Poor performance in matlab - performance

So I had to write a program in Matlab to calculate the convolution of two functions, manually. I wrote this simple piece of code that I know is not that optimized probably:
syms recP(x);
recP(x) = rectangularPulse(-1,1,x);
syms triP(x);
triP(x) = triangularPulse(-1,1,x);
t = -10:0.1:10;
s1 = -10:0.1:10;
for i = 1:201
s1(i) = 0;
for j = t
s1(i) = s1(i) + ( recP(j) * triP(t(i)-j) );
end
end
plot(t,s1);
I have a core i7-7700HQ coupled with 32 GB of RAM. Matlab is stored on my HDD and my Windows is on my SSD. The problem is that this simple code is taking I think at least 20 minutes to run. I have it in a section and I don't run the whole code. Matlab is only taking 18% of my CPU and 3 GB of RAM for this task. Which is I think probably enough, I don't know. But I don't think it should take that long.
Am I doing anything wrong? I've searched for how to increase the RAM limit of Matlab, and I found that it is not limited and it takes how much it needs. I don't know if I can increase the CPU usage of it or not.
Is there any solution to how make things a little bit faster? I have like 6 or 7 of these for loops in my homework and it takes forever if I run the whole live script. Thanks in advance for your help.
(Also, it highlights the piece of code that is currently running. It is the for loop, the outer one is highlighted)

Like Ander said, use the symbolic toolbox in matlab as a last resort. Additionally, when trying to speed up matlab code, focus on taking advantage of matlab's vectorized operations. What I mean by this is matlab is very efficient at performing operations like this:
y = x.*z;
where x and z are some Nx1 vectors each and the operator '.*' is called 'dot multiplication'. This is essentially telling matlab to perform multiplication on x1*z1, x[2]*z[2] .... x[n]*z[n] and assign all the values to the corresponding value in the vector y. Additionally, many of the functions in matlab are able to accept vectors as inputs and perform their operations on each element and return an equal size vector with the output at each element. You can check this for any given function by scrolling down in its documentation to the inputs and outputs section and checking what form of array the inputs and outputs can take. For example, rectangularPulse's documentation says it can accept vectors as inputs. Therefore, you can simplify your inner loop to this:
s1(i) = s1(i) + ( rectangularPulse(-1,1,t) * triP(t(i)-t) );
So to summarize:
Avoid the symbolic toolbox in matlab until you have a better handle of what you're doing or you absolutely have to use it.
Use matlab's ability to handle vectors and arrays very well.
Deconstruct any nested loops you write one at a time from the inside out. Usually this dramatically accelerates matlab code especially when you are new to writing it.
See if you can even further simplify the code and get rid of your outer loop as well.

Related

Fast check if element is in MATLAB matrix

I would like to verify whether an element is present in a MATLAB matrix.
At the beginning, I implemented as follows:
if ~isempty(find(matrix(:) == element))
which is obviously slow. Thus, I changed to:
if sum(matrix(:) == element) ~= 0
but this is again slow: I am calling a lot of times the function that contains this instruction, and I lose 14 seconds each time!
Is there a way of further optimize this instruction?
Thanks.
If you just need to know if a value exists in a matrix, using the second argument of find to specify that you just want one value will be slightly faster (25-50%) and even a bit faster than using sum, at least on my machine. An example:
matrix = randi(100,1e4,1e4);
element = 50;
~isempty(find(matrix(:)==element,1))
However, in recent versions of Matlab (I'm using R2014b), nnz is finally faster for this operation, so:
matrix = randi(100,1e4,1e4);
element = 50;
nnz(matrix==element)~=0
On my machine this is about 2.8 times faster than any other approach (including using any, strangely) for the example provided. To my mind, this solution also has the benefit of being the most readable.
In my opinion, there are several things you could try to improve performance:
following your initial idea, i would go for the function any to test is any of the equality tests had a success:
if any(matrix(:) == element)
I tested this on a 1000 by 1000 matrix and it is faster than the solutions you have tested.
I do not think that the unfolding matrix(:) is penalizing since it is equivalent to a reshape and Matlab does this in a smart way where it does not actually allocate and move memory since you are not modifying the temporary object matrix(:)
If your does not change between the calls to the function or changes rarely you could simply use another vector containing all the elements of your matrix, but sorted. This way you could use a more efficient search algorithm O(log(N)) test for the presence of your element.
I personally like the ismember function for this kind of problems. It might not be the fastest but for non critical parts of the code it greatly improves readability and code maintenance (and I prefer to spend one hour coding something that will take day to run than spending one day to code something that will run in one hour (this of course depends on how often you use this program, but it is something one should never forget)
If you can have a sorted copy of the elements of your matrix, you could consider using the undocumented Matlab function ismembc but remember that inputs must be sorted non-sparse non-NaN values.
If performance really is critical you might want to write your own mex file and for this task you could even include some simple parallelization using openmp.
Hope this helps,
Adrien.

