Sort 4 number with few comparisons - algorithm

How can I sort 4 numbers in 5 comparisons?

Takes numbers {a,b,c,d}, split into 2 sets {a,b} {c,d}.
Order each of those 2 sets, so you get (e,f) (g,h). That's one comparison per set.
Now pick lowest from the front (compare e,g). That's now three comparisons.
Pick next lowest from either (e, h) or (f, g). That's four.
Compare the last two elements (you might not even need this step if the two elements are from the same set, and thus already sorted). So that's five.

Pseudocode:
function sortFour(a,b,c,d)
if a < b
low1 = a
high1 = b
else
low1 = b
high1 = a
if c < d
low2 = c
high2 = d
else
low2 = d
high2 = c
if low1 < low2
lowest = low1
middle1 = low2
else
lowest = low2
middle1 = low1
if high1 > high2
highest = high1
middle2 = high2
else
highest = high2
middle2 = high1
if middle1 < middle2
return (lowest,middle1,middle2,highest)
else
return (lowest,middle2,middle1,highest)

For smaller number of inputs you can generate optimal sorting networks that provides that minimum number of comparisons necessary.
You can generate them easily using this page
Sorting four numbers in ascending order :
if(num1>num2) swap(&num1,&num2);
if(num3>num4) swap(&num3,&num4);
if(num1>num3) swap(&num1,&num3);
if(num2>num4) swap(&num2,&num4);
if(num2>num3) swap(&num2,&num3);
where
void swap(int *a,int *b)
{
int temp = *a;
*a = *b;
*b = temp;
}
or you can implement your own swap procedure without extra variable
(For descending order just change the sign to < )

This requires no extra memory or swapping operations just 5 comparisons per sort
def sort4_descending(a,b,c,d):
if a > b:
if b > c:
if d > b:
if d > a:
return [d, a, b, c]
else:
return [a, d, b, c]
else:
if d > c:
return [a, b, d, c]
else:
return [a, b, c, d]
else:
if a > c:
if d > c:
if d > a:
return [d, a, c, b]
else:
return [a, d, c, b]
else:
if d > b:
return [a, c, d, b]
else:
return [a, c, b, d]
else:
if d > a:
if d > c:
return [d, c, a, b]
else:
return [c, d, a, b]
else:
if d > b:
return [c, a, d, b]
else:
return [c, a, b, d]
else:
if a > c:
if d > a:
if d > b:
return [d, b, a, c]
else:
return [b, d, a, c]
else:
if d > c:
return [b, a, d, c]
else:
return [b, a, c, d]
else:
if b > c:
if d > c:
if d > b:
return [d, b, c, a]
else:
return [b, d, c, a]
else:
if d > a:
return [b, c, d, a]
else:
return [b, c, a, d]
else:
if d > b:
if d > c:
return [d, c, b, a]
else:
return [c, d, b, a]
else:
if d > a:
return [c, b, d, a]
else:
return [c, b, a, d]

The aim is to sort 4 elements in 5 comparisons.
Comp 1--> Take any two elements say a,b and compare them its maximum is Max1 and minimum is Min1.
Comp 2--> Take other two elements say c,d and compare them its maximum is Max2 and minimum is Min2.
Comp 3--> Compare Max1 and Max2 to get ultimate Max element.
Comp 4--> Compare Min1 and Min2 to get ultimate Min element.
Comp 5--> Compare the loser of the comparisons in Comp 4 and Comp 5 to get their order.

To sort number ABCD in 5 comparisons, sort AB and CD separately. That requires 2 comparisons. Now call merge like in merge sort on strings AB and CD. That requires 3, because in first comparison you'll either choose A or C. You'll end up having B and CD to merge or AB and D. And here you just need 2 comparisons since both AB and CD where already sorted.

Alg. 3: compare five, this average = 4.28 (#8 average = 5), Similar as #8<br>
compare 01, sort -> 0,1<br>
compare 23, sort -> 2,3<br>
compare 12 -> return or next compare<br>
compare 02, sort -> 0,2<br>
compare 13, sort -> 1,3<br>
compare 12, sort -> 1,2
<code>
function sort4CH(cmp,start,end,n)
{
var n = typeof(n) !=='undefined' ? n : 1;
var cmp = typeof(cmp) !=='undefined' ? cmp : sortCompare2;
var start = typeof(start)!=='undefined' ? start : 0;
var end = typeof(end) !=='undefined' ? end : arr[n].length;
var count = end - start;
var pos = -1;
var i = start;
var c = [];
c[0] = cmp(arr[n][i+0],arr[n][i+1]);
c[1] = cmp(arr[n][i+2],arr[n][i+3]);
if (c[0]>0) {swap(n,i+0,i+1);}
if (c[1]>0) {swap(n,i+2,i+3);}
c[2] = cmp(arr[n][i+1],arr[n][i+2]);
if (!(c[2]>0)) {return n;}
c[3] = c[0]==0 ? 1 : cmp(arr[n][i+0],arr[n][i+2]);// c[2]
c[4] = c[1]==0 ? 1 : cmp(arr[n][i+1],arr[n][i+3]);// c[2]
if (c[3]>0) {swap(n,i+0,i+2);}
if (c[4]>0) {swap(n,i+1,i+3);}
c[5] = !(c[3]>0 && c[4]>0) ? 1 : (c[0]==0 || c[1]==0 ? -1 : cmp(arr[n] [i+1],arr[n][i+2]));
if (c[5]>0) {swap(n,i+1,i+2);}
return n;
}
</code>
---------------------
Algoritmus: Insert sort sorted array 1-1, 2-2, 4-4, ... average = 3.96 = 1016/256 (average = 4.62 =1184/256 without previous cmp)
<code>
// javascript arr[1] = [0,1,2,3]
function sort4DN2(cmp,start,end,n) // sort 4
{
var n = typeof(n) !=='undefined' ? n : 1;
var cmp = typeof(cmp) !=='undefined' ? cmp : sortCompare2;
var start = typeof(start)!=='undefined' ? start : 0;
var end = typeof(end) !=='undefined' ? end : arr[n].length;
var count = end - start;
var pos = -1;
var i = start;
var c = [];
c[0] = cmp(arr[n][i+0],arr[n][i+1]);
c[1] = cmp(arr[n][i+2],arr[n][i+3]);
if (c[0]>0) {swap(n,i+0,i+1); c[0] = -1;}
if (c[1]>0) {swap(n,i+2,i+3); c[1] = -1;}
c[2] = cmp(arr[n][i+0],arr[n][i+2]);
//1234
if (c[2]>0)
{
//2013
c[3] = c[1]==0 ? c[2] : cmp(arr[n][i+0],arr[n][i+3]);
if (c[3]>0)
{
swap(n,i+0,i+2);
swap(n,i+1,i+3);
return n;
}
c[4] = c[0]==0 ? c[3] : (c[3]==0 ? 1 : cmp(arr[n][i+1],arr[n][i+3]));
if (c[4]>0)
{
//2013->2031
tmp = arr[n][i+0];
arr[n][i+0] = arr[n][i+2];
arr[n][i+2] = arr[n][i+3];
arr[n][i+3] = arr[n][i+1];
arr[n][i+1] = tmp;
return n;
}
// 2013
tmp = arr[n][i+2];
arr[n][i+2] = arr[n][i+1];
arr[n][i+1] = arr[n][i+0];
arr[n][i+0] = tmp;
return n;
}
if (c[2]==0) {
if (c[0]==0) {
return n;
}
if (c[1]==0) {
tmp = arr[n][i+1];
arr[n][i+1] = arr[n][i+2];
arr[n][i+2] = arr[n][i+3];
arr[n][i+3] = tmp;
return n;
}
}
c[3] = c[0]==0 ? c[2] : c[2]==0 ? -c[1] : cmp(arr[n][i+1],arr[n][i+2]);
if (c[3]>0)
{
c[4] = c[1]==0 ? c[3] : cmp(arr[n][i+1],arr[n][i+3]);
if (c[4]>0)
{
swap(n,i+1,i+2);
swap(n,i+2,i+3);
return n;
}
swap(n,i+1,i+2);
return n;
}
return n;
}
</code>
------------
Algoritmus: Insert sort into middle (av. 4.07 = 1044/256 | 4.53 = 1160/256)
0<br>
1 insert into middle 0 -> [0,1] 01, 10<br>
2 insert into middle 01 -> [1,2] 021, 012 -> [0,2] 021, 201 or [null] 012<br>
3 insert into middle 012 -> [1,3] -> [1,0] or [2,3]...
<code>
function sort4PA(cmp,start,end,n)
{
//arr[n] = [0,0,3,0];
var n = typeof(n) !=='undefined' ? n : 1;
var cmp = typeof(cmp) !=='undefined' ? cmp : sortCompare2;
var start = typeof(start)!=='undefined' ? start : 0;
var end = typeof(end) !=='undefined' ? end : arr[n].length;
var count = end - start;
var tmp = 0;
var i = start;
var c = [];
c[0] = cmp(arr[n][i+0],arr[n][i+1]);
if (c[0]>0) {swap(n,i+0,i+1); c[0] = -1;} //10->01
c[1] = cmp(arr[n][i+1],arr[n][i+2]);
if (c[1]>0) { //0-1 2
c[2] = c[0]==0 ? c[1] : cmp(arr[n][i+0],arr[n][i+2]);
if (c[2]>0) { //-01 2
c[3] = cmp(arr[n][i+0],arr[n][i+3]);
if (c[3]>0) {//2301
c[4] = cmp(arr[n][i+2],arr[n][i+3]);
if (c[4]>0) { //0123 -> 3201
tmp = arr[n][0];
arr[n][0]=arr[n][3];
arr[n][3]=arr[n][1];
arr[n][1]=arr[n][2];
arr[n][2]=tmp;
return n;
}
swap(n,i+0,i+2);
swap(n,i+1,i+3);
return n;
}
// 2031
c[4] = c[0]==0 ? c[3] : cmp(arr[n][i+1],arr[n][i+3]);
if (c[4]>0) { //2031
tmp = arr[n][0];
arr[n][0]=arr[n][2];
arr[n][2]=arr[n][3];
arr[n][3]=arr[n][1];
arr[n][1]=tmp;
return n;
}
tmp = arr[n][0];
arr[n][0]=arr[n][2];
arr[n][2]=arr[n][1];
arr[n][1]=tmp;
return n;
}
//0-1 2
c[3] = cmp(arr[n][i+2],arr[n][i+3]);
if (c[3]>0) {
c[4] = c[2]==0 ? c[3] : cmp(arr[n][i+0],arr[n][i+3]);
if (c[4]>0) {//3021
tmp = arr[n][0];
arr[n][0]=arr[n][3];
arr[n][3]=arr[n][1];
arr[n][1]=tmp;
return n;
}
//0321
swap(n,i+1,i+3);
return n;
}
// 0-1 23
c[4] = c[3]==0 ? c[1] : cmp(arr[n][i+1],arr[n][i+3]);
if (c[4]>0) { //0231
tmp = arr[n][1];
arr[n][1]=arr[n][2];
arr[n][2]=arr[n][3];
arr[n][3]=tmp;
return n;
}
//0213
swap(n,i+1,i+2);
return n;
}
c[2] = cmp(arr[n][i+1],arr[n][i+3]);
if (c[2]>0) {
c[3] = c[0]==0 ? c[2] : cmp(arr[n][i+0],arr[n][i+3]);
if (c[3]>0) {
// 3012
tmp = arr[n][0];
arr[n][0]=arr[n][3];
arr[n][3]=arr[n][2];
arr[n][2]=arr[n][1];
arr[n][1]=tmp;
return n;
}
// 0312
tmp = arr[n][1];
arr[n][1]=arr[n][3];
arr[n][3]=arr[n][2];
arr[n][2]=tmp;
return n;
}
c[3] = c[1]==0 ? c[2] : c[2]==0 ? -c[1] : cmp(arr[n][i+2],arr[n][i+3]);
if (c[3]>0) {
swap(n,i+2,i+3);
}
return n;
}
</code>

