Not able to understand one Top Coder entry on Greedy Algorithms - algorithm

I am actually practicing Greedy Algorithms and There is a problem on topcoder.. So need some help....
The problem is about Robust Computer System.. http://www.topcoder.com/stat?c=problem_statement&pm=2235&rd=5070
I don't understand what is MFC. (Maximum Failure Count)?
If somebody can put light on the explanation of MFC with simple example then that would be help!!
Thanks..
In case you don't have an account, and can't follow the link, here's the question:
In a robust computer system, one of the most important pieces is the cooling. Without proper cooling, processors can heat up to over 400 degrees C. The reliability of a system can be measured by determining how many fans can fail without risking the system processor. Each fan can be assigned a value indicating how much capacity it has to cool the system, and we can define a minimum cooling capacity, which the sum of the fan capacities must exceed to properly cool the system. We define a Failure Set as a set of fans which are not necessary to cool the system. In other words, if the fans in a Failure Set break, the system can still be properly cooled by the remaining fans. The count of a Failure Set is the number of fans in the set.
To measure the reliability, we will define two values, the Maximum Failure Set (MFS) and the Maximum Failure Count (MFC). A MFS is a Failure Set of fans with the largest count possible. A set of fans may have more than one MFS (see below). A Failure Set is an MFS if and only if there are no Failure Sets with a higher count. The MFC is the largest value such that all fan sets with count <= MFC are Failure Sets. In other words, any set of fans of size MFC or less can fail, and the system will still be properly cooled by the remaining fans.
Consider the fan set with capacities 1, 2, 3, and a cooling requirement of 2. Two MFSs with a count of 2 exist: fans 1 and 3, or fans 1 and 2. However, the MFC is not 2 because fans 2 and 3 is not a Failure set (fan 1 could not cool the system properly by itself). Thus, the MFC is 1, because if any single fan fails, the system can still be cooled.
You will be given a int[] capacities, which designates how many units of cooling each fan provides, and an int minCooling, which designates the minimum units of cooling required to cool the system. Your method should return a int[], where the first value should be the number of fans in the Maximum Failure Set (MFS), and the second value should be the Maximum Failure Count (MFC).

We define a Failure Set as a set of fans which are not necessary to cool the system. In other words, if the fans in a Failure Set break, the system can still be properly cooled by the remaining fans. The count of a Failure Set is the number of fans in the set.
A Failure Set is an MFS if and only if there are no Failure Sets with a higher count.
It's all in the problem statement. What's not clear?

Just as in the problem statement:
The MFC is the largest value such that all fan sets with count <= MFC are Failure Sets. In other words, any set of fans of size MFC or less can fail, and the system will still be properly cooled by the remaining fans.
MFC means that if we arbitrarily choose n<=MFC fans to fail, then the system could still provide the necessary cooling requirement. However, there exist at least one case that if we choose MFC + 1 fans to fail the system would not provide the needed cooling requirement.
Good luck on TopCoder & Happy Learning!
Spoiler:
Just find the minimum number of fans M that their capacities sum is bigger than the (total capacity - cooling requirement). These fans must be the largest ones, hence the greedy algorithm part. M - 1 is the answer.

