load balancing algorithms - special example - algorithm

Let´s pretend i have two buildings where i can build different units in.
A building can only build one unit at the same time but has a fifo-queue of max 5 units, which will be built in sequence.
Every unit has a build-time.
I need to know, what´s the fastest solution to get my units as fast as possible, considering the units already in the build-queues of my buildings.
"Famous" algorithms like RoundRobin doesn´t work here, i think.
Are there any algorithms, which can solve this problem?

This reminds me a bit of starcraft :D
I would just add an integer to the building queue which represents the time it is busy.
Of course you have to update this variable once per timeunit. (Timeunits are "s" here, for seconds)
So let's say we have a building and we are submitting 3 units, each take 5s to complete. Which will sum up to 15s total. We are in time = 0.
Then we have another building where we are submitting 2 units that need 6 timeunits to complete each.
So we can have a table like this:
Time 0
Building 1, 3 units, 15s to complete.
Building 2, 2 units, 12s to complete.
Time 1
Building 1, 3 units, 14s to complete.
Building 2, 2 units, 12s to complete.
And we want to add another unit that takes 2s, we can simply loop through the selected buildings and pick the one with the lowest time to complete.
In this case this would be building 2. This would lead to Time2...
Time 2
Building 1, 3 units, 13s to complete
Building 2, 3 units, 11s+2s=13s to complete
...
Time 5
Building 1, 2 units, 10s to complete (5s are over, the first unit pops out)
Building 2, 3 units, 10s to complete
And so on.
Of course you have to take care of the upper boundaries in your production facilities. Like if a building has 5 elements, don't assign something and pick the next building that has the lowest time to complete.
I don't know if you can implement this easily with your engine, or if it even support some kind of timeunits.
This will just result in updating all production facilities once per timeunit, O(n) where n is the number of buildings that can produce something. If you are submitting a unit this will take O(1) assuming that you keep the selected buildings in a sorted order, lowest first - so just a first element lookup. In this case you have to resort the list after manipulating the units like cancelling or adding.
Otherwise amit's answer seem to be possible, too.

This is NPC problem (proof at the end of the answer) so your best hope to find ideal solution is trying all possibilities (this will be 2^n possibilities, where n is the number of tasks).
possible heuristic was suggested in comment (and improved in comments by AShelly): sort the tasks from biggest to smallest, and put them in one queue, every task can now take element from the queue when done.
this is of course not always optimal, but I think will get good results for most cases.
proof that the problem is NPC:
let S={u|u is a unit need to be produced}. (S is the set containing all 'tasks')
claim: if there is a possible prefect split (both queues finish at the same time) it is optimal. let this time be HalfTime
this is true because if there was different optimal, at least one of the queues had to finish at t>HalfTime, and thus it is not optimal.
proof:
assume we had an algorithm A to produce the best solution at polynomial time, then we could solve the partition problem at polynomial time by the following algorithm:
1. run A on input
2. if the 2 queues finish exactly at HalfTIme - return True.
3. else: return False
this solution solves the partition problem because of the claim: if the partition exist, it will be returned by A, since it is optimal. all steps 1,2,3 run at polynomial time (1 for the assumption, 2 and 3 are trivial). so the algorithm we suggested solves partition problem at polynomial time. thus, our problem is NPC
Q.E.D.

