How could I remove backtracking from this code? - prolog

The goal is to select shapes that don't touch each other using constraints (clpfd). Calling start(Pairs,4) would return Pairs = [1,3,5,7].
One problem I noticed is that if I print Final before labeling, it prints [1,3,5,7]. Which means labeling isn't doing anything.
What could I change/add to this code in order to fix that and also remove possible backtracking?
:-use_module(library(clpfd)).
:-use_module(library(lists)).
% init initialises Pairs and Max
% Pairs - The elements inside the Nth list in Pairs,
% represent the index of the shapes that shape N can touch
init([[3,5,6,7],[4,5,7],[1,4,5,7],[2,3,7],[1,2,3,7],[1],[1,2,3,4,5]],7).
start(Final, N):-
init(Pairs, Max),
length(Final, N),
domain(Final, 1, Max),
ascending(Final),
all_different(Final),
rules(Pairs,Final),
labeling([],Final).
rules(_,[]).
rules(Pairs,[H|T]):-
nth1(H,Pairs,PairH),
secondrule(PairH,T),
rules(Pairs,T).
secondrule(_, []).
secondrule(PairH, [H|T]):-
element(_,PairH,H),
secondrule(PairH, T).
ascending([_|[]]).
ascending([H|[T1|T2]]):-
H #< T1,
ascending([T1|T2]).

This is an Independent Set problem, which is an NP-hard problem. Therefore, it is unlikely that anybody will ever find a way to do it without search (backtracking) for general instances.
Regarding your code, labeling/2 does nothing, because your rules/2 is in fact a search procedure that returns the solution it it can find it. all_different/1 is useless too, because it is implied by ascending/1.
Presumably, your goal is a program that sets up constraints (without any search) and then searches for a solution with labeling/2. For that, you need to rethink your constraint model. Read up a bit on independent sets.

Related

counting the elements of a list of lists PROLOG

I am trying to count the elements of a list of
lists.
I implemented the code in this way:
len1([],0).
len1([_X|Xs],N) :- len1(Xs,N1), N is N1+1.
clist([[],[]],0).
clist([Xs,Ys],N):- len1(Xs,N1),len1(Ys,N2),N is N1+N2.
i re-use count element (len1 predicates) in a list, and seems work.
Anyone can say me if is nice work, very bad or can do this but it s preferable other (without len1).
I dont think is good implementation, and otherwhise seems not generic.
Ad example this work only with list, that contain two list inside. If i want make generic? i think need to use _Xs, but i try to change my code and not working.
in particular i try to change this:
clist([Xs,Ys],N):- len1(Xs,N1),len1(Ys,N2),N is N1+N2.
in
clist([_Xs],N):- len1(_Xs,N1),N is N1.
and obviously don't work.
Well you can apply the same trick for your clist/2 predicate: instead of solving the problem for lists with two elements, you can consider two cases:
an empty list [], in which case the total number is of course zero; and
a non-empty list [H|T], where H is a list, and T is the list of remaining lists. In that case we first calculate the length of H, we the calculate (through recursion) the sum of the lists in T and then sum these together.
So we can implement this as:
clist([], 0).
clist([H|T], N) :-
length(H, HN),
clist(T, TN),
N is HN + TN.
The above can be improved by using an accumulator: we can define a predicate clist/3 that has a variable that stores the total number of elements in the list this far, in case we reach the end of the list, we unify the answer with that variable, like:
clist(L, N) :-
clist(L, 0, N).
clist([], N, N).
clist([H|T], N1, N) :-
length(H, HN),
N2 is N1 + HN,
clist(T, N2, N).
Yes, you were correct in wanting to generalize your definition. Instead of
clist([[],[]],0).
(well, first, it should be
clist( [] , 0).
Continuing...) and
clist([Xs,Ys], N):- len1(Xs,N1), len1(Ys,N2), N is N1+N2.
which handles two lists in a list, change it to
clist([Xs|YSs], N):- len1(Xs,N1), len1(YSs,N2), N is N1+N2.
to handle any number of lists in a list. But now the second len1 is misapplied. It receives a list of lists, not just a list as before. Faced with having to handle a list of lists (YSs) to be able to handle a list of lists ([Xs|YSs]), we're back where we started. Are we, really?
Not quite. We already have the predicate to handle the list of lists -- it's clist that we're defining! Wait, what? Do we have it defined yet? We haven't finished writing it down, yes, but we will; and when we've finished writing it down we will have it defined. Recursion is a leap of faith:
clist([Xs|YSs], N):- len1(Xs,N1), clist(YSs,N2), N is N1+N2.
Moreover, this second list of lists YSs is shorter than [Xs|YSs]. An that is the key.
And if the lists were arbitrarily deeply nested, the recursion would be
clist([XSs|YSs], N):- clist(XSs,N1), clist(YSs,N2), N is N1+N2.
with the appropriately mended base case(s).
Recursion is a leap of faith: assume we have the solution already, use it to handle smaller sub-cases of the problem at hand, simply combine the results - there you have it! The solution we assumed to have, coming into existence because we used it as if it existed already.
recursion( Whole, Solution ) :-
problem( Whole, Shell, NestedCases),
maplist( recursion, NestedCases, SolvedParts),
problem( Solution, Shell, SolvedParts).
A Russian matryoshka doll of problems all the way down, turned into solutions all the way back up from the deepest level. But the point is, we rely on recursion to handle the inner matryoshka, however many levels it may have nested inside her. We only take apart and reassemble the one -- the top-most.
howMany([],_,0).
howMany([Head|Tail],X,Times):-
\+(Head = X),
howMany(Tail,X,Times1),
Times is Times1.
howMany([Head|Tail],X,Times):-
Head = X,
howMany(Tail,X,Times1),
Times is Times1 +1.