Just implemented a branchless function that orders four elements using five comparisons. It can be made into a C++ template to sort any type. Data is not affected, r will contain the indices to access the array in ascending order.
// This function actually returns a char[4], using type punning to bypass C restrictions
int order4(int* values) {
char r[4], h[2], m[2];
h[0]= values[1]<values[0];
h[1]=2|(char)(values[3]<values[2]); // 3210 -> {2<3}{0<1}
r[0]=values[h[1] ]<values[h[0] ];
r[3]=values[h[0]^1]<values[h[1]^1]; // {2<3}{0<1} -> 0<{21}<3
m[0]=h[r[0]^1];
m[1]=h[r[3]^1]^1;
r[2]=values[m[1]]<values[m[0]]; // 0<{21}<3 -> 0<1<2<3
r[0]=h[r[0]];
r[1]=m[r[2]];
r[2]=m[r[2]^1];
r[3]=h[r[3]]^1;
_ASSERT(((1<<r[0]) | (1<<r[1]) | (1<<r[2]) | (1<<r[3])) == 15); // Ensure that all elements present
_ASSERT(values[r[0]]<=values[r[1]] && values[r[1]]<=values[r[2]] && values[r[2]]<=values[r[3]]); // Ensure that elements are sorted
return *(int*)r;
}

Related

Reverse the isometric projection algorithm

I've got this code:
const a = 2; // always > 0 and known in advance
const b = 3; // always > 0 and known in advance
const c = 4; // always > 0 and known in advance
for (let x = 0; x <= a; x++) {
for (let y = 0; y <= b; y++) {
for (let z = 0; z <= c; z++) {
for (let p = 0; p <= 1; p++) {
for (let q = 0; q <= 2; q++) {
let u = b + x - y + p;
let v = a + b + 2 * c - x - y - 2 * z + q;
let w = c + x + y - z;
}
}
}
}
}
The code generates (a+1)*(b+1)*(c+1)*2*3 triplets of (u,v,w), each of them is unique. And because of that fact, I think it should be possible to write reversed version of this algorithm that will calculate x,y,z,p,q based on u,v,w. I understand that there are only 3 equations and 5 variables to get, but known boundaries for x,y,z,p,q and the fact that all variables are integers should probably help.
for (let u = ?; u <= ?; u++) {
for (let v = ?; v <= ?; v++) {
for (let w = ?; w <= ?; w++) {
x = ?;
y = ?;
z = ?;
p = ?;
q = ?;
}
}
}
I even managed to produce the first line: for (let u = 0; u <= a + b + 1; u++) by taking the equation for u and finding min and max but I'm struggling with moving forward. I understand that min and max values for v are depending on u, but can't figure out the formulas.
Examples are in JS, but I will be thankful for any help in any programming language or even plain math formulas.
If anyone is interested in what this code is actually about - it projects voxel 3d model to triangles on a plain. u,v are resulting 2d coordinates and w is distance from the camera. Reversed algorithm will be actually a kind of raytracing.
UPDATE: Using line equations from 2 points I managed to create minmax conditions for v and code now looks like this:
for (let u = 0; u <= a + b + 1; u++) {
let minv = u <= a ? a - u : -a + u - 1;
let maxv = u <= b ? a + 2 * c + u + 2 : a + 2 * b + 2 * c - u + 3;
for (let v = minv; v <= maxv; v++) {
...
}
}
I think I know what to do with x, y, z, p, q on the last step so the problem left is minw and maxw. As far as I understand those values should depend both on u and v and I must use plane equations?
If the triplets are really unique (didn't check that) and if p and q always go up to 1 and 2 (respectively), then you can "group" triplets together and go up the loop chain.
We'll first find the 3 triplets that where made in the same "q loop" : the triplets make with the same x,y,z,p. As only q change, the only difference will be v, and it will be 3 consecutive numbers.
For that, let's group triplets such that, in a group, all triplets have the same u and same w. Then we sort triplets in groups by their v parameters, and we group them 3 by 3. Inside each group it's easy to assign the correct q variable to each triplet.
Then reduce the groups of 3 into the first triplet (the one with q == 0). We start over to assign the p variable : Group all triplets such that they have same v and w inside a group. Then sort them by the u value, and group them 2 by 2. This let's us find their p value. Remember that each triplet in the group of 3 (before reducing) has that same p value.
Then, for each triplet, we have found p and q. We solve the 3 equation for x,y,z :
z = -1 * ((v + w) - a - b - 3c -q)/3
y = (w - u + z + b - c - p)/2
x = u + y - b - p
After spending some time with articles on geometry and with the huge help from Wolfram Alpha, I managed to write needed equations myself. And yes, I had to use plane equations.
const a = 2; // always > 0 and known in advance
const b = 3; // always > 0 and known in advance
const c = 4; // always > 0 and known in advance
const minu = 0;
const maxu = a + b + 1;
let minv, maxv, minw, maxw;
let x, y, z, p, q;
for (let u = minu; u <= maxu; u++) {
if (u <= a) {
minv = a - u;
} else {
minv = -a + u - 1;
}
if (u <= b) {
maxv = a + 2 * c + u + 2;
} else {
maxv = a + 2 * b + 2 * c - u + 3;
}
for (let v = minv; v <= maxv; v++) {
if (u <= b && v >= a + u + 1) {
minw = (-a + 2 * b - 3 * u + v - 2) / 2;
} else if (u > b && v >= a + 2 * b - u + 2) {
minw = (-a - 4 * b + 3 * u + v - 5) / 2;
} else {
minw = a + b - v;
}
if (u <= a && v <= a + 2 * c - u + 1) {
maxw = (-a + 2 * b + 3 * u + v - 1) / 2;
} else if (u > a && v <= -a + 2 * c + u) {
maxw = (5 * a + 2 * b - 3 * u + v + 2) / 2;
} else {
maxw = a + b + 3 * c - v + 2;
}
minw = Math.round(minw);
maxw = Math.round(maxw);
for (let w = minw; w <= maxw; w++) {
z = (a + b + 3 * c - v - w + 2) / 3;
q = Math.round(2 - (z % 1) * 3);
z = Math.floor(z);
y = (a + 4 * b + q - 3 * u - v + 2 * w + 3) / 6;
p = 1 - (y % 1) * 2;
y = Math.floor(y);
x = (a - 2 * b - 3 * p + q + 3 * u - v + 2 * w) / 6;
x = Math.round(x);
}
}
}
This code passes my tests, but if someone can create better solution, I would be very interested.

