gdb won't run in tui mode - debugging

i'm tryin to debug (actually i just want to understand the program on assembly level) a program. Usin gdb is ok but in tui mode it would be just great, unfortunately i get an error when i'm debuggin in tui while displaying the assembly and source code (-g option in gcc) mode sayin: error while reading shared library symbols
I can run the program if i do not show the assembly code but that is not what i want, i really want to step through every assembly line to fully understand the program. Also, when i try this with si sometimes i get an error for example in printf but that's another story
so any tips? Note:this is not a bug of my program, i tried this with other programs

Your shared libraries were not compiled with symbols enabled. You need to look for, usually, "debug" versions of gcc libraries (or your other libraries that you are linking against). If you have custom libraries that you are building, add the -g option to the gcc commands that are being run to compile them.

Related

GCC error with -mcpu32 flag, CPU32 compiler needed

I am patching code into my car's ECU. This has a Motorola MC68376 processor, so I'm using the appropriate CPU32 instruction set.
I want to continue to write in assembly code so that I can explicitly manage control registers, RAM access and allocation, as well as copying code structures which are already in use.
My first patch was successfully compiled in EASy68k, but that program does not support the full instruction set for the CPU32. For example, the DIVS.L command is not supported, so I cannot take a quotient of a 32-bit value.
Thus, before writing my own compiler out of sheer incompetence with available tools, I'm looking for an easier path. I read that gcc has the capability to compile code for the CPU32, but I have failed to get it to work.
I'm using MinGW's gcc (6.3.0) and Eclipse (2020-03). I added the '-mcpu32' or '-march=cpu32' flags to the compiler call, according to:
https://gcc.gnu.org/onlinedocs/gcc/M680x0-Options.html
Unfortunately this returns an error:
gcc: error: unrecognized command line option '-mcpu32'; did you mean '-mcpu='?
or
error: bad value (cpu32) for -march= switch
May I please have some advice for making this work? Does anyone know of a better CPU32 compiler that works with Eclipse?
I did not understand that gcc is conventionally distributed as binary files that are compiled with different functionality to suit the needs of a given user.
There seem to be two paths forward:
1) compile my own cross-compiler version of GCC
2) download a pre-compiled cross-compiler version of GCC
I chose to follow route 2).
I began the process of installing the 'Windows Subsystem for Linux' and Ubuntu 20.04 Focal Fossa, because I found a pre-made compiler that should be capable of performing cross compilation for the m68k processor: "gobjc-10-m68k-linux-gnu"
https://ubuntu.pkgs.org/20.04/ubuntu-universe-i386/gobjc-10-m68k-linux-gnu_10-20200411-0ubuntu1cross1_i386.deb.html
While I was installing that, I also found an m68k-elf gcc toolchain that is pre-compiled for windows 10:
https://gnutoolchains.com/m68k-elf/
I played with the latter for much of today. Although I was unable to get the toolchain integrated well with Eclipse, it works from the command line to compile a *.s assembly code file. This includes compatibility with the '-mcpu32' flag that I wanted at the outset.
There is still a lot for me to figure out, even after floundering through learning gcc's assembler directives (https://www.eecs.umich.edu/courses/eecs373/readings/Assembler.pdf) and the differences in gcc's assembly syntax compared to the MC68k reference manual (https://www.nxp.com/files-static/archives/doc/ref_manual/M68000PRM.pdf).
I can even convert the code section of the output file to be a proper s-record by using objcopy with the '-O srec' and '--only-section=.text' flags. This helps me patch the code into my ECU.
Thus I've answered my original question.