Hierarchical Agglomerative Clustering in Prolog

I'm trying to re-familiarize myself with Prolog and I thought this could be the type of problem with an elegant solution in Prolog.
I'm following along this example:
http://home.deib.polimi.it/matteucc/Clustering/tutorial_html/hierarchical.html
I've tried a variety of data formats:
dist('BA','FI',662).
dist(0,'BA','FI',662).
dist(['BA'],['FI'],662).
but I haven't found any particular one most suitable.
Here's all the data in the first format:
%% Graph distances
dist('BA','FI',662).
dist('BA','MI',877).
dist('BA','NA',255).
dist('BA','RM',412).
dist('BA','TO',996).
dist('FI','MI',295).
dist('FI','NA',468).
dist('FI','RM',268).
dist('FI','TO',400).
dist('MI','NA',754).
dist('MI','RM',564).
dist('MI','TO',138).
dist('NA','RM',219).
dist('NA','TO',869).
dist('RM','TO',669).
Now, there seems to be some awesome structure to this problem to exploit, but I'm really struggling to get a grasp of it. I think I've got the first cluster here (thought it may not be the most elegant way of doing it ;)
minDist(A,B,D) :- dist(A,B,D), dist(X,Y,Z), A \= X, A \= Y, B \= X, B \= Y, D < Z.
min(A,B,B) :- B < A
min(A,B,A) :- A < B
dist([A,B],C, D) :- minDist(A,B,D), dist(A,C,Q), dist(B,C,W), min(Q,W,D)
The problem I have here is the concept of "replacing" the dist statements involving A and B with the cluster.
This just quickly become a brainteaser for me and I'm stuck. Any ideas on how to formulate this? Or is this perhaps just not the kind of problem elegantly solved with Prolog?
Your table is actually perfect! The problem is that you don't have an intermediate data structure. I'm guessing you'll find the following code pretty surprising. In Prolog, you can simply use whatever structures you want, and it will actually work. First let's get the preliminary we need for calculating distance without regard for argument order:
distance(X, Y, Dist) :- dist(X, Y, Dist) ; dist(Y, X, Dist).
This just swaps the order if it doesn't get a distance on the first try.
Another utility we'll need: the list of cities:
all_cities(['BA','FI','MI','NA','RM','TO']).
This is just helpful; we could compute it, but it would be tedious and weird looking.
OK, so the end of the linked article makes it clear that what is actually being created is a tree structure. The article doesn't show you the tree at all until you get to the end, so it isn't obvious that's what's going on in the merges. In Prolog, we can simply use the structure we want and there it is, and it will work. To demonstrate, let's enumerate the items in a tree with something like member/2 for lists:
% Our clustering forms a tree. So we need to be able to do some basic
% operations on the tree, like get all of the cities in the tree. This
% predicate shows how that is done, and shows what the structure of
% the cluster is going to look like.
cluster_member(X, leaf(X)).
cluster_member(X, cluster(Left, Right)) :-
cluster_member(X, Left) ; cluster_member(X, Right).
So you can see we're going to be making use of trees using leaf('FI') for instance, to represent a leaf-node, a cluster of N=1, and cluster(X,Y) to represent a cluster tree with two branches. The code above lets you enumerate all the cities within a cluster, which we'll need to compute the minimum distance between them.
% To calculate the minimum distance between two cluster positions we
% need to basically pair up each city from each side of the cluster
% and find the minimum.
cluster_distance(X, Y, Distance) :-
setof(D,