How to build a list of vectors taken from an other list that satisfy a constraint

It's my first try with z3.
I want to find which vectors taken in a list I have to sum to get a given result.
I've try this but that don't compile because R isn't an indice.
Tr_tuple = ((-1,1,0,1,0,0,0,-1),
(1,-1,1,0,0,0,-1,0),
(0,-1,-1,1,0,1,0,0),
(-1,0,1,-1,0,0,0,0),
(0,0,0,-1,-1,1,0,1),
(0,0,-1,0,1,-1,1,0),
(0,1,0,0,0,-1,-1,1),
(1,0,0,0,-1,0,1,-1),
(1,1,-1,-1,1,1,-1,-1),
(-1,-1,1,1,-1,-1,1,1))
Start_tuple = (1,-1,0,-1,0,0,0,1)
depth = 2
G = [Int('g_%s' % i) for i in range(8)]
R = [Int('r_%s' % i) for i in range(depth)]
R_c = [ And (R[i] >= 0, R[i] < 10) for i in range(depth) ]
G_c = [G[i] == Start_tuple[i] + sum([ Tr_tuple[j][i] for j in R]) for i in range(8)]
G_g = [G[i] == 0 for i in range(8)]
I found something but it's like brute force :
M = [[Int('m_%s_%s' % (j,i)) for i in range(8)] for j in range(depth)]
T = [Int('t_%s' % i) for i in range(8)]
M_c = And([
Or([
And([M[j][i] == Tr_tuple[k][i] for i in range(8)])
for k in range(10)])
for j in range(depth)])
G_c = (And([Start_tuple[i]+sum([M[j][i] for j in range(depth)]) == 0 for i in range(8)]))
s = Solver()
s.add(M_c)
s.add(G_c)
if s.check() == sat :
pp(s.model())
else:
print('No solution found')