GPGPU computation with MATLAB does not scale properly

I've been experimenting with the GPU support of Matlab (v2014a). The notebook I'm using to test my code has a NVIDIA 840M build in.
Since I'm new to GPU computing with Matlab, I started out with a few simple examples and observed a strange scalability behavior. Instead of increasing the size of my problem, I simply put a forloop around my computation. I expected the time for the computation, to scale with the number of iterations, since the problem size itself does not increase. This was also true for smaller numbers of iterations, however at a certain point the time does not scale as expected, instead I observe a huge increase in computation time. Afterwards, the problem continues to scale again as expected.
The code example started from a random walk simulation, but I tried to produce an example that is easy and still shows the problem.
Here's what my code does. I initialize two matrices as sin(alpha)and cos(alpha). Then I loop over the number of iterations from 2**1to 2**15. I then repead the computation sin(alpha)^2 and cos(alpha)^2and add them up (this was just to check the result). I perform this calculation as often as the number of iterations suggests.
function gpu_scale
close all
NP = 10000;
NT = 1000;
ALPHA = rand(NP,NT,'single')*2*pi;
SINALPHA = sin(ALPHA);
COSALPHA = cos(ALPHA);
GSINALPHA = gpuArray(SINALPHA); % move array to gpu
GCOSALPHA = gpuArray(COSALPHA);
PMAX=15;
for P = 1:PMAX;
for i=1:2^P
GX = GSINALPHA.^2;
GY = GCOSALPHA.^2;
GZ = GX+GY;
end
end
The following plot, shows the computation time in a log-log plot for the case that I always double the number of iterations. The jump occurs when doubling from 1024 to 2048 iterations.
The initial bump for two iterations might be due to initialization and is not really relevant anyhow.
I see no reason for the jump between 2**10 and 2**11 computations, since the computation time should only depend on the number of iterations.
My question: Can somebody explain this behavior to me? What is happening on the software/hardware side, that explains this jump?
Thanks in advance!
EDIT: As suggested by Divakar, I changed the way I time my code. I wasn't sure I was using gputimeit correctly. however MathWorks suggests another possible way, namely
gd= gpuDevice();
tic
% the computation
wait(gd);
Time = toc;
Using this way to measure my performance, the time is significantly slower, however I don't observe the jump in the previous plot. I added the CPU performance for comparison and keept both timings for the GPU (wait / no wait), which can be seen in the following plot
It seems, that the observed jump "corrects" the timining in the direction of the case where I used wait. If I understand the problem correctly, then the good performance in the no wait case is due to the fact, that we do not wait for the GPU to finish completely. However, then I still don't see an explanation for the jump.
Any ideas?

How to implement a part of histogram equalization in matlab without using for loops and influencing speed and performance