Related

Statistical Analysis of Runtime Measurements of a Parallel Algorithm

Problem Introduction
Assume we have a parallel algorithm f(<params>) running on P cores whereas
<params>: Parameters for algorithm
P: Number of cores it runs on (i.e. threads, cores, processors)
We further assume that out implementation actually consists of three parts:
A - Distribution: We distribute the input to all processors
B - Run the algorithm: We run f(<params>) ("on each processor")
C - Collection: We collect the computed data from all processors
After fixing <params> and P like input size, number of processors etc. the algorithm itself is deterministic i.e. we can write down an exact cDAG for it.
I'm now trying to answer the question: "For a given set of parameters, what is the execution time for a given system?"
With "given system" I mean e.g. "my computer" or "the university super computer" because obviously, the runtime does depend on the system it runs on and obviously the system itself does introduce non-determinism because you never really know the state of the system.
So in short: While the algorithm might be deterministic, runtime measurements aren't. (but e.g. communication measurements would be deterministic.) So we need to do a proper statistical analysis. And this is where I'm unsure.
Measuring Runtime: Basic idea
We are interested in how long part "B - Run the Algorithm" takes. Since the algorithm actually runs on P cores we'll make a measurement on each core and so get P values, let call those P values P_measurements. Some cores might finish before others, so which value does represent the runtime of the whole algorithm? I think a good choice is to simply take value of the core that took the longest i.e. max(P_measurements).
Now there are two things that need consideration here:
We have to repeat the measurement n times since it's a non-deterministic value
Once we have those n*P values, we need to know how to properly summarize them.
(And additional concern would be how to communicate those results in the end, but that's not part of this question.)
Measuring Runtime: Statistical Analysis
So here's what I'd do and this is also the part where I'm very unsure.
We measure the runtime of f(<params>) on each of the P cores. We get P_measurements
We take max(P_measurements)
We repeat 1. & 2. n times and we end up with maxes. Whereas maxes is a list of the n values max(P_measurements)
We check if maxesis normally distributed using a Q-Q-Plot. If not, we normalize. We do expect it to be right-skewed.
Now we take the median of maxes. (If we normalized, we use the normalized values)
We compute the standard deviation, the population mean and the 95% confidence interval.
We might want to say that all values are of an error of e.g. 5% so we check if all the values lie between +-5% of the population mean i.e. the confidence interval should be rather "thin".
We got ourselves some nice runtime measurement.
Clarifications:
Step 4. was necessary because computing the CI in step 6 uses the t-distribution and because later on I want to measure a different implementation of the same algorithm. So I'll have to compare two values and for that I need to do e.g. a t-test. So I need to make sure, the prerequisites for the t-test are met, which are: iid & normally distributed. Iid is assumed.
Question
I am very unsure what I did is statistically sound. Especially step 1-3. I'm not sure if I can do that kind of summarization (just take the max) here. I know that we might have an outsider value that's "especially" high but since we only measure on super computers we can assume the noise to be low and since we take the median in the end any outliners shouldn't have a big impact.
I hope for good input since it's a rather complex topic and I'm very interested in doing it right. I mostly followed the following paper, which I can recommend: http://spcl.inf.ethz.ch/Teaching/2020-dphpc/hoefler-scientific-benchmarking.pdf
But even with the paper, I'm not used to use statistical analysis and thus would just like to get some input from people who actually know this stuff. :)

Get all possible valid positions of ships in battleship game

I'm creating probability assistant for Battleship game - in essence, for given game state (field state and available ships), it would produce field where all free cells will have probability of hit.
My current approach is to do a monte-carlo like computation - get random free cell, get random ship, get random ship rotation, check if this placement is valid, if so continue with next ship from available set. If available set is empty, add how the ships were set to output stack. Redo this multiple times, use outputs to compute probability of each cell.
Is there sane algorithm to process all possible ship placements for given field state?
An exact solution is possible. But does not qualify as sane in my books.
Still, here is the idea.
There are many variants of the game, but let's say that we start with a worst case scenario of 1 ship of size 5, 2 of size 4, 3 of size 3 and 4 of size 2.
The "discovered state" of the board is all spots where shots have been taken, or ships have been discovered, plus the number of remaining ships. The discovered state naively requires 100 bits for the board (10x10, any can be shot) plus 1 bit for the count of remaining ships of size 5, 2 bits for the remaining ships of size 4, 2 bits for remaining ships of size 3 and 3 bits for remaining ships of size 2. This makes 108 bits, which fits in 14 bytes.
Now conceptually the idea is to figure out the map by shooting each square in turn in the first row, the second row, and so on, and recording the game state along with transitions. We can record the forward transitions and counts to find how many ways there are to get to any state.
Then find the end state of everything finished and all ships used and walk the transitions backwards to find how many ways there are to get from any state to the end state.
Now walk the data structure forward, knowing the probability of arriving at any state while on the way to the end, but this time we can figure out the probability of each way of finding a ship on each square as we go forward. Sum those and we have our probability heatmap.
Is this doable? In memory, no. In a distributed system it might be though.
Remember that I said that recording a state took 14 bytes? Adding a count to that takes another 8 bytes which takes us to 22 bytes. Adding the reverse count takes us to 30 bytes. My back of the envelope estimate is that at any point in our path there are on the order of a half-billion states we might be in with various ships left, killed ships sticking out and so on. That's 15 GB of data. Potentially for each of 100 squares. Which is 1.5 terabytes of data. Which we have to process in 3 passes.

