I have a list of rectangles that don't have to be parallel to the axes. I also have a master rectangle that is parallel to the axes.
I need an algorithm that can tell which rectangle is a point closest to(the point must be in the master rectangle). the list of rectangles and master rectangle won't change during the algorithm and will be called with many points so some data structure should be created to make the lookup faster.
To be clear: distance from a rectangle to a point is the distance between the closest point in the rectangle to the point.
What algorithm/data structure can be used for this? memory is on higher priority on this, n log n is ok but n^2 is not.
You should be able to do this with a Voronoi diagram with O(n log n) preprocessing time with O(log n) time queries. Because the objects are rectangles, not points, the cells may be curved. Nevertheless, a Voronoi diagram should work fine for your purposes. (See http://en.wikipedia.org/wiki/Voronoi_diagram)
For a quick and dirty solution that you could actually get working within a day, you could do something inspired by locality sensitive hashing. For example, if the rectangles are somewhat well-spaced, you could hash them into square buckets with a few different offsets, and then for each query examine each rectangle that falls in one of the handful of buckets that contain the query point.
You should be able to do this in O(n) time and O(n) memory.
Calculate the closest point on each edge of each rectangle to the point in question. To do this, see my detailed answer in the this question. Even though the question has to do with a point inside of the polygon (rather than outside of it), the algorithm still can be applied here.
Calculate the distance between each of these closest points on the edges, and find the closest point on the entire rectangle (for each rectangle) to the point in question. See the link above for more details.
Find the minimum distance between all of the rectangles. The rectangle corresponding with your minimum distance is the winner.
If memory is more valuable than speed, use brute force: for a given point S, compute the distance from S to each edge. Choose the rectangle with the shortest distance.
This solution requires no additional memory, while its execution time is in O(n).
Depending on your exact problem specification, you may have to adjust this solution if the rectangles are allowed to overlap with the master rectangle.
As you described, a distance between one point to a rectangle is the minimum length of all lines through that point which is perpendicular with all four edges of a rectangle and all lines connect that point with one of four vertices of the rectangle.
(My English is not good at describing a math solution, so I think you should think more deeply for understanding my explanation).
For each rectangle, you should save four vertices and four edges function for fast calculation distance between them with the specific point.
Related
I have non empty Set of points scattered on plane, they are given by their coordinates.
Problem is to quickly reply such queries:
Give me the point from your set which is nearest to the point A(x, y)
My current solution pseudocode
query( given_point )
{
nearest_point = any point from Set
for each point in Set
if dist(point, query_point) < dist(nearest_point, given_point)
nearest_point = point
return nearest_point
}
But this algorithm is very slow with complexity is O(N).
The question is, is there any data structure or tricky algorithms with precalculations which will dramatically reduce time complexity? I need at least O(log N)
Update
By distance I mean Euclidean distance
You can get O(log N) time using a kd-tree. This is like a binary search tree, except that it splits points first on the x-dimension, then the y-dimension, then the x-dimension again, and so on.
If your points are homogeneously distributed, you can achieve O(1) look-up by binning the points into evenly-sized boxes and then searching the box in which the query point falls and its eight neighbouring boxes.
It would be difficult to make an efficient solution from Voronoi diagrams since this requires that you solve the problem of figuring out which Voronoi cell the query point falls in. Much of the time this involves building an R*-tree to query the bounding boxes of the Voronoi cells (in O(log N) time) and then performing point-in-polygon checks (O(p) in the number of points in the polygon's perimeter).
You can divide your grid in subsections:
Depending on the number of points and grid size, you choose a useful division. Let's assume a screen of 1000x1000 pixels, filled with random points, evenly distributed over the surface.
You may divide the screen into 10x10 sections and make a map (roughX, roughY)->(List ((x, y), ...). For a certain point, you may lookup all points in the same cell and - since the point may be closer to points of the neighbor cell than to an extreme point in the same cell, the surrounding cells, maybe even 2 cells away. This would reduce the searching scope to 16 cells.
If you don't find a point in the same cell/layer, expand the search to next layer.
If you happen to find the next neighbor in one of the next layers, you have to expand the searching scope to an additional layer for each layer. If there are too many points, choose a finer grid. If there are to few points, choose a bigger grid. Note, that the two green circles, connected to the red with a line, have the same distance to the red one, but one is in layer 0 (same cell) but the other layer 2 (next of next cell).