Here's a simple scheme:
Let U be the list of units you want to build, and F be the set of factories that can build them. For each factory, track total time-til-complete; i.e. How long until the queue is completely empty.
Sort U by decreasing time-to-build. Maintain sort order when inserting new items
At the start, or at the end of any time tick after a factory completes a unit runs out of work:
Make a ready list of all the factories with space in the queue
Sort the ready list by increasing time-til-complete
Get the factory that will be done soonest
take the first item from U, add it to thact factory
Repeat until U is empty or all queues are full.
Googling "minimum makespan" may give you some leads into other solutions. This CMU lecture has a nice overview.
It turns out that if you know the set of work ahead of time, this problem is exactly Multiprocessor_scheduling, which is NP-Complete. Apparently the algorithm I suggested is called "Longest Processing Time", and it will always give a result no longer than 4/3 of the optimal time.
If you don't know the jobs ahead of time, it is a case of online Job-Shop Scheduling
The paper "The Power of Reordering for Online Minimum Makespan Scheduling" says
for many problems, including minimum
makespan scheduling, it is reasonable
to not only provide a lookahead to a
certain number of future jobs, but
additionally to allow the algorithm to
choose one of these jobs for
processing next and, therefore, to
reorder the input sequence.
Because you have a FIFO on each of your factories, you essentially do have the ability to buffer the incoming jobs, because you can hold them until a factory is completely idle, instead of trying to keeping all the FIFOs full at all times.
If I understand the paper correctly, the upshot of the scheme is to
Keep a fixed size buffer of incoming
jobs. In general, the bigger the
buffer, the closer to ideal
scheduling you get.
Assign a weight w to each factory according to
a given formula, which depends on
buffer size. In the case where
buffer size = number factories +1, use weights of (2/3,1/3) for 2 factories; (5/11,4/11,2/11) for 3.
Once the buffer is full, whenever a new job arrives, you remove the job with the least time to build and assign it to a factory with a time-to-complete < w*T where T is total time-to-complete of all factories.
If there are no more incoming jobs, schedule the remainder of jobs in U using the first algorithm I gave.
The main problem in applying this to your situation is that you don't know when (if ever) that there will be no more incoming jobs. But perhaps just replacing that condition with "if any factory is completely idle", and then restarting will give decent results.

Related

How can I improve my SA algorithm that I used for job scheduling?

objective: max sum(solution(i,9))
---------------------------------------------
while T>Tmin
for iteration=100
for i=1:61
function(generate_possible_solutions)
random_value = generate random value
solution(i) = generate_possible_solution(random_value, :)
feasible = sum(solution(i, 9))
next
SA:
check feasible
if feasible > previous_feasible
update best
else
check acceptance function
end
if iteration == limit
update (T)
end
end For
end While
Code is above.
I have a problem with job scheduling. My heuristic algorithm uses possible_solution matrix to allocate each job to a line. For example, 6th job has 140 different options, 7th has 30 different options in the possible_solution matrix.
In simulated annealing, in each iteration, I use one of the solution line into the possible_solution matrix randomly. However, the solution reaches 50% at most when it is compared to GAMS/Cplex solver.
May I use the random selection from solution matrix to use Simulated Annealing? and what I have missed?
For SA:
It is OK to start with any random starting state (S). It should not have a large effect on solution as in the initial phase of annealing most random proposals are accepted, because we start with a high temperature T. So it is OK to use any random start state, also ransom selection from solution matrix.
During annealing, you slightly modify the current starte S. Don't randomly pick a new state Q, but slightly modify S, say S*.
With condition, check of enforce that S* is within feasible region. Either only modify such that it is feasible, or fix any violations afterwards.
Try pick neighbours states *S that make sense. Mimic what humans would do to improve a current situation, e.g; pick a random job that is not scheduled well and randomly re-allocate resources. Randomly pick a resource might also work.
Should starting T such that most proposals (>90%) are accepted. Use debug during annealing to get some feeling of proportion accepted states. Similarly chose T_stop when almost no new states are accepted.
After T_start and T_stop are acceptable, start experimenting with different proposals. They have large effect on quality of solution. (Cooling scheme just to geometric, i.e. T = T * alpha with 0 < alpha < 1.

How to run MCTS on a highly non-deterministic system?

