Non-linear performance of Java function in parallel MATLAB - performance

Recently, I implemented parallelisation in my MATLAB program, much to the suggestions offered in Slow xlsread in MATLAB. However, implementing the parallelism has cropped up another problem - non-linearly increasing processing time with increasing scale.
The culprit seems to be the java.util.concurrent.LinkedBlockingQueue method as can be seen from the attached images of profiler and the corresponding condensed graphs.
Problem: How do I remove this non-linearity as my work involves processing more than 1000 sheets in single run - which would take an insanely long time?
Note: The parallelised part of the program involves just reading all the .xls files and storing them in matrices, after which I start the remainder of my program. dlmwrite is used towards the end of the program and optimization on its time is not really required, although could also be suggested.
Culprit:
Code being parallelised:
parfor i = 1:runs
sin = 'Sheet';
sno = num2str(i);
sna = strcat(sin, sno);
data(i, :, :) = xlsread('Processes.xls', sna, '' , 'basic');
end

Doing parallel IO operation is likely to be a problem (could be slower in fact) unless maybe if you keep everything on an SSD. If you are always reading the same file and it's not enormous, you may want to try reading it prior to your loop and just doing your data manipulation in parallel.

Related

Poor performance in matlab

So I had to write a program in Matlab to calculate the convolution of two functions, manually. I wrote this simple piece of code that I know is not that optimized probably:
syms recP(x);
recP(x) = rectangularPulse(-1,1,x);
syms triP(x);
triP(x) = triangularPulse(-1,1,x);
t = -10:0.1:10;
s1 = -10:0.1:10;
for i = 1:201
s1(i) = 0;
for j = t
s1(i) = s1(i) + ( recP(j) * triP(t(i)-j) );
end
end
plot(t,s1);
I have a core i7-7700HQ coupled with 32 GB of RAM. Matlab is stored on my HDD and my Windows is on my SSD. The problem is that this simple code is taking I think at least 20 minutes to run. I have it in a section and I don't run the whole code. Matlab is only taking 18% of my CPU and 3 GB of RAM for this task. Which is I think probably enough, I don't know. But I don't think it should take that long.
Am I doing anything wrong? I've searched for how to increase the RAM limit of Matlab, and I found that it is not limited and it takes how much it needs. I don't know if I can increase the CPU usage of it or not.
Is there any solution to how make things a little bit faster? I have like 6 or 7 of these for loops in my homework and it takes forever if I run the whole live script. Thanks in advance for your help.
(Also, it highlights the piece of code that is currently running. It is the for loop, the outer one is highlighted)
Like Ander said, use the symbolic toolbox in matlab as a last resort. Additionally, when trying to speed up matlab code, focus on taking advantage of matlab's vectorized operations. What I mean by this is matlab is very efficient at performing operations like this:
y = x.*z;
where x and z are some Nx1 vectors each and the operator '.*' is called 'dot multiplication'. This is essentially telling matlab to perform multiplication on x1*z1, x[2]*z[2] .... x[n]*z[n] and assign all the values to the corresponding value in the vector y. Additionally, many of the functions in matlab are able to accept vectors as inputs and perform their operations on each element and return an equal size vector with the output at each element. You can check this for any given function by scrolling down in its documentation to the inputs and outputs section and checking what form of array the inputs and outputs can take. For example, rectangularPulse's documentation says it can accept vectors as inputs. Therefore, you can simplify your inner loop to this:
s1(i) = s1(i) + ( rectangularPulse(-1,1,t) * triP(t(i)-t) );
So to summarize:
Avoid the symbolic toolbox in matlab until you have a better handle of what you're doing or you absolutely have to use it.
Use matlab's ability to handle vectors and arrays very well.
Deconstruct any nested loops you write one at a time from the inside out. Usually this dramatically accelerates matlab code especially when you are new to writing it.
See if you can even further simplify the code and get rid of your outer loop as well.

Is there a way to use torch.autograd.gradient in parallel in Pytorch?

I am trying to train some network where the loss is not only a function of the output but also the derivative of the output w.r.t. the input. The problem is that while computing the batch output can be done in parallel with the modules with Pytorh, I can't find a way to do the derivative in parallel. Here's the best I can do in serial:
import torch
x=torch.rand(300,1)
dydx=torch.zeros_like(x)
fc=torch.nn.Linear(1,1)
x.requires_grad=True
for ii in range(x.size(0)):
xi=x[ii,0:]
yi=torch.tanh(fc(xi))
dydx[ii]=torch.autograd.grad(yi,xi,create_graph=True)[0]
dydxsum=(dydx**2).sum()
dydxsum.backward()
In the code above, x is split to save memory and time. However, when the size of x becomes large, parallelization (in CUDA) is still necessary. If it has to be implemented by tinkering Pytorch, a hint to where to start will be appreciated.

Optimization of time-frequency distribution - OpenCL. Sequence of small FFTs

Currently i'm trying to implement the time-frequency analysis on the ATI GPU device. Basically, what I need is to run FFTs within the small(256-ish) window moving through the initial array, and store the results of each calculation in a matrix [window_size, analysis_size].
I'm using clFFT library, with the following buffers structure:
data_buffer ~ complex<float>[analysis_size]
out_buffer ~ complex<float>[window_size * (analysis_size-window_size)]
in_buffers ~ overlapped window_size subbuffers within data_buffer, for each calculation
out_buffers ~ window_size subbuffers within out_buffer, for each calculation. No overlapping.
After the writing data(clEnqueueWriteBuffer) to the in_buffer(when all in_buffers should be filled) I simply run in a cycle the desired amount of clfftEnqueueTransforms with in_buffers[i], out_buffers[i] as parameters. After that I read everything from the out_buffer with a single clEnqueueReadBuffer.
All that bothering with subbuffers was supposed to decrease the data transfer overhead, but still...
IPP's implementation of FFT makes the same thing twice faster, which is sort of confusing. What am I doing wrong? Is there any possible optimizations, or maybe fundamental mistakes? Thanks for any help.
My code is available through that link.