Remove consecutive duplicates in a string to make the smallest string

Given a string and the constraint of matching on >= 3 characters, how can you ensure that the result string will be as small as possible?
edit with gassa's explicitness:
E.G.
'AAAABBBAC'
If I remove the B's first,
AAAA[BBB]AC -- > AAAAAC, then I can remove all of the A's from the resultant string and be left with:
[AAAAA]C --> C
'C'
If I just remove what is available first (the sequence of A's), I get:
[AAAA]BBBAC -- > [BBB]AC --> AC
'AC'
A tree would definitely get you the shortest string(s).
The tree solution:
Define a State (node) for each current string Input and all its removable sub-strings' int[] Indexes.
Create the tree: For each int index create another State and add it to the parent state State[] Children.
A State with no possible removable sub-strings has no children Children = null.
Get all Descendants State[] of your root State. Order them by their shortest string Input. And that is/are your answer(s).
Test cases:
string result = FindShortest("AAAABBBAC"); // AC
string result2 = FindShortest("AABBAAAC"); // AABBC
string result3 = FindShortest("BAABCCCBBA"); // B
The Code:
Note: Of-course everyone is welcome to enhance the following code in terms of performance and/or fixing any bug.
class Program
{
static void Main(string[] args)
{
string result = FindShortest("AAAABBBAC"); // AC
string result2 = FindShortest("AABBAAAC"); // AABBC
string result3 = FindShortest("BAABCCCBBA"); // B
}
// finds the FIRST shortest string for a given input
private static string FindShortest(string input)
{
// all possible removable strings' indexes
// for this given input
int[] indexes = RemovableIndexes(input);
// each input string and its possible removables are a state
var state = new State { Input = input, Indexes = indexes };
// create the tree
GetChildren(state);
// get the FIRST shortest
// i.e. there would be more than one answer sometimes
// this could be easily changed to get all possible results
var result =
Descendants(state)
.Where(d => d.Children == null || d.Children.Length == 0)
.OrderBy(d => d.Input.Length)
.FirstOrDefault().Input;
return result;
}
// simple get all descendants of a node/state in a tree
private static IEnumerable<State> Descendants(State root)
{
var states = new Stack<State>(new[] { root });
while (states.Any())
{
State node = states.Pop();
yield return node;
if (node.Children != null)
foreach (var n in node.Children) states.Push(n);
}
}
// creates the tree
private static void GetChildren(State state)
{
// for each an index there is a child
state.Children = state.Indexes.Select(
i =>
{
var input = RemoveAllAt(state.Input, i);
return input.Length < state.Input.Length && input.Length > 0
? new State
{
Input = input,
Indexes = RemovableIndexes(input)
}
: null;
}).ToArray();
foreach (var c in state.Children)
GetChildren(c);
}
// find all possible removable strings' indexes
private static int[] RemovableIndexes(string input)
{
var indexes = new List<int>();
char d = input[0];
int count = 1;
for (int i = 1; i < input.Length; i++)
{
if (d == input[i])
count++;
else
{
if (count >= 3)
indexes.Add(i - count);
// reset
d = input[i];
count = 1;
}
}
if (count >= 3)
indexes.Add(input.Length - count);
return indexes.ToArray();
}
// remove all duplicate chars starting from an index
private static string RemoveAllAt(string input, int startIndex)
{
string part1, part2;
int endIndex = startIndex + 1;
int i = endIndex;
for (; i < input.Length; i++)
if (input[i] != input[startIndex])
{
endIndex = i;
break;
}
if (i == input.Length && input[i - 1] == input[startIndex])
endIndex = input.Length;
part1 = startIndex > 0 ? input.Substring(0, startIndex) : string.Empty;
part2 = endIndex <= (input.Length - 1) ? input.Substring(endIndex) : string.Empty;
return part1 + part2;
}
// our node, which is
// an input string &
// all possible removable strings' indexes
// & its children
public class State
{
public string Input;
public int[] Indexes;
public State[] Children;
}
}
I propose O(n^2) solution with dynamic programming.
Let's introduce notation. Prefix and suffix of length l of string A denoted by P[l] and S[l]. And we call our procedure Rcd.
Rcd(A) = Rcd(Rcd(P[n-1])+S[1])
Rcd(A) = Rcd(P[1]+Rcd(S[n-1]))
Note that outer Rcd in the RHS is trivial. So, that's our optimal substructure. Based on this i came up with the following implementation:
#include <iostream>
#include <string>
#include <vector>
#include <cassert>
using namespace std;
string remdupright(string s, bool allowEmpty) {
if (s.size() >= 3) {
auto pos = s.find_last_not_of(s.back());
if (pos == string::npos && allowEmpty) s = "";
else if (pos != string::npos && s.size() - pos > 3) s = s.substr(0, pos + 1);
}
return s;
}
string remdupleft(string s, bool allowEmpty) {
if (s.size() >= 3) {
auto pos = s.find_first_not_of(s.front());
if (pos == string::npos && allowEmpty) s = "";
else if (pos != string::npos && pos >= 3) s = s.substr(pos);
}
return s;
}
string remdup(string s, bool allowEmpty) {
return remdupleft(remdupright(s, allowEmpty), allowEmpty);
}
string run(const string in) {
vector<vector<string>> table(in.size());
for (int i = 0; i < (int)table.size(); ++i) {
table[i].resize(in.size() - i);
}
for (int i = 0; i < (int)table[0].size(); ++i) {
table[0][i] = in.substr(i,1);
}
for (int len = 2; len <= (int)table.size(); ++len) {
for (int pos = 0; pos < (int)in.size() - len + 1; ++pos) {
string base(table[len - 2][pos]);
const char suffix = in[pos + len - 1];
if (base.size() && suffix != base.back()) {
base = remdupright(base, false);
}
const string opt1 = base + suffix;
base = table[len - 2][pos+1];
const char prefix = in[pos];
if (base.size() && prefix != base.front()) {
base = remdupleft(base, false);
}
const string opt2 = prefix + base;
const string nodupopt1 = remdup(opt1, true);
const string nodupopt2 = remdup(opt2, true);
table[len - 1][pos] = nodupopt1.size() > nodupopt2.size() ? opt2 : opt1;
assert(nodupopt1.size() != nodupopt2.size() || nodupopt1 == nodupopt2);
}
}
string& res = table[in.size() - 1][0];
return remdup(res, true);
}
void testRcd(string s, string expected) {
cout << s << " : " << run(s) << ", expected: " << expected << endl;
}
int main()
{
testRcd("BAABCCCBBA", "B");
testRcd("AABBAAAC", "AABBC");
testRcd("AAAA", "");
testRcd("AAAABBBAC", "C");
}
You can check default and run your tests here.
Clearly we are not concerned about any block of repeated characters longer than 2 characters. And there is only one way two blocks of the same character where at least one of the blocks is less than 3 in length can be combined - namely, if the sequence between them can be removed.
So (1) look at pairs of blocks of the same character where at least one is less than 3 in length, and (2) determine if the sequence between them can be removed.
We want to decide which pairs to join so as to minimize the total length of blocks less than 3 characters long. (Note that the number of pairs is bound by the size (and distribution) of the alphabet.)
Let f(b) represent the minimal total length of same-character blocks remaining up to the block b that are less than 3 characters in length. Then:
f(b):
p1 <- previous block of the same character
if b and p1 can combine:
if b.length + p1.length > 2:
f(b) = min(
// don't combine
(0 if b.length > 2 else b.length) +
f(block before b),
// combine
f(block before p1)
)
// b.length + p1.length < 3
else:
p2 <- block previous to p1 of the same character
if p1 and p2 can combine:
f(b) = min(
// don't combine
b.length + f(block before b),
// combine
f(block before p2)
)
else:
f(b) = b.length + f(block before b)
// b and p1 cannot combine
else:
f(b) = b.length + f(block before b)
for all p1 before b
The question is how can we efficiently determine if a block can be combined with the previous block of the same character (aside from the obvious recursion into the sub-block-list between the two blocks).
Python code:
import random
import time
def parse(length):
return length if length < 3 else 0
def f(string):
chars = {}
blocks = [[string[0], 1, 0]]
chars[string[0]] = {'indexes': [0]}
chars[string[0]][0] = {'prev': -1}
p = 0 # pointer to current block
for i in xrange(1, len(string)):
if blocks[len(blocks) - 1][0] == string[i]:
blocks[len(blocks) - 1][1] += 1
else:
p += 1
# [char, length, index, f(i), temp]
blocks.append([string[i], 1, p])
if string[i] in chars:
chars[string[i]][p] = {'prev': chars[string[i]]['indexes'][ len(chars[string[i]]['indexes']) - 1 ]}
chars[string[i]]['indexes'].append(p)
else:
chars[string[i]] = {'indexes': [p]}
chars[string[i]][p] = {'prev': -1}
#print blocks
#print
#print chars
#print
memo = [[None for j in xrange(len(blocks))] for i in xrange(len(blocks))]