Without preprocessing you definitely need to spend O(N), as you must look at every point before return the closest.
You can look here Nearest neighbor search for how to approach this problem.
I'm looking for an algorithm that can quickly (I'm heavily constrained by performance) find a point inside of a circle, where this point is outside of all rectangles in a provided set (these rectangles can be rotated).
Or alternatively, to find a circle A with its center inside a circle B, where circle A does not intersect with a set of line segments.
The only solution I can come up with is to just loop through samples of points and then loop through the rectangles for each of them. But since my space is continuous, that's quite a pain. I'm basically satisfied with just a single point that doesn't intersect, but there will be cases where no such points exist. In the latter case I would ideally try to find a point with the least amount of intersections, or be able to find the answer that no such point exists.
Does anyone know of any algorithms that can accomplish this in something less than O(n^2)? Anything that would help identify good candidate points would be awesome too.
A typical example of the situation is this:
Lots of big rectangles, with small circle in which I hope to find a point (here indicated with blue). It's common that many of the rectangles fall completely outside of the circle, and also common that the circle is completely covered. There's only a small set of lengths and widths that tend to be used for the rectangles.
There are probably several interesting ways to do this. The simplest algorithm I can think of that gives a decent runtime is an algorithm as follows:
Treat all rectangles as a set of line segments.
Use an efficient algorithm to find the intersection of all line segments (for example the Bentley-Ottmann algorithm.)
Create a list of points of interest (POIs) that are either a) the corners of a rectangle or b) the intersection points computed in 2.
Create a finer set of line segments such that each line segment terminates at a POI defined in 3.
Using the POIs and the finer set of line segments from 4, compute a constrained triangulation (for example a Constrained Delaunay Triangulation.)
Pick any (unlabeled) triangle to start. Determine if the triangle lies within at least one rectangle (label it as a COVERED triangle) or not (label it as a FREE triangle). To do this you can use any point in polygon algorithm, for example ray-casting.
Run a Depth or Breadth first search starting at this triangle and expanding to neighbors, taking care not to cross between any triangle pair that would require crossing a line segment defined in 4. For every triangle visited, label it as the same label as the starting triangle.
Repeat 6-7 until all triangles are labeled (or all triangles covering the circle of interest are labeled.)
The union of all FREE triangles intersected with the circled of interest yields precisely the points that are not covered by any rectangle and are within the circle.
Note, this algorithm is a bit general and can be improved by focusing only in the area around the circle (for example a bounding box region can only be considered, with the bounding box encompassing all rectangles intersecting the circle.)
To analyze the runtime, consider the runtime of each key step:
has a runtime of O((n+k) log n) where k is the number of intersections, where n is the number of line segments.
has a runtime of O(m log m) where m is the number of POIs, m is O(n+k)
and 7. should be analyzed together. In the worst case, each triangle would need O(n) computations to check for containment in a rectangle. Given that there would be O(m) triangles this would yield a O(nm) bound. However, the purpose of the triangulation is to reuse the point in polygon computation for the seeding triangle to label as many neighboring triangles as possible. In practice the number of triangles that would require a point in polygon computation should be negligible. Therefore the runtime of this step is O(tn) where t is the number of traingles for which point in polygon computations are performed.
The runtime expected is, therefore, O((n+k) log n + t(n+k)) where k is the number of intersections in step 2 and t is the number of triangles for which point in polygon computations are performed. In the worst case this is O(n^2 log n) as you can create a pathological example with n^2 intersections, but this should be unlikely if not possible. Likewise, the number t should be kept to a minimum to make this as efficient as possible. If both t << n and k << n^2, this would be quite efficient.
One approximation that could yield performance improvement:
Consider approximating the circle by a set of r line segments, and including these line segments in steps 1-5. While this is an approximation, it would potentially improve the runtime, as only triangles inside the circle would ever need to be considered.
Consider a set S of n points in the plane such that the farthest pair is having distance at most 1. I would like to find the farthest point of a given query point q (not in S) in O(1) time. How do I pre-process the points in S to achieve the desired query time bound?
Can this be possible?
It is not possible stricto sensu. This is a point location problem in a planar straight line graph, which is known to require O(log(N)) query time.
Anyway, it can be addressed approximately by gridding.