I'm trying to implement a MCTS algorithm for the AI of a small game. The game is a rpg-simulation. The AI should decides what moves to play in battle. It's a turn base battle (FF6-7 style). There is no movement involved.
I won't go into details but we can safely assume that we know with certainty what move will chose the player in any given situation when it is its turn to play.
Games end-up when one party has no unit alive (4v4). It can take any number of turn (may also never end). There is a lot of RNG element in the damage computation & skill processing (attacks can hit/miss, crit or not, there is a lots of procs going on that can "proc" or not, buffs can have % value to happens ect...).
Units have around 6 skills each to give an idea of the branching factor.
I've build-up a preliminary version of the MCTS that gives poor results for now. I'm having trouble with a few things :
One of my main issue is how to handle the non-deterministic states of my moves. I've read a few papers about this but I'm still in the dark.
Some suggest determinizing the game information and run a MCTS tree on that, repeat the process N times to cover a broad range of possible game states and use that information to take your final decision. In the end, it does multiply by a huge factor our computing time since we have to compute N times a MCTS tree instead of one. I cannot rely on that since over the course of a fight I've got thousands of RNG element : 2^1000 MCTS tree to compute where i already struggle with one is not an option :)
I had the idea of adding X children for the same move but it does not seems to be leading to a good answer either. It smooth the RNG curve a bit but can shift it in the opposite direction if the value of X is too big/small compared to the percentage of a particular RNG. And since I got multiple RNG par move (hit change, crit chance, percentage to proc something etc...) I cannot find a decent value of X that satisfies every cases. More of a badband-aid than anythign else.
Likewise adding 1 node per RNG tuple {hit or miss ,crit or not,proc1 or not,proc2 or not,etc...} for each move should cover every possible situations but has some heavy drawbacks : with 5 RNG mecanisms only that means 2^5 node to consider for each move, it is way too much to compute. If we manage to create them all, we could assign them a probability ( linked to the probability of each RNG element in the node's tuple) and use that probability during our selection phase. This should work overall but be really hard on the cpu :/
I also cannot "merge" them in one single node since I've got no way of averaging the player/monsters stat's value accuractely based on two different game state and averaging the move's result during the move processing itself is doable but requieres a lot of simplifcation that are a pain to code and will hurt our accuracy really fast anyway.
Do you have any ideas how to approach this problem ?
Some other aspects of the algorithm are eluding me:
I cannot do a full playout untill a end state because A) It would take a lot of my computing time and B) Some battle may never ends (by design). I've got 2 solutions (that i can mix)
- Do a random playout for X turns
- Use an evaluation function to try and score the situation.
Even if I consider only health point to evaluate I'm failing to find a good evaluation function to return a reliable value for a given situation (between 1-4 units for the player and the same for the monsters ; I know their hp current/max value). What bothers me is that the fights can vary greatly in length / disparity of powers. That means that sometimes a 0.01% change in Hp matters (for a long game vs a boss for example) and sometimes it is just insignificant (when the player farm a low lvl zone compared to him).
The disparity of power and Hp variance between fights means that my Biais parameter in the UCB selection process is hard to fix. i'm currently using something very low, like 0.03. Anything > 0.1 and the exploration factor is so high that my tree is constructed depth by depth :/
For now I'm also using a biaised way to choose move during my simulation phase : it select the move that the player would choose in the situation and random ones for the AI, leading to a simulation biaised in favor of the player. I've tried using a pure random one for both, but it seems to give worse results. Do you think having a biaised simulation phase works against the purpose of the alogorithm? I'm inclined to think it would just give a pessimistic view to the AI and would not impact the end result too much. Maybe I'm wrong thought.
Any help is welcome :)
I think this question is way too broad for StackOverflow, but I'll give you some thoughts:
Using stochastic or probability in tree searches is usually called expectimax searches. You can find a good summary and pseudo-code for Expectimax Approximation with Monte-Carlo Tree Search in chapter 4, but I would recommend using a normal minimax tree search with the expectimax extension. There are a few modifications like Star1, Star2 and Star2.5 for a better runtime (similiar to alpha-beta pruning).
It boils down to not only having decision nodes, but also chance nodes. The probability of each possible outcome should be known and the expected value of each node is multiplied with its probability to know its real expected value.
2^5 nodes per move is high, but not impossibly high, especially for low number of moves and a shallow search. Even a 1-3 depth search shoulld give you some results. In my tetris AI, there are ~30 different possible moves to consider and I calculate the result of three following pieces (for each possible) to select my move. This is done in 2 seconds. I'm sure you have much more time for calculation since you're waiting for user input.
If you know what move the player is obvious, shouldn't it also obvious for your AI?
You don't need to consider a single value (hp), you can have several factors that are weighted different to calculate the expected value. If I come back to my tetris AI, there are 7 factors (bumpiness, highest piece, number of holes, ...) that are calculated, weighted and added together. To get the weights, you could use different methods, I used a genetic algorithm to find the combination of weights that resulted in most lines cleared.