def g(l, r, top_level=False):
####
####
#print "(l, r): (%s, %s)" % (l,r)
if l == r:
return parse(blocks[l][1])
if memo[l][r]:
return memo[l][r]
result = [parse(blocks[l][1])] + [None for k in xrange(r - l)]
if l < r:
for i in xrange(l + 1, r + 1):
result[i - l] = parse(blocks[i][1]) + result[i - l - 1]
for i in xrange(l, r + 1):
####
####
#print "\ni: %s" % i
[char, length, index] = blocks[i]
#p1 <- previous block of the same character
p1_idx = chars[char][index]['prev']
####
####
#print "(p1_idx, l, p1_idx >= l): (%s, %s, %s)" % (p1_idx, l, p1_idx >= l)
if p1_idx < l and index > l:
result[index - l] = parse(length) + result[index - l - 1]
while p1_idx >= l:
p1 = blocks[p1_idx]
####
####
#print "(b, p1, p1_idx, l): (%s, %s, %s, %s)\n" % (blocks[i], p1, p1_idx, l)
between = g(p1[2] + 1, index - 1)
####
####
#print "between: %s" % between
#if b and p1 can combine:
if between == 0:
if length + p1[1] > 2:
result[index - l] = min(
result[index - l],
# don't combine
parse(length) + (result[index - l - 1] if index - l > 0 else 0),
# combine: f(block before p1)
result[p1[2] - l - 1] if p1[2] > l else 0
)
# b.length + p1.length < 3
else:
#p2 <- block previous to p1 of the same character
p2_idx = chars[char][p1[2]]['prev']
if p2_idx < l:
p1_idx = chars[char][p1_idx]['prev']
continue
between2 = g(p2_idx + 1, p1[2] - 1)
#if p1 and p2 can combine:
if between2 == 0:
result[index - l] = min(
result[index - l],
# don't combine
parse(length) + (result[index - l - 1] if index - l > 0 else 0),
# combine the block, p1 and p2
result[p2_idx - l - 1] if p2_idx - l > 0 else 0
)
else:
#f(b) = b.length + f(block before b)
result[index - l] = min(
result[index - l],
parse(length) + (result[index - l - 1] if index - l > 0 else 0)
)
# b and p1 cannot combine
else:
#f(b) = b.length + f(block before b)
result[index - l] = min(
result[index - l],
parse(length) + (result[index - l - 1] if index - l > 0 else 0)
)
p1_idx = chars[char][p1_idx]['prev']
#print l,r,result
memo[l][r] = result[r - l]
"""if top_level:
return (result, blocks)
else:"""
return result[r - l]
if len(blocks) == 1:
return ([parse(blocks[0][1])], blocks)
else:
return g(0, len(blocks) - 1, True)
"""s = ""
for i in xrange(300):
s = s + ['A','B','C'][random.randint(0,2)]"""
print f("abcccbcccbacccab") # b
print
print f("AAAABBBAC"); # C
print
print f("CAAAABBBA"); # C
print
print f("AABBAAAC"); # AABBC
print
print f("BAABCCCBBA"); # B
print
print f("aaaa")
print
The string answers for these longer examples were computed using jdehesa's answer:
t0 = time.time()
print f("BCBCCBCCBCABBACCBABAABBBABBBACCBBBAABBACBCCCACABBCAABACBBBBCCCBBAACBAABACCBBCBBAABCCCCCAABBBBACBBAAACACCBCCBBBCCCCCCCACBABACCABBCBBBBBCBABABBACCAACBCBBAACBBBBBCCBABACBBABABAAABCCBBBAACBCACBAABAAAABABB")
# BCBCCBCCBCABBACCBABCCAABBACBACABBCAABACAACBAABACCBBCBBCACCBACBABACCABBCCBABABBACCAACBCBBAABABACBBABABBCCAACBCACBAABBABB
t1 = time.time()
total = t1-t0
print total
t0 = time.time()
print f("CBBACAAAAABBBBCAABBCBAABBBCBCBCACACBAABCBACBBABCABACCCCBACBCBBCBACBBACCCBAAAACACCABAACCACCBCBCABAACAABACBABACBCBAACACCBCBCCCABACABBCABBAAAAABBBBAABAABBCACACABBCBCBCACCCBABCAACBCAAAABCBCABACBABCABCBBBBABCBACABABABCCCBBCCBBCCBAAABCABBAAABBCAAABCCBAABAABCAACCCABBCAABCBCBCBBAACCBBBACBBBCABAABCABABABABCA")
# CBBACCAABBCBAACBCBCACACBAABCBACBBABCABABACBCBBCBACBBABCACCABAACCACCBCBCABAACAABACBABACBCBAACACCBCBABACABBCBBCACACABBCBCBCABABCAACBCBCBCABACBABCABCABCBACABABACCBBCCBBCACBCCBAABAABCBBCAABCBCBCBBAACCACCABAABCABABABABCA
t1 = time.time()
total = t1-t0
print total
t0 = time.time()
print f("AADBDBEBBBBCABCEBCDBBBBABABDCCBCEBABADDCABEEECCECCCADDACCEEAAACCABBECBAEDCEEBDDDBAAAECCBBCEECBAEBEEEECBEEBDACDDABEEABEEEECBABEDDABCDECDAABDAEADEECECEBCBDDAEEECCEEACCBBEACDDDDBDBCCAAECBEDAAAADBEADBAAECBDEACDEABABEBCABDCEEAABABABECDECADCEDAEEEBBBCEDECBCABDEDEBBBABABEEBDAEADBEDABCAEABCCBCCEDCBBEBCECCCA")
# AADBDBECABCEBCDABABDCCBCEBABADDCABCCEADDACCEECCABBECBAEDCEEBBECCBBCEECBAEBCBEEBDACDDABEEABCBABEDDABCDECDAABDAEADEECECEBCBDDACCEEACCBBEACBDBCCAAECBEDDBEADBAAECBDEACDEABABEBCABDCEEAABABABECDECADCEDACEDECBCABDEDEABABEEBDAEADBEDABCAEABCCBCCEDCBBEBCEA
t1 = time.time()
total = t1-t0
print total
Another scala answer, using memoization and tailcall optimization (partly) (updated).
import scala.collection.mutable.HashSet
import scala.annotation._
object StringCondense extends App {
#tailrec
def groupConsecutive (s: String, sofar: List[String]): List[String] = s.toList match {
// def groupConsecutive (s: String): List[String] = s.toList match {
case Nil => sofar
// case Nil => Nil
case c :: str => {
val (prefix, rest) = (c :: str).span (_ == c)
// Strings of equal characters, longer than 3, don't make a difference to just 3
groupConsecutive (rest.mkString(""), (prefix.take (3)).mkString ("") :: sofar)
// (prefix.take (3)).mkString ("") :: groupConsecutive (rest.mkString(""))
}
}
// to count the effect of memoization
var count = 0
// recursively try to eliminate every group of 3 or more, brute forcing
// but for "aabbaabbaaabbbaabb", many reductions will lead sooner or
// later to the same result, so we try to detect these and avoid duplicate
// work
def moreThan2consecutive (s: String, seenbefore: HashSet [String]): String = {
if (seenbefore.contains (s)) s
else
{
count += 1
seenbefore += s
val sublists = groupConsecutive (s, Nil)
// val sublists = groupConsecutive (s)
val atLeast3 = sublists.filter (_.size > 2)
atLeast3.length match {
case 0 => s
case 1 => {
val res = sublists.filter (_.size < 3)
moreThan2consecutive (res.mkString (""), seenbefore)
}
case _ => {
val shrinked = (
for {idx <- (0 until sublists.size)
if (sublists (idx).length >= 3)
pre = (sublists.take (idx)).mkString ("")
post= (sublists.drop (idx+1)).mkString ("")
} yield {
moreThan2consecutive (pre + post, seenbefore)
}
)
(shrinked.head /: shrinked.tail) ((a, b) => if (a.length <= b.length) a else b)
}
}
}
}
// don't know what Rcd means, adopted from other solution but modified
// kind of a unit test **update**: forgot to reset count
testRcd (s: String, expected: String) : Boolean = {
count = 0
val seenbefore = HashSet [String] ()
val result = moreThan2consecutive (s, seenbefore)
val hit = result.equals (expected)
println (s"Input: $s\t result: ${result}\t expected ${expected}\t $hit\t count: $count");
hit
}
// some test values from other users with expected result
// **upd:** more testcases
def testgroup () : Unit = {
testRcd ("baabcccbba", "b")
testRcd ("aabbaaac", "aabbc")
testRcd ("aaaa", "")
testRcd ("aaaabbbac", "c")
testRcd ("abcccbcccbacccab", "b")
testRcd ("AAAABBBAC", "C")
testRcd ("CAAAABBBA", "C")
testRcd ("AABBAAAC", "AABBC")
testRcd ("BAABCCCBBA", "B")
testRcd ("AAABBBAAABBBAAABBBC", "C") // 377 subcalls reported by Yola,
testRcd ("AAABBBAAABBBAAABBBAAABBBC", "C") // 4913 when preceeded with AAABBB
}
testgroup
def testBigs () : Unit = {
/*
testRcd ("BCBCCBCCBCABBACCBABAABBBABBBACCBBBAABBACBCCCACABBCAABACBBBBCCCBBAACBAABACCBBCBBAABCCCCCAABBBBACBBAAACACCBCCBBBCCCCCCCACBABACCABBCBBBBBCBABABBACCAACBCBBAACBBBBBCCBABACBBABABAAABCCBBBAACBCACBAABAAAABABB",
"BCBCCBCCBCABBACCBABCCAABBACBACABBCAABACAACBAABACCBBCBBCACCBACBABACCABBCCBABABBACCAACBCBBAABABACBBABABBCCAACBCACBAABBABB")
*/
testRcd ("CBBACAAAAABBBBCAABBCBAABBBCBCBCACACBAABCBACBBABCABACCCCBACBCBBCBACBBACCCBAAAACACCABAACCACCBCBCABAACAABACBABACBCBAACACCBCBCCCABACABBCABBAAAAABBBBAABAABBCACACABBCBCBCACCCBABCAACBCAAAABCBCABACBABCABCBBBBABCBACABABABCCCBBCCBBCCBAAABCABBAAABBCAAABCCBAABAABCAACCCABBCAABCBCBCBBAACCBBBACBBBCABAABCABABABABCA",
"CBBACCAABBCBAACBCBCACACBAABCBACBBABCABABACBCBBCBACBBABCACCABAACCACCBCBCABAACAABACBABACBCBAACACCBCBABACABBCBBCACACABBCBCBCABABCAACBCBCBCABACBABCABCABCBACABABACCBBCCBBCACBCCBAABAABCBBCAABCBCBCBBAACCACCABAABCABABABABCA")
/*testRcd ("AADBDBEBBBBCABCEBCDBBBBABABDCCBCEBABADDCABEEECCECCCADDACCEEAAACCABBECBAEDCEEBDDDBAAAECCBBCEECBAEBEEEECBEEBDACDDABEEABEEEECBABEDDABCDECDAABDAEADEECECEBCBDDAEEECCEEACCBBEACDDDDBDBCCAAECBEDAAAADBEADBAAECBDEACDEABABEBCABDCEEAABABABECDECADCEDAEEEBBBCEDECBCABDEDEBBBABABEEBDAEADBEDABCAEABCCBCCEDCBBEBCECCCA",
"AADBDBECABCEBCDABABDCCBCEBABADDCABCCEADDACCEECCABBECBAEDCEEBBECCBBCEECBAEBCBEEBDACDDABEEABCBABEDDABCDECDAABDAEADEECECEBCBDDACCEEACCBBEACBDBCCAAECBEDDBEADBAAECBDEACDEABABEBCABDCEEAABABABECDECADCEDACEDECBCABDEDEABABEEBDAEADBEDABCAEABCCBCCEDCBBEBCEA")
*/
}
// for generated input, but with fixed seed, to compare the count with
// and without memoization
import util.Random
val r = new Random (31415)
// generate Strings but with high chances to produce some triples and
// longer sequences of char clones
def genRandomString () : String = {
(1 to 20).map (_ => r.nextInt (6) match {
case 0 => "t"
case 1 => "r"
case 2 => "-"
case 3 => "tt"
case 4 => "rr"
case 5 => "--"
}).mkString ("")
}
def testRandom () : Unit = {