Suppose that I have these Three variables in matlab Variables
I want to extract diverse values in NewGrayLevels and sum rows of OldHistogram that are in the same rows as one diverse value is.
For example you see in NewGrayLevels that the six first rows are equal to zero. It means that 0 in the NewGrayLevels has taken its value from (0 1 2 3 4 5) of OldGrayLevels. So the corresponding rows in OldHistogram should be summed.
So 0+2+12+38+113+163=328 would be the frequency of the gray level 0 in the equalized histogram and so on.
Those who are familiar with image processing know that it's part of the histogram equalization algorithm.
Note that I don't want to use built-in function "histeq" available in image processing toolbox and I want to implement it myself.
I know how to write the algorithm with for loops. I'm seeking if there is a faster way without using for loops.
The code using for loops:
for k=0:255
Condition = NewGrayLevels==k;
ConditionMultiplied = Condition.*OldHistogram;
NewHistogram(k+1,1) = sum(ConditionMultiplied);
end
I'm afraid if this code gets slow for high resolution big images.Because the variables that I have uploaded are for a small image downloaded from the internet but my code may be used for sattellite images.
I know you say you don't want to use histeq, but it might be worth your time to look at the MATLAB source file to see how the developers wrote it and copy the parts of their code that you would like to implement. Just do edit('histeq') or edit('histeq.m'), I forget which.
Usually the MATLAB code is vectorized where possible and runs pretty quick. This could save you from having to reinvent the entire wheel, just the parts you want to change.
I can't think a way to implement this without a for loop somewhere, but one optimisation you could make would be using indexing instead of multiplication:
for k=0:255
Condition = NewGrayLevels==k; % These act as logical indices to OldHistogram
NewHistogram(k+1,1) = sum(OldHistogram(Condition)); % Removes a vector multiplication, some additions, and an index-to-double conversion
end
Edit:
On rereading your initial post, I think that the way to do this without a for loop is to use accumarray (I find this a difficult function to understand, so read the documentation and search online and on here for examples to do so):
NewHistogram = accumarray(1+NewGrayLevels,OldHistogram);
This should work so long as your maximum value in NewGrayLevels (+1 because you are starting at zero) is equal to the length of OldHistogram.
Well I understood that there's no need to write the code that #Hugh Nolan suggested. See the explanation here:
%The green lines are because after writing the code, I understood that
%there's no need to calculate the equalized histogram in
%"HistogramEqualization" function and after gaining the equalized image
%matrix you can pass it to the "ExtractHistogram" function
% (which there's no loops in it) to acquire the
%equalized histogram.
%But I didn't delete those lines of code because I had tried a lot to
%understand the algorithm and write them.
For more information and studying the code, please see my next question.

