How can I read the depth buffer in WebGL? - opengl-es

Using the WebGL API, how can I get a value from the depth buffer, or in any other way determine 3D coordinates from screen coordinates (i.e. to find a location clicked on), other than by performing my own raycasting?

Several years have passed, these days the WEBGL_depth_texture extension is widely available... unless you need to support IE.
General usage:
Preparation:
Query the extension (required)
Allocate a separate color and depth texture (gl.DEPTH_COMPONENT)
Combine both textures in to a single framebuffer (gl.COLOR_ATTACHMENT0, gl.DEPTH_ATTACHMENT)
Rendering:
Bind the framebuffer, render your scene (usually a simplified version)
Unbind the framebuffer, pass the depth texture to your shaders and read it like any other texture:
texPos.xyz = (gl_Position.xyz / gl_Position.w) * 0.5 + 0.5;
float depthFromZBuffer = texture2D(uTexDepthBuffer, texPos.xy).x;

I don't know if it's possible to directly access the depth buffer but if you want depth information in a texture, you'll have to create a rgba texture, attach it as a colour attachment to an frame buffer object and render depth information into the texture, using a fragment shader that writes the depth value into gl_FragColor.
For more information, see the answers to one of my older questions: WebGL - render depth to fbo texture does not work
If you google for opengl es and shadow mapping or depth, you'll find more explanations and example source code.

From section 5.13.12 of the WebGL specification it seems you cannot directly read the depth buffer, so maybe Markus' suggestion is the best way to do it, although you might not neccessarily need an FBO for this.
But if you want to do something like picking, there are other methods for it. Just browse SO, as it has been asked very often.

Not really a duplicate but see also: How to get object in WebGL 3d space from a mouse click coordinate
Aside of unprojecting and casting a ray (and then performing intersection tests against it as needed), your best bet is to look at 'picking'. This won't give exact 3D coordinates, but it is a useful substitute for unprojection when you only care about which object was clicked on, and don't really need per-pixel precision.
Picking in WebGL means to render the entire scene (or at least, the objects you care about) using a specific shader. The shader renders each object with a different unique ID, which is encoded in the red and green channels, using the blue channel as a key (non-blue means no object of interest). The scene is rendered into an offscreen framebuffer so that it's not visible to the end user. Then you read back, using gl.readPixels(), the pixel or pixels of interest and see which object ID was encoded at the given position.
If it helps, see my own implementation of WebGL picking. This implementation picks a rectangular region of pixels; passing in a 1x1 region results in picking at a single pixel. See also the functions at lines 146, 162, and 175.

As of January 23, 2012, there is a draft WebGL extension to enable depth buffer reading, WEBGL_depth_texture. I have no information about its availability in implementations, but I do not expect it at this early date.

Related

Three.js Render Depth to Texture

I'm having a large number of meshes in threejs. In order to render them efficiently I merge them by materials. However, I want to select them with mouse.
My approach is the following: In one rendering pass I bake the merged meshed into a texture and in a second pass I render only the highlighted as a transparent overlay. So far, it almost works except for wrong visibility. The problem is that as I use WebGLRenderTarget it stores only the FBO into the texture. I would actually need a second texture to fetch DepthBuffer, ideally without a third rendering pass. I did not find anything related in the Three.js documentation. Any ideas?
I think you need to think differently. You cannot use a depth texture to write into the depth buffer. The only way to write into the depth buffer is to render primitives.
How about this:
Bake your scene into a texture but render depth into the on-screen depth buffer.
Keep the depth buffer in the second pass
Render your baked texture with depth tests and depth writes disabled: gl.disable(gl.DEPTH_TEST); gl.depthMask(false);
Render your selected object(s) with the highlight material

Buffer geometry based sprites

My experiment calls for a large number of textured 'sprites' that can be both positioned and rotated independently. Since the number is large, I'd like to do it with buffer geometry.
It works well with the current setup that uses THREE.PointCloud and a material with an image map but as far as I understand it, each particle can only be resized and/or positioned but not rotated.
Before I dive in and see if I can create the buffer geom by hand along with requisite UVs etc, I wanted to check if there was already an example of this already - I didn't see anything in the list of threejs.org examples - or a better way to do this.

Texel offsets in pixel shaders

I am currently porting an app over from iOS to Windows Phone 8. It is an image processing app, and all calculations are done on the GPU using pixel shaders.
There is one detail that I just haven't been able to figure out, that is Texel Width/Height offsets. I have absolutely no idea what these values are, and I can't seem to find any information on them.
Are they common terms? Does anybody know what they represent? Does anyone know what sort of values should be in them?
Texel is a pixel of texture localized by a coordinate, the offset in a texture is where a texture begin mapped on a model or render target.
The most simple example of this:
http://lifeasa.files.wordpress.com/2011/02/super_mario_world_by_xinzax.png
The map of stage is a few textures, when Mario advances in level, the X coordinate offset increases, and the right part of texture became visible, at same time the left side becames hidden.
Check the textures, if have more than a 'part' in a single image, is this.
Another case is a single texture that is mapped in multiple objects, and each object have a offset to appears a 'segment' of previous object.