GPGPU computation with MATLAB does not scale properly

I've been experimenting with the GPU support of Matlab (v2014a). The notebook I'm using to test my code has a NVIDIA 840M build in.
Since I'm new to GPU computing with Matlab, I started out with a few simple examples and observed a strange scalability behavior. Instead of increasing the size of my problem, I simply put a forloop around my computation. I expected the time for the computation, to scale with the number of iterations, since the problem size itself does not increase. This was also true for smaller numbers of iterations, however at a certain point the time does not scale as expected, instead I observe a huge increase in computation time. Afterwards, the problem continues to scale again as expected.
The code example started from a random walk simulation, but I tried to produce an example that is easy and still shows the problem.
Here's what my code does. I initialize two matrices as sin(alpha)and cos(alpha). Then I loop over the number of iterations from 2**1to 2**15. I then repead the computation sin(alpha)^2 and cos(alpha)^2and add them up (this was just to check the result). I perform this calculation as often as the number of iterations suggests.
function gpu_scale
close all
NP = 10000;
NT = 1000;
ALPHA = rand(NP,NT,'single')*2*pi;
SINALPHA = sin(ALPHA);
COSALPHA = cos(ALPHA);
GSINALPHA = gpuArray(SINALPHA); % move array to gpu
GCOSALPHA = gpuArray(COSALPHA);
PMAX=15;
for P = 1:PMAX;
for i=1:2^P
GX = GSINALPHA.^2;
GY = GCOSALPHA.^2;
GZ = GX+GY;
end
end
The following plot, shows the computation time in a log-log plot for the case that I always double the number of iterations. The jump occurs when doubling from 1024 to 2048 iterations.
The initial bump for two iterations might be due to initialization and is not really relevant anyhow.
I see no reason for the jump between 2**10 and 2**11 computations, since the computation time should only depend on the number of iterations.
My question: Can somebody explain this behavior to me? What is happening on the software/hardware side, that explains this jump?
Thanks in advance!
EDIT: As suggested by Divakar, I changed the way I time my code. I wasn't sure I was using gputimeit correctly. however MathWorks suggests another possible way, namely
gd= gpuDevice();
tic
% the computation
wait(gd);
Time = toc;
Using this way to measure my performance, the time is significantly slower, however I don't observe the jump in the previous plot. I added the CPU performance for comparison and keept both timings for the GPU (wait / no wait), which can be seen in the following plot
It seems, that the observed jump "corrects" the timining in the direction of the case where I used wait. If I understand the problem correctly, then the good performance in the no wait case is due to the fact, that we do not wait for the GPU to finish completely. However, then I still don't see an explanation for the jump.
Any ideas?

How to benchmark Matlab processes?

Searching for an idea how to avoid using loop in my Matlab code, I found following comments under one question on SE:
The statement "for loops are slow in Matlab" is no longer generally true since Matlab...euhm, R2008a?
and
Have you tried to benchmark a for loop vs what you already have? sometimes it is faster than vectorized code...
So I would like to ask, is there commonly used way to test the speed of a process in Matlab? Can user see somewhere how much time the process takes or the only way is to extend the processes for several minutes in order to compare the times between each other?
The best tool for testing the performance of MATLAB code is Steve Eddins' timeit function, available here from the MATLAB Central File Exchange.
It handles many subtle issues related to benchmarking MATLAB code for you, such as:
ensuring that JIT compilation is used by wrapping the benchmarked code in a function
warming up the code
running the code several times and averaging
Update: As of release R2013b, timeit is part of core MATLAB.
Update: As of release R2016a, MATLAB also includes a performance testing framework that handles the above issues for you in a similar way to timeit.
You can use the profiler to assess how much time your functions, and the blocks of code within them, are taking.
>> profile on; % Starts the profiler
>> myfunctiontorun( ); % This can be a function, script or block of code
>> profile viewer; % Opens the viewer showing you how much time everything took
Viewer also clears the current profile data for next time.
Bear in mind, profile does tend to slow execution a bit, but I believe it does so in a uniform way across everything.
Obviously if your function is very quick, you might find you don't get reliable results so if you can run it many times or extend the computation that would improve matters.
If it's really simple stuff you're testing, you can also just time it using tic and toc:
>> tic; % Start the timer
>> myfunctionname( );
>> toc; % End the timer and display elapsed time
Also if you want multiple timers, you can assign them to variables:
>> mytimer = tic;
>> myfunctionname( );
>> toc(mytimer);
Finally, if you want to store the elapsed time instead of display it:
>> myresult = toc;
I think that I am right to state that many of us time Matlab by wrapping the block of code we're interested in between tic and toc. Furthermore, we take care to ensure that the total time is of the order of 10s of seconds (rather than 1s of seconds or 100s of seconds) and repeat it 3 - 5 times and take some measure of central tendency (such as the mean) and draw our conclusions from that.
If the piece of code takes less than, say 10s, then repeat it as many times as necessary to bring it into the range, being careful to avoid any impact of one iteration on the next. And if the code naturally takes 100s of seconds or longer, either spend longer on the testing or try it with artificially small input data to run more quickly.
In my experience it's not necessary to run programs for minutes to get data on average run time with acceptably low variance. If I run a program 5 times and one (or two) of the results is wildly different from the mean I'll re-run it.
Of course, if the code has any features which make its run time non-deterministic then it's a different matter.

Resources