Overlay a square grid over the furthest point Voronoi diagram, and for every cell note the regions it covers. Make sure that the number of covered regions is bounded. This can be approximately achieved by taking a grid pitch smaller than the distance of the two closest vertices in the diagram.
For a query pixel, finding the containing cell is done in constant time. Then finding the region among a bounded number takes constant time as well.
Assuming there is no relation between the points, there is no single operation that will give you the furthest point. So, the only way to do it is to compute it in advance, so you need a simple mapping between each point and the point furthest from it.
This question already has answers here:
Closed 12 years ago.
Possible Duplicate:
How to find largest triangle in convex hull aside from brute force search
I have a set of random points from which i want to find the largest triangle by area who's verticies are each on one of those points.
So far I have figured out that the largest triangle's verticies will only lie on the outside points of the cloud of points (or the convex hull) so i have programmed a function to do just that (using Graham scan in nlogn time).
However that's where I'm stuck. The only way I can figure out how to find the largest triangle from these points is to use brute force at n^3 time which is still acceptable in an average case as the convex hull algorithm usually kicks out the vast majority of points. However in a worst case scenario where points are on a circle, this method would fail miserably.
Dose anyone know an algorithm to do this more efficiently?
Note: I know that CGAL has this algorithm there but they do not go into any details on how its done. I don't want to use libraries, i want to learn this and program it myself (and also allow me to tweak it to exactly the way i want it to operate, just like the graham scan in which other implementations pick up collinear points that i don't want).
Don't know if this help, but if you choose two points from the convex hull and rotate all points of the hull so that the connecting line of the two points is parallel to the x-Axis, either the point with the maximum or the one with the minimum y-coordinate forms the triangle with the largest area together with the two points chosen first.
Of course once you have tested one point for all possible base lines, you can remove it from the list.
Here's a thought on how to get it down to O(n2 log n). I don't really know anything about computational geometry, so I'll mark it community wiki; please feel free to improve on this.
Preprocess the convex hull by finding for each point the range of slopes of lines through that point such that the set lies completely on one side of the line. Then invert this relationship: construct an interval tree for slopes with points in leaf nodes, such that when querying with a slope you find the points such that there is a tangent through those points.
If there are no sets of three or more collinear points on the convex hull, there are at most four points for each slope (two on each side), but in case of collinear points we can just ignore the intermediate points.
Now, iterate through all pairs of points (P,Q) on the convex hull. We want to find the point R such that triangle PQR has maximum area. Taking PQ as the base of the triangle, we want to maximize the height by finding R as far away from the line PQ as possible. The line through R parallel to PQ must be such that all points lie on one side of the line, so we can find a bounded number of candidates in time O(log n) using the preconstructed interval tree.
To improve this further in practice, do branch-and-bound in the set of pairs of points: find an upper bound for the height of any triangle (e.g. the maximum distance between two points), and discard any pair of points whose distance multiplied by this upper bound is less than the largest triangle found so far.
I think the rotating calipers method may apply here.
Off the top of my head, perhaps you could do something involving gridding/splitting the collection of points up into groups? Maybe... separating the points into three groups (not sure what the best way to do that in this case would be, though), doing something to discard those points in each group that are closer to the other two groups than other points in the same group, and then using the remaining points to find the largest triangle that can be made having one vertex in each group? This would actually make the case of all points being on a circle a lot simpler, because you'd just focus on the points that are near the center of the arcs contained within each group, as those would be the ones in each group furthest from the other two groups.
I'm not sure if this would give you the proper result for certain triangles/distributions of points, though. There may be situations where the resultant triangle isn't of optimal area, either because the grouping and/or the vertex choosing aren't/isn't optimal. Something like that.
Anyway, those are my thoughts on the problem. I hope I've at least been able to give you ideas for how to work on it.
How about dropping a point at a time from the convex hull? Starting with the convex hull, calculate the area of the triangle formed by each triple of adjacent points (p1p2p3, p2p3p4, etc.). Find the triangle with minimum area, then drop the middle of the three points that formed that triangle. (In other words, if the smallest area triangle is p3p4p5, drop P4.) Now you have a convex polygon with N-1 points. Repeat the same procedure until you are left with three points. This should take O(N^2) time.
I would not be at all surprised if there is some pathological case where this doesn't work, but I expect that it would work for the majority of cases. (In other words, I haven't proven this, and I have no source to cite.)