XCity^YCity^(
cluster_member(XCity, X),
cluster_member(YCity, Y),
distance(XCity, YCity, D)),
[Distance|_]).
This probably looks pretty weird. I'm cheating here. The setof/3 metapredicate finds solutions for a particular goal. The calling pattern is something like setof(Template, Goal, Result) where the Result will become a list of Template for each Goal success. This is just like bagof/3 except that setof/3 gives you unique results. How does it do that? By sorting! My third argument is [Distance|_], saying just give me the first item in the result list. Because the result is sorted, the first item in the list will be the smallest. It's a big cheat!
The XCity^YCity^ notation says to setof/3: I don't care what these variables actually are. It marks them as "existential variables." This means Prolog will not provide multiple solutions for each city combination; they will all be thrown together and sorted once.
This is all we need to perform the clustering!
From the article, the base case is when you have two clusters left: just combine them:
% OK, the base case for clustering is that we have two items left, so
% we cluster them together.
cluster([Left,Right], cluster(Left,Right)).
The inductive case takes the list of results and finds the two which are nearest and combines them. Hold on!
% The inductive case is: pair up each cluster and find the minimum distance.
cluster(CityClusters, FinalCityClusters) :-
CityClusters = [_,_,_|_], % ensure we have >2 clusters
setof(result(D, cluster(N1,N2), CC2),
CC1^(select(N1, CityClusters, CC1),
select(N2, CC1, CC2),
cluster_distance(N1, N2, D)),
[result(_, NewCluster, Remainder)|_]),
cluster([NewCluster|Remainder], FinalCityClusters).
Prolog's built-in sorting is to sort a structure on the first argument. We cheat again here by creating a new structure, result/3, which will contain the distance, the cluster with that distance, and the remaining items to be considered. select/3 is extremely handy. It works by pulling an item out of the list and then giving you back the list without that item. We use it twice here to select two items from the list (I don't have to worry about comparing a place to itself as a result!). CC1 is marked as a free variable. The result structures will be created for considering each possible cluster with the items we were given. Again, setof/3 will sort the list to make it unique, so the first item in the list will happen to be the one with the shortest distance. It's a lot of work for one setof/3 call, but I like to cheat!
The last line says, take the new cluster and append it to the remaining items, and forward it on recursively to ourself. The result of that invocation will eventually be the base case.
Now does it work? Let's make a quick-n-dirty main procedure to test it:
main :-
setof(leaf(X), (all_cities(Cities), member(X, Cities)), Basis),
cluster(Basis, Result),
write(Result), nl.
Line one is a cheesy way to construct the initial conditions (all cities in their own cluster of one). Line two calls our predicate to cluster things. Then we write it out. What do we get? (Output manually indented for readability.)
cluster(
cluster(
leaf(FI),
cluster(
leaf(BA),
cluster(
leaf(NA),
leaf(RM)))),
cluster(
leaf(MI),
leaf(TO)))
The order is slightly different, but the result is the same!
If you're perplexed by my use of setof/3 (I would be!) then consider rewriting those predicates using the aggregate library or with simple recursive procedures that aggregate and find the minimum by hand.