Vectorization of matlab code

i'm kinda new to vectorization. Have tried myself but couldn't. Can somebody help me vectorize this code as well as give a short explaination on how u do it, so that i can adapt the thinking process too. Thanks.
function [result] = newHitTest (point,Polygon,r,tol,stepSize)
%This function calculates whether a point is allowed.
%First is a quick test is done by calculating the distance from point to
%each point of the polygon. If that distance is smaller than range "r",
%the point is not allowed. This will slow down the algorithm at some
%points, but will greatly speed it up in others because less calls to the
%circleTest routine are needed.
polySize=size(Polygon,1);
testCounter=0;
for i=1:polySize
d = sqrt(sum((Polygon(i,:)-point).^2));
if d < tol*r
testCounter=1;
break
end
end
if testCounter == 0
circleTestResult = circleTest (point,Polygon,r,tol,stepSize);
testCounter = circleTestResult;
end
result = testCounter;
Given the information that Polygon is 2 dimensional, point is a row vector and the other variables are scalars, here is the first version of your new function (scroll down to see that there are lots of ways to skin this cat):
function [result] = newHitTest (point,Polygon,r,tol,stepSize)
result = 0;
linDiff = Polygon-repmat(point,size(Polygon,1),1);
testLogicals = sqrt( sum( ( linDiff ).^2 ,2 )) < tol*r;
if any(testLogicals); result = circleTest (point,Polygon,r,tol,stepSize); end
The thought process for vectorization in Matlab involves trying to operate on as much data as possible using a single command. Most of the basic builtin Matlab functions operate very efficiently on multi-dimensional data. Using for loop is the reverse of this, as you are breaking your data down into smaller segments for processing, each of which must be interpreted individually. By resorting to data decomposition using for loops, you potentially loose some of the massive performance benefits associated with the highly optimised code behind the Matlab builtin functions.
The first thing to think about in your example is the conditional break in your main loop. You cannot break from a vectorized process. Instead, calculate all possibilities, make an array of the outcome for each row of your data, then use the any keyword to see if any of your rows have signalled that the circleTest function should be called.
NOTE: It is not easy to efficiently conditionally break out of a calculation in Matlab. However, as you are just computing a form of Euclidean distance in the loop, you'll probably see a performance boost by using the vectorized version and calculating all possibilities. If the computation in your loop were more expensive, the input data were large, and you wanted to break out as soon as you hit a certain condition, then a matlab extension made with a compiled language could potentially be much faster than a vectorized version where you might be performing needless calculation. However this is assuming that you know how to program code that matches the performance of the Matlab builtins in a language that compiles to native code.
Back on topic ...
The first thing to do is to take the linear difference (linDiff in the code example) between Polygon and your row vector point. To do this in a vectorized manner, the dimensions of the 2 variables must be identical. One way to achieve this is to use repmat to copy each row of point to make it the same size as Polygon. However, bsxfun is usually a superior alternative to repmat (as described in this recent SO question), making the code ...
function [result] = newHitTest (point,Polygon,r,tol,stepSize)
result = 0;
linDiff = bsxfun(#minus, Polygon, point);
testLogicals = sqrt( sum( ( linDiff ).^2 ,2 )) < tol*r;
if any(testLogicals); result = circleTest (point,Polygon,r,tol,stepSize); end
I rolled your d value into a column of d by summing across the 2nd axis (note the removal of the array index from Polygon and the addition of ,2 in the sum command). I then went further and evaluated the logical array testLogicals inline with the calculation of the distance measure. You will quickly see that a downside of heavy vectorisation is that it can make the code less readable to those not familiar with Matlab, but the performance gains are worth it. Comments are pretty necessary.
Now, if you want to go completely crazy, you could argue that the test function is so simple now that it warrants use of an 'anonymous function' or 'lambda' rather than a complete function definition. The test for whether or not it is worth doing the circleTest does not require the stepSize argument either, which is another reason for perhaps using an anonymous function. You can roll your test into an anonymous function and then jut use circleTest in your calling script, making the code self documenting to some extent . . .
doCircleTest = #(point,Polygon,r,tol) any(sqrt( sum( bsxfun(#minus, Polygon, point).^2, 2 )) < tol*r);
if doCircleTest(point,Polygon,r,tol)
result = circleTest (point,Polygon,r,tol,stepSize);
else
result = 0;
end
Now everything is vectorised, the use of function handles gives me another idea . . .
If you plan on performing this at multiple points in the code, the repetition of the if statements would get a bit ugly. To stay dry, it seems sensible to put the test with the conditional function into a single function, just as you did in your original post. However, the utility of that function would be very narrow - it would only test if the circleTest function should be executed, and then execute it if needs be.
Now imagine that after a while, you have some other conditional functions, just like circleTest, with their own equivalent of doCircleTest. It would be nice to reuse the conditional switching code maybe. For this, make a function like your original that takes a default value, the boolean result of the computationally cheap test function, and the function handle of the expensive conditional function with its associated arguments ...
function result = conditionalFun( default, cheapFunResult, expensiveFun, varargin )
if cheapFunResult
result = expensiveFun(varargin{:});
else
result = default;
end
end %//of function
You could call this function from your main script with the following . . .
result = conditionalFun(0, doCircleTest(point,Polygon,r,tol), #circleTest, point,Polygon,r,tol,stepSize);
...and the beauty of it is you can use any test, default value, and expensive function. Perhaps a little overkill for this simple example, but it is where my mind wandered when I brought up the idea of using function handles.

Non-linear performance of Java function in parallel MATLAB

Recently, I implemented parallelisation in my MATLAB program, much to the suggestions offered in Slow xlsread in MATLAB. However, implementing the parallelism has cropped up another problem - non-linearly increasing processing time with increasing scale.
The culprit seems to be the java.util.concurrent.LinkedBlockingQueue method as can be seen from the attached images of profiler and the corresponding condensed graphs.
Problem: How do I remove this non-linearity as my work involves processing more than 1000 sheets in single run - which would take an insanely long time?
Note: The parallelised part of the program involves just reading all the .xls files and storing them in matrices, after which I start the remainder of my program. dlmwrite is used towards the end of the program and optimization on its time is not really required, although could also be suggested.
Culprit:
Code being parallelised:
parfor i = 1:runs
sin = 'Sheet';
sno = num2str(i);
sna = strcat(sin, sno);
data(i, :, :) = xlsread('Processes.xls', sna, '' , 'basic');
end
Doing parallel IO operation is likely to be a problem (could be slower in fact) unless maybe if you keep everything on an SSD. If you are always reading the same file and it's not enormous, you may want to try reading it prior to your loop and just doing your data manipulation in parallel.

Resources