Algorithm for optimizing the order of actions with cooldowns

I can choose from a list of "actions" to perform one once a second. Each action on the list has a numerical value representing how much it's worth, and also a value representing its "cooldown" -- the number of seconds I have to wait before using that action again. The list might look something like this:
Action A has a value of 1 and a cooldown of 2 seconds
Action B has a value of 1.5 and a cooldown of 3 seconds
Action C has a value of 2 and a cooldown of 5 seconds
Action D has a value of 3 and a cooldown of 10 seconds
So in this situation, the order ABA would have a total value of (1+1.5+1) = 3.5, and it would be acceptable because the first use of A happens at 1 second and the final use of A happens at 3 seconds, and then difference between those two is greater than or equal to the cooldown of A, 2 seconds. The order AAB would not work because you'd be doing A only a second apart, less than the cooldown.
My problem is trying to optimize the order in which the actions are used, maximizing the total value over a certain number of actions. Obviously the optimal order if you're only using one action would be to do Action D, resulting in a total value of 3. The maximum value from two actions would come from doing CD or DC, resulting in a total value of 5. It gets more complicated when you do 10 or 20 or 100 total actions. I can't find a way to optimize the order of actions without brute forcing it, which gives it complexity exponential on the total number of actions you want to optimize the order for. That becomes impossible past about 15 total.
So, is there any way to find the optimal time with less complexity? Has this problem ever been researched? I imagine there could be some kind of weighted-graph type algorithm that works on this, but I have no idea how it would work, let alone how to implement it.
Sorry if this is confusing -- it's kind of weird conceptually and I couldn't find a better way to frame it.
EDIT: Here is a proper solution using a highly modified Dijkstra's Algorithm:
Dijkstra's algorithm is used to find the shortest path, given a map (of a Graph Abstract), which is a series of Nodes(usually locations, but for this example let's say they are Actions), which are inter-connected by arcs(in this case, instead of distance, each arc will have a 'value')
Here is the structure in essence.
Graph{//in most implementations these are not Arrays, but Maps. Honestly, for your needs you don't a graph, just nodes and arcs... this is just used to keep track of them.
node[] nodes;
arc[] arcs;
}
Node{//this represents an action
arc[] options;//for this implementation, this will always be a list of all possible Actions to use.
float value;//Action value
}
Arc{
node start;//the last action used
node end;//the action after that
dist=1;//1 second
}
We can use this datatype to make a map of all of the viable options to take to get the optimal solution, based on looking at the end-total of each path. Therefore, the more seconds ahead you look for a pattern, the more likely you are to find a very-optimal path.
Every segment of a road on the map has a distance, which represents it's value, and every stop on the road is a one-second mark, since that is the time to make the decision of where to go (what action to execute) next.
For simplicity's sake, let's say that A and B are the only viable options.
na means no action, because no actions are avaliable.
If you are travelling for 4 seconds(the higher the amount, the better the results) your choices are...
A->na->A->na->A
B->na->na->B->na
A->B->A->na->B
B->A->na->B->A
...
there are more too, but I already know that the optimal path is B->A->na->B->A, because it's value is the highest. So, the established best-pattern for handling this combination of actions is (at least after analyzing it for 4 seconds) B->A->na->B->A