List1 contains a high number (~7^10) of N-dimensional points (N <=10), List2 contains the same or fewer number of N-dimensional points (N <=10).
My task is this: I want to check which point in List2 is closest (euclidean distance) to a point in List1 for every point in List1 and subsequently perform some operation on it. I have been doing it the simple- the nested loop way when I didn't have more than 50 points in List1, but with 7^10 points, this obviously takes up a lot of time.
What is the fastest way to do this? Any concepts from Computational Geometry might help?
EDIT: I have the following in place, I have built a kd-tree out of List2 and then now I am doing a nearest-neighborhood search for each point in List1. Now as I originally pointed out, List1 has 7^10 points, and hence though I am saving on the brute force, Euclidean distance method for every pair, the sheer large number of points in List1 is causing a lot of time consumption. Is there any way I can improve this?
Well a good way would be to use something like a kd-tree and perform nearest neighbour searching. Fortunately you do not have to implement this data structure yourself, it has been done before. I recommend this one, but there are others:
http://www.cs.umd.edu/~mount/ANN/
It's not possible to tell you which is the most efficient algorithm without knowing anything about the distribution of points in the two solutions. However, for a first guess...
First algorithm doesn't work — for two reasons: (1) a wrong assumption - I assume the bounding hulls are disjoint, and (2) a misreading of the question - it doesn't find the shortest edge for every pair of points.
...compute the convex hull of the two sets: the closest points must be on the hyperface on the two hulls through which the line between the two centres of gravity passes.
You can compute the convex hull by computing the centre points, the centre of gravity assuming all points have equal mass, and ordering the lists from furthest from the centre to least far. Then take the furthest away point in the list, add this to the convex hull, and then remove all points that are within the so-far computed convex hull (you will need to compute lots of 10d hypertriangles to do this). Repeat unil there is nothing left in the list that is not on the convex hull.
Second algorithm: partial
Compute the convex hull for List2. For each point of List1, if the point is outside the convex hull, then find the hyperface as for first algorithm: the nearest point must be on this face. If it is on the face, likewise. If it is inside, you can still find the hyperface by extending the line past the point from List1: the nearest point must be inside the ball that includes the hyperface to List2's centre of gravity: here, though, you need a new algorithm to get the nearest point, perhaps the kd-tree approach.
Perfomance
When List2 is something like evenly distributed, or normally distributed, through some fairly oblique shape, this will do a good job of reducing the number of points under consideration, and it should be compatible with the kd-tree suggestion.
There are some horrible worts cases, though: if List2 contains only points on the surface of a torus whose geometric centre is the centre of gravity of the list, then the convex hull will be very expensive to calculate, and will not help much in reducing the number of points under consideration.
My evaluation
These kinds of geometric techniques may be a useful complement to the kd-trees approach of other posters, but you need to know a little about the distribution of points before you can determine whether they are worth applying.
kd-tree is pretty fast. I've used the algorithm in this paper and it works well Bentley - K-d trees for semidynamic point sets
I'm sure there are libraries around, but it's nice to know what's going on sometimes - Bentley explains it well.
Basically, there are a number of ways to search a tree: Nearest N neighbors, All neighbors within a given radius, nearest N neighbors within a radius. Sometimes you want to search for bounded objects.
The idea is that the kdTree partitions the space recursively. Each node is split in 2 down the axis in one of the dimensions of the space you are in. Ideally it splits perpendicular to the node's longest dimension. You should keep splitting the space until you have about 4 points in each bucket.
Then for every query point, as you recursively visit nodes, you check the distance from to the partition wall for the particular node you are in. You descend both nodes (the one you are in and its sibling) if the distance to the partition wall is closer than the search radius. If the wall is beyond the radius, just search children of the node you are in.
When you get to a bucket (leaf node), you test the points in there to see if they are within the radius.
If you want the closest point, you can start with a massive radius, and pass a pointer or reference to it as you recurse - and in that way you can shrink the search radius as you find close points - and home in on the closest point pretty fast.
(A year later) kd trees that quit early, after looking at say 1M of all 200M points,
can be much faster in high dimensions.
The results are only statistically close to the absolute nearest, depending on the data and metric;
there's no free lunch.
(Note that sampling 1M points, and kd tree only those 1M, is quite different, worse.)
FLANN does this for image data with dim=128,
and is I believe in opencv. A local mod of the fast and solid
SciPy cKDTree also has cutoff= .