(1 to 10).map (i=> testRcd (genRandomString, "random mode - false might be true"))
}
testRandom
testgroup
testRandom
// testBigs
}
Comparing the effect of memoization lead to interesting results:
Updated measurements. In the old values, I forgot to reset the counter, which leaded to much higher results. Now the spreading of results
is much more impressive and in total, the values are smaller.
No seenbefore:
Input: baabcccbba result: b expected b true count: 4
Input: aabbaaac result: aabbc expected aabbc true count: 2
Input: aaaa result: expected true count: 2
Input: aaaabbbac result: c expected c true count: 5
Input: abcccbcccbacccab result: b expected b true count: 34
Input: AAAABBBAC result: C expected C true count: 5
Input: CAAAABBBA result: C expected C true count: 5
Input: AABBAAAC result: AABBC expected AABBC true count: 2
Input: BAABCCCBBA result: B expected B true count: 4
Input: AAABBBAAABBBAAABBBC res: C expected C true count: 377
Input: AAABBBAAABBBAAABBBAAABBBC r: C expected C true count: 4913
Input: r--t----ttrrrrrr--tttrtttt--rr----result: rr--rr expected ? unknown ? false count: 1959
Input: ttrtt----tr---rrrtttttttrtr--rr result: r--rr expected ? unknown ? false count: 213
Input: tt----r-----ttrr----ttrr-rr--rr-- result: ttrttrrttrr-rr--rr-- ex ? unknown ? false count: 16
Input: --rr---rrrrrrr-r--rr-r--tt--rrrrr result: rr-r--tt-- expected ? unknown ? false count: 32
Input: tt-rrrrr--r--tt--rrtrrr------- result: ttr--tt--rrt expected ? unknown ? false count: 35
Input: --t-ttt-ttt--rrrrrt-rrtrttrr result: --tt-rrtrttrr expected ? unknown ? false count: 35
Input: rrt--rrrr----trrr-rttttrrtttrr result: rrtt- expected ? unknown ? false count: 1310
Input: ---tttrrrrrttrrttrr---tt-----tt result: rrttrr expected ? unknown ? false count: 1011
Input: -rrtt--rrtt---t-r--r---rttr-- result: -rrtt--rr-r--rrttr-- ex ? unknown ? false count: 9
Input: rtttt--rrrrrrrt-rrttt--tt--t result: r--t-rr--tt--t expectd ? unknown ? false count: 16
real 0m0.607s (without testBigs)
user 0m1.276s
sys 0m0.056s
With seenbefore:
Input: baabcccbba result: b expected b true count: 4
Input: aabbaaac result: aabbc expected aabbc true count: 2
Input: aaaa result: expected true count: 2
Input: aaaabbbac result: c expected c true count: 5
Input: abcccbcccbacccab result: b expected b true count: 11
Input: AAAABBBAC result: C expected C true count: 5
Input: CAAAABBBA result: C expected C true count: 5
Input: AABBAAAC result: AABBC expected AABBC true count: 2
Input: BAABCCCBBA result: B expected B true count: 4
Input: AAABBBAAABBBAAABBBC rest: C expected C true count: 28
Input: AAABBBAAABBBAAABBBAAABBBC C expected C true count: 52
Input: r--t----ttrrrrrr--tttrtttt--rr----result: rr--rr expected ? unknown ? false count: 63
Input: ttrtt----tr---rrrtttttttrtr--rr result: r--rr expected ? unknown ? false count: 48
Input: tt----r-----ttrr----ttrr-rr--rr-- result: ttrttrrttrr-rr--rr-- xpe? unknown ? false count: 8
Input: --rr---rrrrrrr-r--rr-r--tt--rrrrr result: rr-r--tt-- expected ? unknown ? false count: 19
Input: tt-rrrrr--r--tt--rrtrrr------- result: ttr--tt--rrt expected ? unknown ? false count: 12
Input: --t-ttt-ttt--rrrrrt-rrtrttrr result: --tt-rrtrttrr expected ? unknown ? false count: 16
Input: rrt--rrrr----trrr-rttttrrtttrr result: rrtt- expected ? unknown ? false count: 133
Input: ---tttrrrrrttrrttrr---tt-----tt result: rrttrr expected ? unknown ? false count: 89
Input: -rrtt--rrtt---t-r--r---rttr-- result: -rrtt--rr-r--rrttr-- ex ? unknown ? false count: 6
Input: rtttt--rrrrrrrt-rrttt--tt--t result: r--t-rr--tt--t expected ? unknown ? false count: 8
real 0m0.474s (without testBigs)
user 0m0.852s
sys 0m0.060s
With tailcall:
real 0m0.478s (without testBigs)
user 0m0.860s
sys 0m0.060s
For some random strings, the difference is bigger than a 10fold.
For long Strings with many groups one could, as an improvement, eliminate all groups which are the only group of that character, for instance:
aa bbb aa ccc xx ddd aa eee aa fff xx
The groups bbb, ccc, ddd, eee and fff are unique in the string, so they can't fit to something else and could all be eliminated, and the order of removal is will not matter. This would lead to the intermediate result
aaaa xx aaaa xx
and a fast solution. Maybe I try to implement it too. However, I guess, it will be possible to produce random Strings, where this will have a big impact and by a different form of random generated strings, to distributions, where the impact is low.
Here is a Python solution (function reduce_min), not particularly smart but I think fairly easy to understand (excessive amount of comments added for answer clarity):
def reductions(s, min_len):
"""
Yields every possible reduction of s by eliminating contiguous blocks
of l or more repeated characters.
For example, reductions('AAABBCCCCBAAC', 3) yields
'BBCCCCBAAC' and 'AAABBBAAC'.
"""
# Current character
curr = ''
# Length of current block
n = 0
# Start position of current block
idx = 0
# For each character
for i, c in enumerate(s):
if c != curr:
# New block begins
if n >= min_len:
# If previous block was long enough
# yield reduced string without it
yield s[:idx] + s[i:]
# Start new block
curr = c
n = 1
idx = i
else:
# Still in the same block
n += 1
# Yield reduction without last block if it was long enough
if n >= min_len:
yield s[:idx]
def reduce_min(s, min_len):
"""
Finds the smallest possible reduction of s by successive
elimination of contiguous blocks of min_len or more repeated
characters.
"""
# Current set of possible reductions
rs = set([s])
# Current best solution
result = s
# While there are strings to reduce
while rs:
# Get one element
r = rs.pop()
# Find reductions
r_red = list(reductions(r, min_len))
# If no reductions are found it is irreducible
if len(r_red) == 0 and len(r) < len(result):
# Replace if shorter than current best
result = r
else:
# Save reductions for next iterations
rs.update(r_red)
return result
assert reduce_min("BAABCCCBBA", 3) == "B"
assert reduce_min("AABBAAAC", 3) == "AABBC"
assert reduce_min("AAAA", 3) == ""
assert reduce_min("AAAABBBAC", 3) == "C"
EDIT: Since people seem to be posting C++ solutions, here is mine in C++ (again, function reduce_min):
#include <string>
#include <vector>
#include <unordered_set>
#include <iterator>
#include <utility>
#include <cassert>
using namespace std;
void reductions(const string &s, unsigned int min_len, vector<string> &rs)
{
char curr = '\0';
unsigned int n = 0;
unsigned int idx = 0;
for (auto it = s.begin(); it != s.end(); ++it)
{
if (curr != *it)
{
auto i = distance(s.begin(), it);
if (n >= min_len)
{
rs.push_back(s.substr(0, idx) + s.substr(i));
}
curr = *it;
n = 1;
idx = i;
}
else
{
n += 1;
}
}
if (n >= min_len)
{
rs.push_back(s.substr(0, idx));
}
}
string reduce_min(const string &s, unsigned int min_len)
{
unordered_set<string> rs { s };
string result = s;
vector<string> rs_new;
while (!rs.empty())
{
auto it = rs.begin();
auto r = *it;
rs.erase(it);
rs_new.clear();
reductions(r, min_len, rs_new);
if (rs_new.empty() && r.size() < result.size())
{
result = move(r);
}
else
{
rs.insert(rs_new.begin(), rs_new.end());
}
}
return result;
}
int main(int argc, char **argv)
{
assert(reduce_min("BAABCCCBBA", 3) == "B");
assert(reduce_min("AABBAAAC", 3) == "AABBC");
assert(reduce_min("AAAA", 3) == "");
assert(reduce_min("AAAABBBAC", 3) == "C");
return 0;
}
If you can use C++17 you can save memory by using string views.
EDIT 2: About the complexity of the algorithm. It is not straightforward to figure out, and as I said the algorithm is meant to be simple more than anything, but let's see. In the end, it is more or less the same as a breadth-first search. Let's say the string length is n, and, for generality, let's say the minimum block length (value 3 in the question) is m. In the first level, we can generate up to n / m reductions in the worst case. For each of these, we can generate up to (n - m) / m reductions, and so on. So basically, at "level" i (loop iteration i) we create up to (n - i * m) / m reductions per string we had, and each of these will take O(n - i * m) time to process. The maximum number of levels we can have is, again, n / m. So the complexity of the algorithm (if I'm not making mistakes) should have the form:
O( sum {i = 0 .. n / m} ( O(n - i * m) * prod {j = 0 .. i} ((n - i * m) / m) ))
|-Outer iters--| |---Cost---| |-Prev lvl-| |---Branching---|
Whew. So this should be something like:
O( sum {i = 0 .. n / m} (n - i * m) * O(n^i / m^i) )
Which in turn would collapse to:
O((n / m)^(n / m))
So yeah, the algorithm is more or less simple, but it can run into exponential cost cases (the bad cases would be strings made entirely of exactly m-long blocks, like AAABBBCCCAAACCC... for m = 3).