Algorithm for identifying route in urban subways

I have some 26 subway stations and I have built a route id for each possible journey including which line and transfer point.
As a device travels through the subway network I collect bluetooth probes as they are seen at the different locations. The probes are not always picked up at every station.
What I am trying to understand is the best approach to taking the probe data and classifying which route the a device traveled. The ultimate goal is to understand what percentage of devices choose different routes that have the same start and end station and what affect the time of day has.
Ideally this is something I would like to address without the aid of machine learning.
Here is an illustration of the problem:
I think you can simplify the problem (at the cost of losing information) by breaking your observations of all the probes seen in a journey up into overlapping observations of just two or three probes.
Then if somebody gives me a proposed allocation of probe points to positions in the network and a short section of two or three probes I can come up with the probability of seeing the final probe in the section given the first one or two probes and the allocation of probes to network positions. Looking at your graph, it is likely that you will see 6 if the previous two probes were 4 and 5, and unlikely that you will see 11 immediately after 4 and 5. You can treat the known station information as a special case of this - treat Station A as a probe with an initially known location that is always picked up.
Given a proposed allocation of probe points to positions you can then go through all of the short segments of probe and station information and sum up the logs of the probabilities that you get. This gives you a score to assess how credible that allocation of probe points to positions is. Now all you have to do is to find the allocation of probe points to positions that gives the highest score.
I would try hill-climbing from multiple random starts. Given a proposed assignment I would score alternative assignments by changing the position of one of the probe points and see if any of these alternative assignments got a higher score than the original. If so, modify the original and keep going until you have hill-climbed to a local optimum. You could also try a genetic algorithm, or you could try scoring and extending partial assignments of probe points to positions.
There might well be a HMM approach to this too. The hidden state would be the assignment of probes to positions in the network. Again, each short stretch of two or three probes seen could amount to an observation of behaviour from the HMM.
There is also a hidden markov model approach to assessing the probability of seeing an entire journey, given an allocation of probes to positions. The hidden state at each point is the location of the observer. You could assume that the observer moves to a random neighbour of the current position at each change of state (I'm not sure of the details - have you some means of knowing when you get to observe a new set of probes, or perhaps none at all, or do you just notice when the set of probes changes?). From this you can calculate the log probability of the sequence of probes seen during a journey. As before, sum the log probabilities to get the total log probability of all recorded journeys, given an allocation of probes to positions, and hill-climb on this from multiple random starts to find the allocation of probes to positions which gives you the highest log probability.

How to run MCTS on a highly non-deterministic system?

