Intersection of N rectangles - algorithm

I'm looking for an algorithm to solve this problem:
Given N rectangles on the Cartesian coordinate, find out if the intersection of those rectangles is empty or not. Each rectangle can lie in any direction (not necessary to have its edges parallel to Ox and Oy)
Do you have any suggestion to solve this problem? :) I can think of testing the intersection of each rectangle pair. However, it's O(N*N) and quite slow :(

Abstract
Either use a sorting algorithm according to smallest X value of the rectangle, or store your rectangles in an R-tree and search it.
Straight-forward approach (with sorting)
Let us denote low_x() - the smallest (leftmost) X value of a rectangle, and high_x() - the highest (rightmost) X value of a rectangle.
Algorithm:
Sort the rectangles according to low_x(). # O(n log n)
For each rectangle in sorted array: # O(n)
Finds its highest X point. # O(1)
Compare it with all rectangles whose low_x() is smaller # O(log n)
than this.high(x)
Complexity analysis
This should work on O(n log n) on uniformly distributed rectangles.
The worst case would be O(n^2), for example when the rectangles don't overlap but are one above another. In this case, generalize the algorithm to have low_y() and high_y() too.
Data-structure approach: R-Trees
R-trees (a spatial generalization of B-trees) are one of the best ways to store geospatial data, and can be useful in this problem. Simply store your rectangles in an R-tree, and you can spot intersections with a straightforward O(n log n) complexity. (n searches, log n time for each).

Observation 1: given a polygon A and a rectangle B, the intersection A ∩ B can be computed by 4 intersection with half-planes corresponding to each edge of B.
Observation 2: cutting a half plane from a convex polygon gives you a convex polygon. The first rectangle is a convex polygon. This operation increases the number of vertices at most per 1.
Observation 3: the signed distance of the vertices of a convex polygon to a straight line is a unimodal function.
Here is a sketch of the algorithm:
Maintain the current partial intersection D in a balanced binary tree in a CCW order.
When cutting a half-plane defined by a line L, find the two edges in D that intersect L. This can be done in logarithmic time through some clever binary or ternary search exploiting the unimodality of the signed distance to L. (This is the part I don't exactly remember.) Remove all the vertices on the one side of L from D, and insert the intersection points to D.
Repeat for all edges L of all rectangles.

This seems like a good application of Klee's measure. Basically, if you read http://en.wikipedia.org/wiki/Klee%27s_measure_problem there are lower bounds on the runtime of the best algorithms that can be found for rectilinear intersections at O(n log n).

I think you should use something like the sweep line algorithm: finding intersections is one of its applications. Also, have a look at answers to this questions

Since the rectangles must not be parallel to the axis, it is easier to transform the problem to an already solved one: compute the intersections of the borders of the rectangles.
build a set S which contains all borders, together with the rectangle they're belonging to; you get a set of tuples of the form ((x_start,y_start), (x_end,y_end), r_n), where r_n is of course the ID of the corresponding rectangle
now use a sweep line algorithm to find the intersections of those lines
The sweep line stops at every x-coordinate in S, i.e. all start values and all end values. For every new start coordinate, put the corresponding line in a temporary set I. For each new end-coordinate, remove the corresponding line from I.
Additionally to adding new lines to I, you can check for each new line whether it intersects with one of the lines currently in I. If they do, the corresponding rectangles do, too.
You can find a detailed explanation of this algorithm here.
The runtime is O(n*log(n) + c*log(n)), where c is the number of intersection points of the lines in I.

Pick the smallest rectangle from the set (or any rectangle), and go over each point within it. If one of it's point also exists in all other rectangles, the intersection is not empty. If all points are free from ALL other rectangles, the intersection is empty.

Related

Maximum area of self-intersecting polygon

I'm looking for an algorithm for calculating the maximum area in a self-intersecting polygon. As it's self-intersecting it is not trivial to calculate the area with methods such as the shoelace formula.
Example:
The polygon in the example prioritises vertices with the "smallest" letter alphabetically, sometimes going back to the same vertex in a non-alphabetical way as it is self-intersecting. Although that shouldn't make a difference in the expected area.
In this case the algorithm should output 40: the area of the square (36) plus the area of the 4 outer triangles (4).
Constraints:
The intersection points are known in advance, no need to calculate them (as the example shows)
The last point is guaranteed to connect back to the figure, i.e. no dangling lines
The polygon is always traceable, i.e. it can be drawn, without lifting the pen
Time complexity ideally not worse than O(n log(n)) where n is the number of points
Thanks for your help!
I think I've got it.
Find the vertex with the lowest x. In case of a tie, pick the one with the lowest y. This process is O(n)
Of the 2+ segments connected to the vertex found in point 1, pick the one that forms the smallest angle with the x-axis, so as to start traversing the polygon in a clockwise direction. This process is O(s) where s is the number of segments that are connected to the starting vertex.
Keep choosing the next connected segments ignoring the order of the segments in the original polygon. In case of an intersection, pick the segment that forms the smallest angle with the current segment with the direction negated, measured clockwise. This is in order to choose the segment that lays on the outside of the polygon. This process is O(n i/2) where i is the average number of segments connected to each vertex.
Once back to the starting point, calculate the area using the shoelace formula. This could actually be calculated in parallel whilst traversing the polygon in points 2 and 3.
This algorithm's worst case time complexity is O(n i/2) where n is the number of vertices and i is the average number of segments connected to each vertex. The best case complexity is O(n) for a polygon that never intersects. In my case the polygons rarely intersect so this process is close to O(n).
Build the set of segments from the points given
For each point, test a ray to see if it intersects an even or odd number of those segments.
The even intersect counts are internal points, remove them.
Shoelace algo tells you the area of the remaining shape.
Let me think of a way where this isn't n^2, because you are comparing n points with n segments.