How to find ith item in zigzag ordering?

A question last week defined the zig zag ordering on an n by m matrix and asked how to list the elements in that order.
My question is how to quickly find the ith item in the zigzag ordering? That is, without traversing the matrix (for large n and m that's much too slow).
For example with n=m=8 as in the picture and (x, y) describing (row, column)
f(0) = (0, 0)
f(1) = (0, 1)
f(2) = (1, 0)
f(3) = (2, 0)
f(4) = (1, 1)
...
f(63) = (7, 7)
Specific question: what is the ten billionth (1e10) item in the zigzag ordering of a million by million matrix?
Let's assume that the desired element is located in the upper half of the matrix. The length of the diagonals are 1, 2, 3 ..., n.
Let's find the desired diagonal. It satisfies the following property:
sum(1, 2 ..., k) >= pos but sum(1, 2, ..., k - 1) < pos. The sum of 1, 2, ..., k is k * (k + 1) / 2. So we just need to find the smallest integer k such that k * (k + 1) / 2 >= pos. We can either use a binary search or solve this quadratic inequality explicitly.
When we know the k, we just need to find the pos - (k - 1) * k / 2 element of this diagonal. We know where it starts and where we should move(up or down, depending on the parity of k), so we can find the desired cell using a simple formula.
This solution has an O(1) or an O(log n) time complexity(it depends on whether we use a binary search or solve the inequation explicitly in step 2).
If the desired element is located in the lower half of the matrix, we can solve this problem for a pos' = n * n - pos + 1 and then use symmetry to get the solution to the original problem.
I used 1-based indexing in this solution, using 0-based indexing might require adding +1 or -1 somewhere, but the idea of the solution is the same.
If the matrix is rectangular, not square, we need to consider the fact the length of diagonals look this way: 1, 2, 3, ..., m, m, m, .., m, m - 1, ..., 1(if m <= n) when we search for the k, so the sum becomes something like k * (k + 1) / 2 if k <= m and k * (k + 1) / 2 + m * (k - m) otherwise.
import math, random
def naive(n, m, ord, swap = False):
dx = 1
dy = -1
if swap:
dx, dy = dy, dx
cur = [0, 0]
for i in range(ord):
cur[0] += dy
cur[1] += dx
if cur[0] < 0 or cur[1] < 0 or cur[0] >= n or cur[1] >= m:
dx, dy = dy, dx
if cur[0] >= n:
cur[0] = n - 1
cur[1] += 2
if cur[1] >= m:
cur[1] = m - 1
cur[0] += 2
if cur[0] < 0: cur[0] = 0
if cur[1] < 0: cur[1] = 0
return cur
def fast(n, m, ord, swap = False):
if n < m:
x, y = fast(m, n, ord, not swap)
return [y, x]
alt = n * m - ord - 1
if alt < ord:
x, y = fast(n, m, alt, swap if (n + m) % 2 == 0 else not swap)
return [n - x - 1, m - y - 1]
if ord < (m * (m + 1) / 2):
diag = int((-1 + math.sqrt(1 + 8 * ord)) / 2)
parity = (diag + (0 if swap else 1)) % 2
within = ord - (diag * (diag + 1) / 2)
if parity: return [diag - within, within]
else: return [within, diag - within]
else:
ord -= (m * (m + 1) / 2)
diag = int(ord / m)
within = ord - diag * m
diag += m
parity = (diag + (0 if swap else 1)) % 2
if not parity:
within = m - within - 1
return [diag - within, within]
if __name__ == "__main__":
for i in range(1000):
n = random.randint(3, 100)
m = random.randint(3, 100)
ord = random.randint(0, n * m - 1)
swap = random.randint(0, 99) < 50
na = naive(n, m, ord, swap)
fa = fast(n, m, ord, swap)
assert na == fa, "(%d, %d, %d, %s) ==> (%s), (%s)" % (n, m, ord, swap, na, fa)
print fast(1000000, 1000000, 9999999999, False)
print fast(1000000, 1000000, 10000000000, False)
So the 10-billionth element (the one with ordinal 9999999999), and the 10-billion-first element (the one with ordinal 10^10) are:
[20331, 121089]
[20330, 121090]
An analytical solution
In the general case, your matrix will be divided in 3 areas:
an initial triangle t1
a skewed part mid where diagonals have a constant length
a final triangle t2
Let's call p the index of your diagonal run.
We want to define two functions x(p) and y(p) that give you the column and row of the pth cell.
Initial triangle
Let's look at the initial triangular part t1, where each new diagonal is one unit longer than the preceding.
Now let's call d the index of the diagonal that holds the cell, and
Sp = sum(di) for i in [0..p-1]
We have p = Sp + k, with 0 <=k <= d and
Sp = d(d+1)/2
if we solve for d, it brings
d²+d-2p = 0, a quadratic equation where we retain only the positive root:
d = (-1+sqrt(1+8*p))/2
Now we want the highest integer value closest to d, which is floor(d).
In the end, we have
p = d + k with d = floor((-1+sqrt(1+8*p))/2) and k = p - d(d+1)/2
Let's call
o(d) the function that equals 1 if d is odd and 0 otherwise, and
e(d) the function that equals 1 if d is even and 0 otherwise.
We can compute x(p) and y(p) like so:
d = floor((-1+sqrt(1+8*p))/2)
k = p - d(d+1)/2
o = d % 2
e = 1 - o
x = e*d + (o-e)*k
y = o*d + (e-o)*k
even and odd functions are used to try to salvage some clarity, but you can replace
e(p) with 1 - o(p) and have slightly more efficient but less symetric formulaes for x and y.
Middle part
let's consider the smallest matrix dimension s, i.e. s = min (m,n).
The previous formulaes hold until x or y (whichever comes first) reaches the value s.
The upper bound of p such as x(i) <= s and y(i) <= s for all i in [0..p]
(i.e. the cell indexed by p is inside the initial triangle t1) is given by
pt1 = s(s+1)/2.
For p >= pt1, diagonal length remains equal to s until we reach the second triangle t2.
when inside mid, we have:
p = s(s+1)/2 + ds + k with k in [0..s[.
which yields:
d = floor ((p - s(s+1)/2)/s)
k = p - ds
We can then use the same even/odd trick to compute x(p) and y(p):
p -= s(s+1)/2
d = floor (p / s)
k = p - d*s
o = (d+s) % 2
e = 1 - o
x = o*s + (e-o)*k
y = e*s + (o-e)*k
if (n > m)
x += d+e
y -= e
else
y += d+o
x -= o
Final triangle
Using symetry, we can calculate pt2 = m*n - s(s+1)/2
We now face nearly the same problem as for t1, except that the diagonal may run in the same direction as for t1 or in the reverse direction (if n+m is odd).
Using symetry tricks, we can compute x(p) and y(p) like so:
p = n*m -1 - p
d = floor((-1+sqrt(1+8*p))/2)
k = p - d*(d+1)/2
o = (d+m+n) % 2
e = 1 - $o;
x = n-1 - (o*d + (e-o)*k)
y = m-1 - (e*d + (o-e)*k)
Putting all together
Here is a sample c++ implementation.
I used 64 bits integers out of sheer lazyness. Most could be replaced by 32 bits values.
The computations could be made more effective by precomputing a few more coefficients.
A good part of the code could be factorized, but I doubt it is worth the effort.
Since this is just a quick and dirty proof of concept, I did not optimize it.
#include <cstdio> // printf
#include <algorithm> // min
using namespace std;
typedef long long tCoord;
void panic(const char * msg)
{
printf("PANIC: %s\n", msg);
exit(-1);
}
struct tPoint {
tCoord x, y;
tPoint(tCoord x = 0, tCoord y = 0) : x(x), y(y) {}
tPoint operator+(const tPoint & p) const { return{ x + p.x, y + p.y }; }
bool operator!=(const tPoint & p) const { return x != p.x || y != p.y; }
};
class tMatrix {
tCoord n, m; // dimensions
tCoord s; // smallest dimension
tCoord pt1, pt2; // t1 / mid / t2 limits for p
public:
tMatrix(tCoord n, tCoord m) : n(n), m(m)
{
s = min(n, m);
pt1 = (s*(s + 1)) / 2;
pt2 = n*m - pt1;
}
tPoint diagonal_cell(tCoord p)
{
tCoord x, y;
if (p < pt1) // inside t1
{
tCoord d = (tCoord)floor((-1 + sqrt(1 + 8 * p)) / 2);
tCoord k = p - (d*(d + 1)) / 2;
tCoord o = d % 2;
tCoord e = 1 - o;
x = o*d + (e - o)*k;
y = e*d + (o - e)*k;
}
else if (p < pt2) // inside mid
{
p -= pt1;
tCoord d = (tCoord)floor(p / s);
tCoord k = p - d*s;
tCoord o = (d + s) % 2;
tCoord e = 1 - o;
x = o*s + (e - o)*k;
y = e*s + (o - e)*k;
if (m > n) // vertical matrix
{
x -= o;
y += d + o;
}
else // horizontal matrix
{
x += d + e;
y -= e;
}
}
else // inside t2
{
p = n * m - 1 - p;
tCoord d = (tCoord)floor((-1 + sqrt(1 + 8 * p)) / 2);
tCoord k = p - (d*(d + 1)) / 2;
tCoord o = (d + m + n) % 2;
tCoord e = 1 - o;
x = n - 1 - (o*d + (e - o)*k);
y = m - 1 - (e*d + (o - e)*k);
}
return{ x, y };
}
void check(void)
{
tPoint move[4] = { { 1, 0 }, { -1, 1 }, { 1, -1 }, { 0, 1 } };
tPoint pos;
tCoord dir = 0;
for (tCoord p = 0; p != n * m ; p++)
{
tPoint dc = diagonal_cell(p);
if (pos != dc) panic("zot!");
pos = pos + move[dir];
if (dir == 0)
{
if (pos.y == m - 1) dir = 2;
else dir = 1;
}
else if (dir == 3)
{
if (pos.x == n - 1) dir = 1;
else dir = 2;
}
else if (dir == 1)
{
if (pos.y == m - 1) dir = 0;
else if (pos.x == 0) dir = 3;
}
else
{
if (pos.x == n - 1) dir = 3;
else if (pos.y == 0) dir = 0;
}
}
}
};
void main(void)
{
const tPoint dim[] = { { 10, 10 }, { 11, 11 }, { 10, 30 }, { 30, 10 }, { 10, 31 }, { 31, 10 }, { 11, 31 }, { 31, 11 } };
for (tPoint d : dim)
{
printf("Checking a %lldx%lld matrix...", d.x, d.y);
tMatrix(d.x, d.y).check();
printf("done\n");
}
tCoord p = 10000000000;
tMatrix matrix(1000000, 1000000);
tPoint cell = matrix.diagonal_cell(p);
printf("Coordinates of %lldth cell: (%lld,%lld)\n", p, cell.x, cell.y);
}
Results are checked against "manual" sweep of the matrix.
This "manual" sweep is a ugly hack that won't work for a one-row or one-column matrix, though diagonal_cell() does work on any matrix (the "diagonal" sweep becomes linear in that case).
The coordinates found for the 10.000.000.000th cell of a 1.000.000x1.000.000 matrix seem consistent, since the diagonal d on which the cell stands is about sqrt(2*1e10), approx. 141421, and the sum of cell coordinates is about equal to d (121090+20330 = 141420). Besides, it is also what the two other posters report.
I would say there is a good chance this lump of obfuscated code actually produces an O(1) solution to your problem.