I'm trying to implement a MCTS algorithm for the AI of a small game. The game is a rpg-simulation. The AI should decides what moves to play in battle. It's a turn base battle (FF6-7 style). There is no movement involved.
I won't go into details but we can safely assume that we know with certainty what move will chose the player in any given situation when it is its turn to play.
Games end-up when one party has no unit alive (4v4). It can take any number of turn (may also never end). There is a lot of RNG element in the damage computation & skill processing (attacks can hit/miss, crit or not, there is a lots of procs going on that can "proc" or not, buffs can have % value to happens ect...).
Units have around 6 skills each to give an idea of the branching factor.
I've build-up a preliminary version of the MCTS that gives poor results for now. I'm having trouble with a few things :
One of my main issue is how to handle the non-deterministic states of my moves. I've read a few papers about this but I'm still in the dark.
Some suggest determinizing the game information and run a MCTS tree on that, repeat the process N times to cover a broad range of possible game states and use that information to take your final decision. In the end, it does multiply by a huge factor our computing time since we have to compute N times a MCTS tree instead of one. I cannot rely on that since over the course of a fight I've got thousands of RNG element : 2^1000 MCTS tree to compute where i already struggle with one is not an option :)
I had the idea of adding X children for the same move but it does not seems to be leading to a good answer either. It smooth the RNG curve a bit but can shift it in the opposite direction if the value of X is too big/small compared to the percentage of a particular RNG. And since I got multiple RNG par move (hit change, crit chance, percentage to proc something etc...) I cannot find a decent value of X that satisfies every cases. More of a badband-aid than anythign else.
Likewise adding 1 node per RNG tuple {hit or miss ,crit or not,proc1 or not,proc2 or not,etc...} for each move should cover every possible situations but has some heavy drawbacks : with 5 RNG mecanisms only that means 2^5 node to consider for each move, it is way too much to compute. If we manage to create them all, we could assign them a probability ( linked to the probability of each RNG element in the node's tuple) and use that probability during our selection phase. This should work overall but be really hard on the cpu :/
I also cannot "merge" them in one single node since I've got no way of averaging the player/monsters stat's value accuractely based on two different game state and averaging the move's result during the move processing itself is doable but requieres a lot of simplifcation that are a pain to code and will hurt our accuracy really fast anyway.
Do you have any ideas how to approach this problem ?
Some other aspects of the algorithm are eluding me:
I cannot do a full playout untill a end state because A) It would take a lot of my computing time and B) Some battle may never ends (by design). I've got 2 solutions (that i can mix)
- Do a random playout for X turns
- Use an evaluation function to try and score the situation.
Even if I consider only health point to evaluate I'm failing to find a good evaluation function to return a reliable value for a given situation (between 1-4 units for the player and the same for the monsters ; I know their hp current/max value). What bothers me is that the fights can vary greatly in length / disparity of powers. That means that sometimes a 0.01% change in Hp matters (for a long game vs a boss for example) and sometimes it is just insignificant (when the player farm a low lvl zone compared to him).
The disparity of power and Hp variance between fights means that my Biais parameter in the UCB selection process is hard to fix. i'm currently using something very low, like 0.03. Anything > 0.1 and the exploration factor is so high that my tree is constructed depth by depth :/
For now I'm also using a biaised way to choose move during my simulation phase : it select the move that the player would choose in the situation and random ones for the AI, leading to a simulation biaised in favor of the player. I've tried using a pure random one for both, but it seems to give worse results. Do you think having a biaised simulation phase works against the purpose of the alogorithm? I'm inclined to think it would just give a pessimistic view to the AI and would not impact the end result too much. Maybe I'm wrong thought.
Any help is welcome :)
I think this question is way too broad for StackOverflow, but I'll give you some thoughts:
Using stochastic or probability in tree searches is usually called expectimax searches. You can find a good summary and pseudo-code for Expectimax Approximation with Monte-Carlo Tree Search in chapter 4, but I would recommend using a normal minimax tree search with the expectimax extension. There are a few modifications like Star1, Star2 and Star2.5 for a better runtime (similiar to alpha-beta pruning).
It boils down to not only having decision nodes, but also chance nodes. The probability of each possible outcome should be known and the expected value of each node is multiplied with its probability to know its real expected value.
2^5 nodes per move is high, but not impossibly high, especially for low number of moves and a shallow search. Even a 1-3 depth search shoulld give you some results. In my tetris AI, there are ~30 different possible moves to consider and I calculate the result of three following pieces (for each possible) to select my move. This is done in 2 seconds. I'm sure you have much more time for calculation since you're waiting for user input.
If you know what move the player is obvious, shouldn't it also obvious for your AI?
You don't need to consider a single value (hp), you can have several factors that are weighted different to calculate the expected value. If I come back to my tetris AI, there are 7 factors (bumpiness, highest piece, number of holes, ...) that are calculated, weighted and added together. To get the weights, you could use different methods, I used a genetic algorithm to find the combination of weights that resulted in most lines cleared.