Find best result without findall and a filter

I'm in a bit of pickle in Prolog.
I have a collection of objects. These objects have a certain dimension, hence weight.
I want to split up these objects in 2 sets (which form the entire set together) in such a way that their difference in total weight is minimal.
The first thing I tried was the following (pseudo-code):
-> findall with predicate createSets(List, set(A, B))
-> iterate over results while
---> calculate weight of both
---> calculate difference
---> loop with current difference and compare to current difference
till end of list of sets
This is pretty straightforward. The issue here is that I have a list of +/- 30 objects. Creating all possible sets causes a stack overflow.
Helper predicates:
sublist([],[]).
sublist(X, [_ | RestY]) :-
sublist(X,RestY).
sublist([Item|RestX], [Item|RestY]) :-
sublist(RestX,RestY).
subtract([], _, []) :-
!.
subtract([Head|Tail],ToSubstractList,Result) :-
memberchk(Head,ToSubstractList),
!,
subtract(Tail, ToSubstractList, Result).
subtract([Head|Tail], ToSubstractList, [Head|ResultTail]) :-
!,
subtract(Tail,ToSubstractList,ResultTail).
generateAllPossibleSubsets(ListToSplit,sets(Sublist,SecondPart)) :-
sublist(Sublist,ListToSplit),
subtract(ListToSplit, Sublist, SecondPart).
These can then be used as follows:
:- findall(Set, generateAllPossibleSubsets(ObjectList,Set), ListOfSets ),
findMinimalDifference(ListOfSets,Set).
So because I think this is a wrong way to do it, I figured I'd try it in an iterative way. This is what I have so far:
totalWeightOfSet([],0).
totalWeightOfSet([Head|RestOfSet],Weight) :-
objectWeight(Head,HeadWeight),
totalWeightOfSet(RestOfSet, RestWeight),
Weight is HeadWeight + RestWeight.
findBestBalancedSet(ListOfObjects,Sets) :-
generateAllPossibleSubsets(ListOfObjects,sets(A,B)),
totalWeightOfSet(A,WeightA),
totalWeightOfSet(B,WeightB),
Temp is WeightA - WeightB,
abs(Temp, Difference),
betterSets(ListOfObjects, Difference, Sets).
betterSets(ListOfObjects,OriginalDifference,sets(A,B)) :-
generateAllPossibleSubsets(ListOfObjects,sets(A,B)),
totalWeightOfSet(A,WeightA),
totalWeightOfSet(B,WeightB),
Temp is WeightA - WeightB,
abs(Temp, Difference),
OriginalDifference > Difference,
!,
betterSets(ListOfObjects, Difference, sets(A, B)).
betterSets(_,Difference,sets(A,B)) :-
write_ln(Difference).
The issue here is that it returns a better result, but it hasn't traversed the entire solution tree. I have a feeling this is a default Prolog scheme I'm missing here.
So basically I want it to tell me "these two sets have the minimal difference".
Edit:
What are the pros and cons of using manual list iteration vs recursion through fail
This is a possible solution (the recursion through fail) except that it can not fail, since that won't return the best set.
I would generate the 30 objects list, sort it descending on weight, then pop objects off the sorted list one by one and put each into one or the other of the two sets, so that I get the minimal difference between the two sets on each step. Each time we add an element to a set, just add together their weights, to keep track of the set's weight. Start with two empty sets, each with a total weight of 0.
It won't be the best partition probably, but might come close to it.
A very straightforward implementation:
pair(A,B,A-B).
near_balanced_partition(L,S1,S2):-
maplist(weight,L,W), %// user-supplied predicate weight(+E,?W).
maplist(pair,W,L,WL),
keysort(WL,SL),
reverse(SL,SLR),
partition(SLR,0,[],0,[],S1,S2).
partition([],_,A,_,B,A,B).
partition([N-E|R],N1,L1,N2,L2,S1,S2):-
( abs(N2-N1-N) < abs(N1-N2-N)
-> N3 is N1+N,
partition(R,N3,[E|L1],N2,L2,S1,S2)
; N3 is N2+N,
partition(R,N1,L1,N3,[E|L2],S1,S2)
).
If you insist on finding the precise answer, you will have to generate all the partitions of your list into two sets. Then while generating, you'd keep the current best.
The most important thing left is to find the way to generate them iteratively.
A given object is either included in the first subset, or the second (you don't mention whether they're all different; let's assume they are). We thus have a 30-bit number that represents the partition. This allows us to enumerate them independently, so our state is minimal. For 30 objects there will be 2^30 ~= 10^9 generated partitions.
exact_partition(L,S1,S2):-
maplist(weight,L,W), %// user-supplied predicate weight(+E,?W).
maplist(pair,W,L,WL),
keysort(WL,SL), %// not necessary here except for the aesthetics
length(L,Len), length(Num,Len), maplist(=(0),Num),
.....
You will have to implement the binary arithmetics to add 1 to Num on each step, and generate the two subsets from SL according to the new Num, possibly in one fused operation. For each freshly generated subset, it's easy to calculate its weight (this calculation too can be fused into the same generating operation):
maplist(pair,Ws,_,Subset1),
sumlist(Ws,Weight1),
.....
This binary number, Num, is all that represents our current position in the search space, together with the unchanging list SL. Thus the search will be iterative, i.e. running in constant space.