override moveTo and moveByPx methods of OpenLayers.Map

How to override moveTo and moveByPx methods of OpenLayers.Map for eliminate "movestart" event triggering for any actions except zooming ?
map = new OpenLayers.Map("map");
OpenLayers.Map.prototype.moveByPx = function (a, b) {
var c = this.size.w / 2,
d = this.size.h / 2,
e = c + a,
f = d + b,
g = this.baseLayer.wrapDateLine,
h = 0,
k = 0;
this.restrictedExtent && (h = c, k = d, g = !1);
a = g || e <= this.maxPx.x - h && e >= this.minPx.x + h ? Math.round(a) : 0;
b = f <= this.maxPx.y - k && f >= this.minPx.y + k ? Math.round(b) : 0;
if (a || b) {
this.dragging || (this.dragging = !0);
this.center = null;
a && (this.layerContainerOriginPx.x -= a, this.minPx.x -= a, this.maxPx.x -= a);
b && (this.layerContainerOriginPx.y -= b, this.minPx.y -= b, this.maxPx.y -= b);
this.applyTransform();
d = 0;
for (e = this.layers.length; d < e; ++d)
c = this.layers[d], c.visibility && (c === this.baseLayer || c.inRange) && (c.moveByPx(a, b), c.events.triggerEvent("move"));
this.events.triggerEvent("move")
}
}
map.events.register("movestart", map, function (e) {
My Code...
});

Resources