This will actually be quite an easy recursive algorithm.
/*
cur is the current action that you are at, it is a Node. In this example, every other action is seen as a viable option, so it's as if every 'place' on the map has a path going to every other path.
numLeft is the amount of seconds left to run the simulation. The higher the initial value, the more desirable the results.
This won't work as written, but will give you a good idea of how the algorithm works.
*/
function getOptimal(cur,numLeft,path){
if(numLeft==0){
var emptyNode;//let's say, an empty node wiht a value of 0.
return emptyNode;
}
var best=path;
path.add(cur);
for(var i=0;i<cur.options.length;i++){
var opt=cur.options[i];//this is a COPY
if(opt.timeCooled<opt.cooldown){
continue;
}
for(var i2=0;i2<opt.length;i2++){
opt[i2].timeCooled+=1;//everything below this in the loop is as if it is one second ahead
}
var potential=getOptimal(opt[i],numLeft-1,best);
if(getTotal(potential)>getTotal(cur)){best.add(potential);}//if it makes it better, use it! getTotal will sum up the values of an array of nodes(actions)
}
return best;
}
function getOptimalExample(){
log(getOptimal(someNode,4,someEmptyArrayOfNodes));//someNode will be A or B
}
End edit.
I'm a bit confused on the question but...
If you have a limited amount of actions, and that's it, then always pick the action with the most value, unless the cooldown hasn't been met yet.
Sounds like you want something like this (in pseudocode):
function getOptimal(){
var a=[A,B,C,D];//A,B,C, and D are actions
a.sort()//(just pseudocode. Sort the array items by how much value they have.)
var theBest=null;
for(var i=0;i<a.length;++i){//find which action is the most valuable
if(a[i].timeSinceLastUsed<a[i].cooldown){
theBest=a[i];
for(...){//now just loop through, and add time to each OTHER Action for their timeSinceLastUsed...
//...
}//That way, some previously used, but more valuable actions will be freed up again.
break;
}//because a is worth the most, and you can use it now, so why not?
}
}
EDIT: After rereading your problem a bit more, I see that the weighted scheduling algorithm would need to be tweaked to fit your problem statement; in our case we only want to take those overlapping actions out of the set that match the class of the action we selected, and those that start at the same point in time. IE if we select a1, we want to remove a2 and b1 from the set but not b2.
This looks very similar to the weighted scheduling problem which is discussed in depth in this pdf. In essence, the weights are your action's values and the intervals are (starttime,starttime+cooldown). The dynamic programming solution can be memoized which makes it run in O(nlogn) time. The only difficult part will be modifying your problem such that it looks like the weighted interval problem which allows us to then utilize the predetermined solution.
Because your intervals don't have set start and end times (IE you can choose when to start a certain action), I'd suggest enumerating all possible start times for all given actions assuming some set time range, then using these static start/end times with the dynamic programming solution. Assuming you can only start an action on a full second, you could run action A for intervals (0-2,1-3,2-4,...), action B for (0-3,1-4,2-5,...), action C for intervals (0-5,1-6,2-7,...) etc. You can then use union the action's sets to get a problem space that looks like the original weighted interval problem:
|---1---2---3---4---5---6---7---| time
|{--a1--}-----------------------| v=1
|---{--a2---}-------------------| v=1
|-------{--a3---}---------------| v=1
|{----b1----}-------------------| v=1.5
|---{----b2-----}---------------| v=1.5
|-------{----b3-----}-----------| v=1.5
|{--------c1--------}-----------| v=2
|---{--------c2---------}-------| v=2
|-------{-------c3----------}---| v=2
etc...
Always choose the available action worth the most points.