How to find the minimum value of a prolog variable in O(n) time without high order procedures

So I have an assignment to work on and there is one thing I'm confused about. Here is a similar problem to what I'm trying to accomplish. Say I have these rules:
size(3).
size(5).
size(7).
size(1).
size(2).
size(9).
And I want to find the minimum of size by taking the value 3 and comparing it to 5, storing 3 and comparing it to 7, then comparing it to 1, storing 1 and comparing it to 2...returning a value of 1.
The only way I can see of doing that without a high order procedure would be some form of backtracking while there are still size(X) values and each time altering the size variable. However, I don't see how you can both backtrack and save the new minimum value. I was wondering if anyone could help put me on the right track.
your assignment is intended to make you thinking about the peculiar control flow of Prolog, and indeed you are now to the point. I've coded the solution and placed some explanatory comment: fill in the ellipsis to complete the code
find_min_size(MinSize) :-
size(Hypothesis),
!, % without this cut the minimum is obtained more times...
find_min_size(Hypothesis, MinSize).
find_min_size(SoFar, MinSize) :-
% when I should keep searching?
...
% the exhaustive search come to end!
find_min_size(MinSize, MinSize).
I don't think in Prolog is possible to get O(N) performance, without 'higher order procedures' ( do you mean findall etc..? ). The code above will run in O(N^2). Indexing can't play a role, because size/1 will restart with unbound variable...
An interesting O(N) alternative is using a failure driven loop and the tech that #false explained so well when introducing call_nth, (also, see here a follow up). All of these are in the 'impure' realm of Prolog, though...
edit here the failure driven loop
find_min_size(MinSize) :-
State = (_, _),
( size(V),
arg(1, State, C),
( ( var(C) ; V < C ) -> U = V ; U = C ),
nb_setarg(1, State, U),
fail
; arg(1, State, MinSize)
).

Prolog: temporary list storage

I'm new to Prolog and I'm stuck on a predicate that I'm trying to do. The aim of it is to recurse through a list of quads [X,Y,S,P] with a given P, when the quad has the same P it stores it in a temporary list. When it comes across a new P, it looks to see if the temporary list is greater than length 2, if it is then stores the temporary list in the output list, if less than 2 deletes the quad, and then starts the recursion again the new P.
Heres my code:
deleteUP(_,[],[],[]).
deleteUP(P,[[X,Y,S,P]|Rest],Temp,Output):-
!,
appends([X,Y,S,P],Temp,Temp),
deleteUP(P,[Rest],Temp,Output).
deleteUP(NextP,[[X,Y,S,P]|Rest],Temp,Output):-
NextP =\= P,
listlen(Temp,Z),
Z > 1, !,
appends(Temp,Output,Output),
deleteUP(NextP,[_|Rest],Temp,Output).
listlen([], 0).
listlen([_|T],N) :-
listlen(T,N1),
N is N1 + 1.
appends([],L,L).
appends([H|T],L,[H|Result]):-
appends(T,L,Result).
Thanks for any help!
Your problem description talks about storing, recursing and starting. That is a very imperative, procedural description. Try to focus first on what the relation should describe. Actually, I still have not understood what minimal length of 2 is about.
Consider to use the predefined append/3 and length/2 in place of your own definitions. But actually, both are not needed in your example.
You might want to use a dedicated structure q(X,Y,S,P) in place of the list [X,Y,S,P].
The goal appends([X,Y,S,P],Temp,Temp) shows that you assume that the logical variable Temp can be used like a variable in an imperative language. But this is not the case. By default SWI creates here a very odd structure called an "infinite tree". Forget this for the moment.
?- append([X,Y,S,P],Temp,Temp).
Temp = [X, Y, S, P|Temp].
There is a safe way in SWI to avoid such cases and to detect (some of) such errors automatically. Switch on the occurs check!
?- set_prolog_flag(occurs_check,error).
true.
?- append([X,Y,S,P],Temp,Temp).
sto. % ERROR: lists:append/3: Cannot unify _G392 with [_G395,_G398,_G401,_G404|_G392]: would create an infinite tree
The goal =\=/2 means arithmetical inequality, you might prefer dif/2 instead.
Avoid the ! - it is not needed in this case.
length(L, N), N > 1 is often better expressed as L = [_,_|_].
The major problem, however, is what the third and fourth argument should be. You really need to clarify that first.
Prolog variables can't be 'modified', as you are attempting calling appends: you need a fresh variables to place results. Note this code is untested...
deleteUP(_,[],[],[]).
deleteUP(P,[[X,Y,S,P]|Rest],Temp,Output):-
!,
appends([X,Y,S,P],Temp,Temp1),
deleteUP(P, Rest, Temp1,Output). % was deleteUP(P,[Rest],Temp,Output).
deleteUP(NextP,[[X,Y,S,P]|Rest],Temp,Output1):-
% NextP =\= P, should be useless given the test in clause above
listlen(Temp,Z),
Z > 1, !, % else ?
deleteUP(NextP,[_|Rest],Temp,Output),
appends(Temp,Output,Output1).

Resources