Non predefined multiple light sources in OpenGL ES 2.0

There is a great article about multiple light sources in GLSL
http://en.wikibooks.org/wiki/GLSL_Programming/GLUT/Multiple_Lights
But light0 and light1 parameters described in shader code, what if must draw flare gun shots, e.g every flare has it own position, color and must illuminate surroundings. How we manage other objects shader to deal with unknown (well there is a limit to max flares on the screen) position, colors of flares? For example there will be 8 max flares on screen, what i must to pass 8*2 uniforms, even if they not exist at this time?
Or imagine you making level editor, user can place lamps, how other objects will "know" about new light source and render then new lamp has been added?
I think there must be clever solution, but i can't find one.
Lighting equations usually rely on additive colour. So the output is the colour of light one plus the colour of light two plus the colour of light three, etc.
One of the in-framebuffer blending modes offered by OpenGL is additive blending. So the colour output of anything new that you draw will be added to whatever is already in the buffer.
The most naive solution is therefore to write your shader to do exactly one light. If you have multiple lights, draw the scene that many times, each time with a different nominated line. It's an example of multipass rendering.
Better solutions involve writing shaders to do two, four, eight or whatever lights at once, doing, say, 15 lights as an 8-light draw then a 4-light draw then a 2-light draw then a 1-light draw, and including only geometry within reach of each light when you do that pass. Which tends to mean finding intelligent ways to group lights by locality.
EDIT: with a little more thought, I should add that there's another option in deferred shading, though it's not completely useful on most GL ES devices at the moment due to the limited options for output buffers.
Suppose theoretically you could render your geometry exactly once and store whatever you wanted per pixel. So you wouldn't just output a colour, you'd output, say, a position in 3d space, a normal, a diffuse colour, a specular colour and a specular exponent. Those would then all be in a per-pixel buffer.
You could then render each light by (i) working out the maximum possible space it can occupy when projected onto the screen (so, a 2d rectangle that relates directly to pixels); and (ii) rendering the light as a single quad of that size, for each pixel reading the relevant values from the buffer you just set up and outputting an appropriately lit colour.
Then you'd do all the actual geometry in your scene only exactly once, and each additional light would cost at most a single, full-screen quad.
In practice you can't really do that because the output buffers you tend to be able to use in ES provide too little storage. But what you can usually do is render to a 32bit colour buffer with an attached depth buffer. So you can just store depth in the depth buffer and work out world (x, y, z) from that plus the [uniform] position of the camera in the light shader. You could store 8-bit versions of normal x and y in the colour buffer so as to spend 16 bits and work out z in the colour buffer because you know that the normal is always of unit length. Then, to pick a concrete example at random, maybe you could store a 16-bit version of the diffuse colour in the remaining space, possibly in YCrCb with extra storage for Y.
The main disadvantage is that hardware antialiasing then doesn't due to much the same sort of concerns as transparency and depth buffers. But if you get to the point where you save dramatically on lighting it might still make sense to do manual antialiasing by rendering a large version of the scene and then scaling it down in a final pass.

Copy arbitrarily sized block of pixels into OpenGL ES texture... somehow?

I'm writing a drawing application, and the drawing canvas is an OpenGL texture. When you draw onto the canvas, it determines which region of the canvas texture has been changed, and copies that pixel data out (using glReadPixels) before applying the changes you made.
To undo, I want to simply revert to the previous texture state using that pixel data that was copied out. However, OpenGL ES doesn't provide a glDrawPixels command. What's the best way to do it?
I've considered two options, but I'm not sure either is that great:
Create a temporary texture using the pixels I copied out and draw that in. (However, copied region is not a power of two!)
Unbind the large canvas texture completely, manually alter the bytes of the texture, and then put it back into OpenGL. I'm not using any sort of compression, so this might not be that bad. But it seems like a hack?
Anybody have any ideas? I'd really appreciate it!
In case anyone stumbles across this while trying to do something similar, I've come up with a solution that seems to work well.
Grab an image of the current texture by binding it to the framebuffer and then writing the framebuffer to a CGImageRef.
Create a new CGContext and draw in the existing texture CGImageRef. Then draw old texture data in to the portion that the user changed, effectively "undoing" that change to the image.
Destroy old OpenGL texture and create a texture from the CGContext.
I think this is a pretty slow way of going about things, but I don't need huge performance - my real concern was limiting the amount of data being kept to represent the "old" texture.
If you need help with this (there's quite a bit of code) feel free to email me.

Resources