriting those predicates using the aggregate library or with simple recursive procedures that aggregate and find the minimum by hand.
I'm in a bit of pickle in Prolog.
I have a collection of objects. These objects have a certain dimension, hence weight.
I want to split up these objects in 2 sets (which form the entire set together) in such a way that their difference in total weight is minimal.
The first thing I tried was the following (pseudo-code):
-> findall with predicate createSets(List, set(A, B))
-> iterate over results while
---> calculate weight of both
---> calculate difference
---> loop with current difference and compare to current difference
till end of list of sets
This is pretty straightforward. The issue here is that I have a list of +/- 30 objects. Creating all possible sets causes a stack overflow.
Helper predicates:
sublist([],[]).
sublist(X, [_ | RestY]) :-
sublist(X,RestY).
sublist([Item|RestX], [Item|RestY]) :-
sublist(RestX,RestY).
subtract([], _, []) :-
!.
subtract([Head|Tail],ToSubstractList,Result) :-
memberchk(Head,ToSubstractList),
!,
subtract(Tail, ToSubstractList, Result).
subtract([Head|Tail], ToSubstractList, [Head|ResultTail]) :-
!,
subtract(Tail,ToSubstractList,ResultTail).
generateAllPossibleSubsets(ListToSplit,sets(Sublist,SecondPart)) :-
sublist(Sublist,ListToSplit),
subtract(ListToSplit, Sublist, SecondPart).
These can then be used as follows:
:- findall(Set, generateAllPossibleSubsets(ObjectList,Set), ListOfSets ),
findMinimalDifference(ListOfSets,Set).
So because I think this is a wrong way to do it, I figured I'd try it in an iterative way. This is what I have so far:
totalWeightOfSet([],0).
totalWeightOfSet([Head|RestOfSet],Weight) :-
objectWeight(Head,HeadWeight),
totalWeightOfSet(RestOfSet, RestWeight),
Weight is HeadWeight + RestWeight.
findBestBalancedSet(ListOfObjects,Sets) :-
generateAllPossibleSubsets(ListOfObjects,sets(A,B)),
totalWeightOfSet(A,WeightA),
totalWeightOfSet(B,WeightB),
Temp is WeightA - WeightB,
abs(Temp, Difference),
betterSets(ListOfObjects, Difference, Sets).
betterSets(ListOfObjects,OriginalDifference,sets(A,B)) :-
generateAllPossibleSubsets(ListOfObjects,sets(A,B)),
totalWeightOfSet(A,WeightA),
totalWeightOfSet(B,WeightB),
Temp is WeightA - WeightB,
abs(Temp, Difference),
OriginalDifference > Difference,
!,
betterSets(ListOfObjects, Difference, sets(A, B)).
betterSets(_,Difference,sets(A,B)) :-
write_ln(Difference).
The issue here is that it returns a better result, but it hasn't traversed the entire solution tree. I have a feeling this is a default Prolog scheme I'm missing here.
So basically I want it to tell me "these two sets have the minimal difference".
Edit:
What are the pros and cons of using manual list iteration vs recursion through fail
This is a possible solution (the recursion through fail) except that it can not fail, since that won't return the best set.
I would generate the 30 objects list, sort it descending on weight, then pop objects off the sorted list one by one and put each into one or the other of the two sets, so that I get the minimal difference between the two sets on each step. Each time we add an element to a set, just add together their weights, to keep track of the set's weight. Start with two empty sets, each with a total weight of 0.
It won't be the best partition probably, but might come close to it.
A very straightforward implementation:
pair(A,B,A-B).
near_balanced_partition(L,S1,S2):-
maplist(weight,L,W), %// user-supplied predicate weight(+E,?W).
maplist(pair,W,L,WL),
keysort(WL,SL),
reverse(SL,SLR),
partition(SLR,0,[],0,[],S1,S2).
partition([],_,A,_,B,A,B).
partition([N-E|R],N1,L1,N2,L2,S1,S2):-
( abs(N2-N1-N) < abs(N1-N2-N)
-> N3 is N1+N,
partition(R,N3,[E|L1],N2,L2,S1,S2)
; N3 is N2+N,
partition(R,N1,L1,N3,[E|L2],S1,S2)
).
If you insist on finding the precise answer, you will have to generate all the partitions of your list into two sets. Then while generating, you'd keep the current best.
The most important thing left is to find the way to generate them iteratively.
A given object is either included in the first subset, or the second (you don't mention whether they're all different; let's assume they are). We thus have a 30-bit number that represents the partition. This allows us to enumerate them independently, so our state is minimal. For 30 objects there will be 2^30 ~= 10^9 generated partitions.
exact_partition(L,S1,S2):-
maplist(weight,L,W), %// user-supplied predicate weight(+E,?W).
maplist(pair,W,L,WL),
keysort(WL,SL), %// not necessary here except for the aesthetics
length(L,Len), length(Num,Len), maplist(=(0),Num),
.....
You will have to implement the binary arithmetics to add 1 to Num on each step, and generate the two subsets from SL according to the new Num, possibly in one fused operation. For each freshly generated subset, it's easy to calculate its weight (this calculation too can be fused into the same generating operation):
maplist(pair,Ws,_,Subset1),
sumlist(Ws,Weight1),
.....
This binary number, Num, is all that represents our current position in the search space, together with the unchanging list SL. Thus the search will be iterative, i.e. running in constant space.