Coming up with factors for a weighted algorithm?

I'm trying to come up with a weighted algorithm for an application. In the application, there is a limited amount of space available for different elements. Once all the space is occupied, the algorithm should choose the best element(s) to remove in order to make space for new elements.
There are different attributes which should affect this decision. For example:
T: Time since last accessed. (It's best to replace something that hasn't been accessed in a while.)
N: Number of times accessed. (It's best to replace something which hasn't been accessed many times.)
R: Number of elements which need to be removed in order to make space for the new element. (It's best to replace the least amount of elements. Ideally this should also take into consideration the T and N attributes of each element being replaced.)
I have 2 problems:
Figuring out how much weight to give each of these attributes.
Figuring out how to calculate the weight for an element.
(1) I realize that coming up with the weight for something like this is very subjective, but I was hoping that there's a standard method or something that can help me in deciding how much weight to give each attribute. For example, I was thinking that one method might be to come up with a set of two sample elements and then manually compare the two and decide which one should ultimately be chosen. Here's an example:
Element A: N = 5, T = 2 hours ago.
Element B: N = 4, T = 10 minutes ago.
In this example, I would probably want A to be the element that is chosen to be replaced since although it was accessed one more time, it hasn't been accessed in a lot of time compared with B. This method seems like it would take a lot of time, and would involve making a lot of tough, subjective decisions. Additionally, it may not be trivial to come up with the resulting weights at the end.
Another method I came up with was to just arbitrarily choose weights for the different attributes and then use the application for a while. If I notice anything obviously wrong with the algorithm, I could then go in and slightly modify the weights. This is basically a "guess and check" method.
Both of these methods don't seem that great and I'm hoping there's a better solution.
(2) Once I do figure out the weight, I'm not sure which way is best to calculate the weight. Should I just add everything? (In these examples, I'm assuming that whichever element has the highest replacementWeight should be the one that's going to be replaced.)
replacementWeight = .4*T - .1*N - 2*R
or multiply everything?
replacementWeight = (T) * (.5*N) * (.1*R)
What about not using constants for the weights? For example, sure "Time" (T) may be important, but once a specific amount of time has passed, it starts not making that much of a difference. Essentially I would lump it all in an "a lot of time has passed" bin. (e.g. even though 8 hours and 7 hours have an hour difference between the two, this difference might not be as significant as the difference between 1 minute and 5 minutes since these two are much more recent.) (Or another example: replacing (R) 1 or 2 elements is fine, but when I start needing to replace 5 or 6, that should be heavily weighted down... therefore it shouldn't be linear.)
replacementWeight = 1/T + sqrt(N) - R*R
Obviously (1) and (2) are closely related, which is why I'm hoping that there's a better way to come up with this sort of algorithm.
What you are describing is the classic problem of choosing a cache replacement policy. Which policy is best for you, depends on your data, but the following usually works well:
First, always store a new object in the cache, evicting the R worst one(s). There is no way to know a priori if an object should be stored or not. If the object is not useful, it will fall out of the cache again soon.
The popular squid cache implements the following cache replacement algorithms:
Least Recently Used (LRU):
replacementKey = -T
Least Frequently Used with Dynamic Aging (LFUDA):
replacementKey = N + C
Greedy-Dual-Size-Frequency (GDSF):
replacementKey = (N/R) + C
C refers to a cache age factor here. C is basically the replacementKey of the item that was evicted last (or zero).
NOTE: The replacementKey is calculated when an object is inserted or accessed, and stored alongside the object. The object with the smallest replacementKey is evicted.
LRU is simple and often good enough. The bigger your cache, the better it performs.
LFUDA and GDSF both are tradeoffs. LFUDA prefers to keep large objects even if they are less popular, under the assumption that one hit to a large object makes up lots of hits for smaller objects. GDSF basically makes the opposite tradeoff, keeping many smaller objects over fewer large objects. From what you write, the latter might be a good fit.
If none of these meet your needs, you can calculate optimal values for T, N and R (and compare different formulas for combining them) by minimizing regret, the difference in performance between your formula and the optimal algorithm, using, for example, Linear regression.
This is a completely subjective issue -- as you yourself point out. And a distinct possibility is that if your test cases consist of pairs (A,B) where you prefer A to B, then you might find that you prefer A to B , B to C but also C over A -- i.e. its not an ordering.
If you are not careful, your function might not exist !
If you can define a scalar function of your input variables, with various parameters for coefficients and exponents, you might be able to estimate said parameters by using regression, but you will need an awful lot of data if you have many parameters.
This is the classical statistician's approach of first reviewing the data to IDENTIFY a model, and then using that model to ESTIMATE a particular realisation of the model. There are large books on this subject.

A Greedy algorithm for k-limited resources

I am studying greedy algorithms and I am wondering the solution for a different case.
For interval selection problem we want to pick the maximum number of activities that do not clash with each other, so selecting the job with the earliest finishing time works.
Another example; we have n jobs given and we want to buy as smallest number of resources as possible. Here, we can sort all the jobs from left to right, and when we encounter a new startpoint, we increment a counter and when we encounter an endpoint, we decrement the counter. So the largest value we get from this counter will be number of resources we need to buy.
But for example, what if we have n tasks but k resources? What if we cannot afford more then k resource? How should be a greedy solution to remove as few tasks as possible to satisfy this?
Also if there is a specific name for the last problem I wrote, I would be happy to hear that.
This looks like a general case of the version where we have only one resource.
Intuitively, it makes sense to still sort the jobs by end time and take them one by one in that order. Now, instead of the ending time of the last job, we keep track of the ending times of the last k jobs accepted into our resources. For each job, we check if the current jobs starting time is greater that the last job in any one of our resources. If no such resource is found, we skip that job and move ahead. If one resource is found, we assign that job to that resource and update ending time. If there are more than one resource able to take on that job, it makes sense to assign it to the resource with the latest end time.
I don't really have a proof of this greedy strategy, so it may well be wrong. But I cannot think of a case where changing the choice might enable us to fit more jobs.

Resources