Trouble understanding Closest-Pair divide and conquer algorithm

I'm new into coding and today I completed the trivial solution for the Closest-Pair problem in a 2-D space. (2 for loops)
However I gave up finding any solution which could do it in O(n log n). Even after researching it, I still don't understand how this can be faster than the trivial method.
What I understand:
-> At first we split the array in 2 halfs and sort everything only considering the X coordinates. This can be done in n log n.
Next there are recursive calls which "find the two points with the lowest distance" in each half. But how is this done exactly below O(n^2)?
In my understanding it is impossible to find the lowest distance between N/2 points without checking every single one of them.
There is a solution in 1-D which absolutely makes sense to me. After sorting we know, that the distance between two non-adjacent points can't be lower than the distance of at least 2 adjacent ones. However this is not true for 2-D space, since we have an additional Y coordinate which could lead to the lowest distance between two points which are not adjacent on the X axis.
First of all, heed the advice of user #Evg - this answer cannot substitute the comprehensive description and mathematically rigorous analysis of the algorithm.
However, here are some ideas to get the intuition started:
(Recursion structure)
The question states:
Next there are recursive calls which "find the two points with the lowest distance" in each half. But how is this done exactly below O(n^2)? In my understanding it is impossible to find the lowest distance between N/2 points without checking every single one of them.
The recursion, however, does not stop at level 1 - assume for the sake of the argument that some O(n log n) algorithm works. Finding closest pairs among N/2 points applying that very algorithm takes O(N/2 log N/2) - not O((N/2)^2).
(Consequences of finding a closest pair in one half)
If you have found a closest pair (p, q) in the 'left' half of the point set, this pair's distance sets an upper bound to the width of a corridor around the halving line from which a closer pair (r, s) with r from the left, s from the right half can be drawn. If the closest distance found so far is 'small', it significantly reduces the size of the candidate set. As the points have been ordered by their x coordinate, the algorithm can exploit the information efficiently.
Said corridor may still cover up to the whole set of N points, but if it does, it provides information of the geometry of the point set: the points of each half will basically be aligned along a vertical line. This information can be exploited algorithmically - the most naive way would be to execute the algorithm once again but sorting along y coordinates and halving the point set by a horizontal line. Note that executing any algorithm a constant number of times does not change asymptotic run time expressed by the O(.) notation.
(Finding a close pair with one point from each half)
Consider checking a pair of points (r, s), one point from each half. It is known that the difference in their x and y coordinates, resp., mustn't exceed the minimal distance d found so far. It is known from the recursion that there can be no points r', s' (r' from the left, s' from the right half) closer to r, s, resp., than d. So given some r there cannot be 'many' candidates from the other half.
Imagine a circle of radius d drawn around r. Any point s from the other half being closer than d must be located within that circle. Let there be a few of them - however, the minimum distance among each pair still be at least d. The maximum number of points that can be distributed within a circle of radius d such that the distance between each pair of them is at least d is 7 - think of a regular hexagon with side length d and its center coinciding with the circle's center.
So after the recursion, at most every r from the left half needs to be checked against at max a constant number of points from the other half which makes the part of the algorithm after the recursion run in O(N).
Note that finding the pairing candidates for a given r is an efficient operation - the points from both halves have been sorted by the same criterion.