Building cmake with non-default GCC uses system libstdc++

I'm trying to compile CMake using a non-default GCC installed in /usr/local/gcc530, on Solaris 2.11.
I have LD_LIBRARY_PATH=/usr/local/gcc530/lib/sparcv9
Bootstrap proceeds fine, bootstrapped cmake successfully compiles various object files, but when it tries to link the real cmake (and other executables), I get pages of "undefined reference" errors to various standard library functions, because, as running the link command manually with -Wl,-verbose shows, the linker links with /usr/lib/64/libstdc++.so of the system default, much older GCC.
This is because apparently CMake tries to find curses/ncurses libraries (even if I tell it BUILD_CursesDialog:BOOL=OFF), finds them in /usr/lib/64, and adds -L/usr/lib/64 to build/Source/CMakeFiles/cmake.dir/link.txt, which causes the linker to use libstdc++.so from there, and not my actual GCC's own.
I found a workaround: I can get the path to proper libraries from $CC -m64 -print-file-name=libstdc++.so then put it with -L into LDFLAGS when running ./configure, and all works well then.
Is there a less hacky way? It's really weird that I can't tell GCC to prioritize its own libraries.
Also, is there some way to have CMake explain where different parts of a resulting command line came from?

GDB an ELF File Under Win32

I wanted to study ELF relocation mechanism, so I assembled an x86 assembly program using NASM to produce an ELF file, but under Win32. Then I used mingw32's gdb to debug it. It loaded nicely and I could view the program using "list" command. However, I couldn't run it. I got the following messages:
Starting program: c:\Projects\NasmProjects\Test01\Hello.o
Error creating process c:\Projects\NasmProjects\Test01\Hello.o
Is there a way around this?
Is there a way around this?
No.
First, you have assembled a relocatable object file (of type ET_REL). There is no OS that will "run" such files -- OSes that do support executing ELF files, require a fully linked executable (of type ET_EXEC or ET_DYN).
Second, even if you manage to link an ET_EXEC, you still need your OS to know how to load and start executing such a file. Linux and Solaris kernels do know this, AIX and Windows kernels do not.

How to debug command line file with symbolic data

I have a compiled .exe file (compiled with gfortran and -g option) that crashes. I can attach the WinDBG program to it using the WinDBG -I command.
Funny enough it generates a stack overflow:
(38f0.2830): Stack overflow - code c00000fd (!!! second chance !!!)
However, the output says that there is no debugging information in my program. It tries to search for either .dbg or .pdb files but they are not there. I would assume debugging information is included in the executable (coming from a unix-background).
Debug formats are compiler specific, so you need to use a debugger that understands the format produced by your compiler. As by gfortran I assume you mean GNU fortran, this would be the GNU gdb debugger.
I circumvented the problem by starting the program via gdb. In this way, gdb will give an error and you can issue the backtrace command.
It's not perfect, so I'm open for better solutions, but this works for now.

How do I do source level debug of library

I have a following setup. Although my working setup deals with ARM compiler Real View Developer Suite (RVDS) 3.2 on a Windows host, the situation could be generic for any other C compiler on any host.
I build a ARM library (static library - .a file) of C code using RVDS 3.2 compiler toolchain on Windows host. Then I link this library with an application using an ARM-Linux compiler toolchain on a Linux host, to get a ARM executable. Now when I try to debug this generated ARM executable on Linux using gdb, by trying to put a breakpoint in some function which is present in the library that is linked, gdb is not able to put breakpoint there citing source not found. So I manually copied all the source files(*.c) used to create the library in the Linux folder where the executable file is present. Still gdb fails to put a breakpoint.
So now I started thinking:
How can I do source level debugging of this library which I create on Windows using a different compiler chain by launching the executable which is generated by linking this library to an application, in gdb. Is it possible? How can I do it? Is there any compiler option in RVDS compiler toolchain to enable this library source level debug?
Do I need to copy the source files to linux in exactly same folder structure as that is present in windows for those source files?
You could try to see if mimicking the exact same directory structure works. If you're not sure what directory structure the compiler annotated in the debug info in the executable, you can always look at it with dwarfdump (on linux).
First, GDB does not need any source to put breakpoints on functions; so your description of what is actually happening is probably inaccurate. I would start by verifying that the function you want to break on is actually there in the binary:
nm /path/to/app | grep function_desired
Second, to do source level debugging, GDB needs debug info in a format GDB understands. On Linux this generally means DWARF or STABS. It is quite possible that your RVDS compiler does not emit such debug info; if so, source level debugging will not be possible.
Did you build the library with debugging enabled (-g option)? Without that, there would be difficulties identifying lines etc.
I've found that -fPIC will cause this sort of issue, but the only work around I've found is to not use -fPIC when I want to debug.

Resources