load balancing algorithms - special example

Let´s pretend i have two buildings where i can build different units in.
A building can only build one unit at the same time but has a fifo-queue of max 5 units, which will be built in sequence.
Every unit has a build-time.
I need to know, what´s the fastest solution to get my units as fast as possible, considering the units already in the build-queues of my buildings.
"Famous" algorithms like RoundRobin doesn´t work here, i think.
Are there any algorithms, which can solve this problem?
This reminds me a bit of starcraft :D
I would just add an integer to the building queue which represents the time it is busy.
Of course you have to update this variable once per timeunit. (Timeunits are "s" here, for seconds)
So let's say we have a building and we are submitting 3 units, each take 5s to complete. Which will sum up to 15s total. We are in time = 0.
Then we have another building where we are submitting 2 units that need 6 timeunits to complete each.
So we can have a table like this:
Time 0
Building 1, 3 units, 15s to complete.
Building 2, 2 units, 12s to complete.
Time 1
Building 1, 3 units, 14s to complete.
Building 2, 2 units, 12s to complete.
And we want to add another unit that takes 2s, we can simply loop through the selected buildings and pick the one with the lowest time to complete.
In this case this would be building 2. This would lead to Time2...
Time 2
Building 1, 3 units, 13s to complete
Building 2, 3 units, 11s+2s=13s to complete
...
Time 5
Building 1, 2 units, 10s to complete (5s are over, the first unit pops out)
Building 2, 3 units, 10s to complete
And so on.
Of course you have to take care of the upper boundaries in your production facilities. Like if a building has 5 elements, don't assign something and pick the next building that has the lowest time to complete.
I don't know if you can implement this easily with your engine, or if it even support some kind of timeunits.
This will just result in updating all production facilities once per timeunit, O(n) where n is the number of buildings that can produce something. If you are submitting a unit this will take O(1) assuming that you keep the selected buildings in a sorted order, lowest first - so just a first element lookup. In this case you have to resort the list after manipulating the units like cancelling or adding.
Otherwise amit's answer seem to be possible, too.
This is NPC problem (proof at the end of the answer) so your best hope to find ideal solution is trying all possibilities (this will be 2^n possibilities, where n is the number of tasks).
possible heuristic was suggested in comment (and improved in comments by AShelly): sort the tasks from biggest to smallest, and put them in one queue, every task can now take element from the queue when done.
this is of course not always optimal, but I think will get good results for most cases.
proof that the problem is NPC:
let S={u|u is a unit need to be produced}. (S is the set containing all 'tasks')
claim: if there is a possible prefect split (both queues finish at the same time) it is optimal. let this time be HalfTime
this is true because if there was different optimal, at least one of the queues had to finish at t>HalfTime, and thus it is not optimal.
proof:
assume we had an algorithm A to produce the best solution at polynomial time, then we could solve the partition problem at polynomial time by the following algorithm:
1. run A on input
2. if the 2 queues finish exactly at HalfTIme - return True.
3. else: return False
this solution solves the partition problem because of the claim: if the partition exist, it will be returned by A, since it is optimal. all steps 1,2,3 run at polynomial time (1 for the assumption, 2 and 3 are trivial). so the algorithm we suggested solves partition problem at polynomial time. thus, our problem is NPC
Q.E.D.
Here's a simple scheme:
Let U be the list of units you want to build, and F be the set of factories that can build them. For each factory, track total time-til-complete; i.e. How long until the queue is completely empty.
Sort U by decreasing time-to-build. Maintain sort order when inserting new items
At the start, or at the end of any time tick after a factory completes a unit runs out of work:
Make a ready list of all the factories with space in the queue
Sort the ready list by increasing time-til-complete
Get the factory that will be done soonest
take the first item from U, add it to thact factory
Repeat until U is empty or all queues are full.
Googling "minimum makespan" may give you some leads into other solutions. This CMU lecture has a nice overview.
It turns out that if you know the set of work ahead of time, this problem is exactly Multiprocessor_scheduling, which is NP-Complete. Apparently the algorithm I suggested is called "Longest Processing Time", and it will always give a result no longer than 4/3 of the optimal time.
If you don't know the jobs ahead of time, it is a case of online Job-Shop Scheduling
The paper "The Power of Reordering for Online Minimum Makespan Scheduling" says
for many problems, including minimum
makespan scheduling, it is reasonable
to not only provide a lookahead to a
certain number of future jobs, but
additionally to allow the algorithm to
choose one of these jobs for
processing next and, therefore, to
reorder the input sequence.
Because you have a FIFO on each of your factories, you essentially do have the ability to buffer the incoming jobs, because you can hold them until a factory is completely idle, instead of trying to keeping all the FIFOs full at all times.
If I understand the paper correctly, the upshot of the scheme is to
Keep a fixed size buffer of incoming
jobs. In general, the bigger the
buffer, the closer to ideal
scheduling you get.
Assign a weight w to each factory according to
a given formula, which depends on
buffer size. In the case where
buffer size = number factories +1, use weights of (2/3,1/3) for 2 factories; (5/11,4/11,2/11) for 3.
Once the buffer is full, whenever a new job arrives, you remove the job with the least time to build and assign it to a factory with a time-to-complete < w*T where T is total time-to-complete of all factories.
If there are no more incoming jobs, schedule the remainder of jobs in U using the first algorithm I gave.
The main problem in applying this to your situation is that you don't know when (if ever) that there will be no more incoming jobs. But perhaps just replacing that condition with "if any factory is completely idle", and then restarting will give decent results.

Resources