Finding all empty triangles

I have a small set of N points in the plane, N < 50.
I want to enumerate all triples of points from the set that form a triangle containing no other point.
Even though the obvious brute force solution could be viable for my tiny N, it has complexity O(N^4).
Do you know a way to decrease the time complexity, say to O(N³) or O(N²) that would keep the code simple ? No library allowed.
Much to my surprise, the number of such triangles is pretty large. Take any point as a center and sort the other ones by increasing angle around it. This forms a star-shaped polygon, that gives N-1 empty triangles, hence a total of Ω(N²). It has been shown that this bound is tight [Planar Point Sets with a Small Number of Empty convex Polygons, I. Bárány and P. Valtr].
In the case of points forming a convex polygon, all triangles are empty, hence O(N³). Chances of a fast algorithm are getting low :(
The paper "Searching for empty Convex polygons" by Dobkin, David P. / Edelsbrunner, Herbert / Overmars, Mark H. contains an algorithm linear in the number of possible output triangles for solving this problem.
A key problem in computational geometry is the identification of subsets of a point set having particular properties. We study this problem for the properties of convexity and emptiness. We show that finding empty triangles is related to the problem of determininng pairs of vertices that see each other in starshaped polygon. A linear time algorithm for this problem which is of independent interest yields an optimal algorithm for finding all empty triangles. This result is then extended to an algorithm for finding
empty convex r-gons (r > 3) and for determining a largest empty convex subset. Finally, extensions to higher dimensions are mentioned.
The sketch of the algorithm by Dobkin, Edelsbrunner and Overmars goes as follows for triangles:
for every point in turn, build the star-shaped polygon formed by sorting around it the points on its left. This takes N sorting operations (which can be lowered to total complexity O(N²) via an arrangement, anyway).
compute the visibility graph inside this star-shaped polygon and report all the triangles that are formed with the given point. This takes N visibility graph constructions, for a total of M operations, where M is the number of empty triangles.
Shortly, from every point you construct every empty triangle on the left of it, by triangulating the corresponding star-shaped polygon in all possible ways.
The construction of the visibility graph is a special version for the star-shaped polygon, which works in a traversal around the polygon, where every vertex has a visibility queue which gets updated.
The figure shows a star-shaped polygon in blue and the edges of its visibility graph in orange. The outline generates 6 triangles, and inner visibility edges 8 of them.
for each pair of points (A, B):
for each of the two half-planes defined by (A, B):
initialize a priority queue Q to empty.
for each point M in the half plane,
with increasing angle(AB, AM):
if angle(BA, BM) is smaller than all angles in Q:
print A,B,M
put M in Q with priority angle(BA, BM)
Inserting and querying the minimum in a priority queue can both be done in O(log N) time, so the complexity is O(N^3 log N) this way.
If I understand your questions, what you're looking for is https://en.wikipedia.org/wiki/Delaunay_triangulation
To quote from said Wikipedia article: "The most straightforward way of efficiently computing the Delaunay triangulation is to repeatedly add one vertex at a time, retriangulating the affected parts of the graph. When a vertex v is added, we split in three the triangle that contains v, then we apply the flip algorithm. Done naively, this will take O(n) time: we search through all the triangles to find the one that contains v, then we potentially flip away every triangle. Then the overall runtime is O(n2)."

Segment Intersection

Here is a question from CLRS.
A disk consists of a circle plus its interior and is represented by its center point and radius. Two disks intersect if they have any point in common. Give an O(n lg n)-time algorithm to determine whether any two disks in a set of n intersect.
Its not my home work. I think we can take the horizontal diameter of every circle to be the representing line segment. If two orders come consecutive, then we check the length of the distances between the two centers. If its less than or equal to the sum of the radii of the circles, then they intersect.
Please let me know if m correct.
Build a Voronoi diagram for disk centers. This is an O(n log n) job.
Now for each edge of the diagram take the corresponding pair of centers and check whether their disk intersect.
Build a k-d tree with the centres of the circles.
For every circle (p, r), find using the k-d tree the set S of circles whose centres are nearer than 2r from p.
Check if any of the circles in S touches the current circle.
I think the average cost for this algorithm is O(NlogN).
The logic is that we loop over the set O(N), and for every element get a subset of elements near O(NlogN), so, a priori, the complexity is O(N^2 logN). But we also have to consider that the probability of two random circles being less than 2r apart and not touching is lesser than 3/4 (if they touch we can short-circuit the algorithm).
That means that the average size of S is probabilistically limited to be a small value.
Another approach to solve the problem:
Divide the plane using a grid whose diameter is that of the biggest circle.
Use a hashing algorithm to classify the grid cells in N groups.
For every circle calculate the grid cells it overlaps and the corresponding groups.
Get all the circles in a group and...
Check if the biggest circle touches any other circle in the group.
Recurse applying this algorithm to the remaining circles in the group.
This same algorithm implemented in scala: https://github.com/salva/simplering/blob/master/touching/src/main/scala/org/vesbot/simplering/touching/Circle.scala

Given N points how to find the maximum number of points which are on a circle?

Yesterday, an interesting question comes to mind, Given N points, how do you find the maximum number of points that are on a circle?
Can you suggest anything other than brute-force? What is O(?)?
It seems that there is O(N^3*log N) algorithm :)
iterate through all pairs of points - O(N^2)
for each point of the rest compute radius of circle including that point and the selected pair of points - O(N)
sort points by this radius - O(N*log N)
select from the resulting array the biggest group with same radius - O(N)
Actually given two points and radius two circles are generally possible, but taking this into account (splitting each group into to) will not change algorithm complexity.
Except for degenerate cases, any three points on a plane are on a circle. So an obvious O(n4) algorithm is to enumerate all sets of three points that are not on a line (O(n3)), calculate the center of the circle (maybe there can be two, I'm not sure) going through the three points, and then iterate through the other points and check which ones are on the same circle, count, and after algorithm has finished, report the maximum.

Resources