splitting a 64-bit addition into two 32-bit additions - performance

I'm working on an ultra-performance-intensive computational task. For adding-pairwise two 32-bit integer arrays, could one, on a 64-bit architecture, treat two 32-bit values as a single 64-bit value, add them to their complement on the other array, then split them up again with a bitwise & operator. Obviously if there is an overflow, they will not be the same, but assuming there is none, will there be a problem? (And can you continue this to 16 and 8 bit additions?)
Does the behavior change for unsigned vs signed?

There's no difference between signed and unsigned - on two's complement machine it's just one instruction that doesn't know about the sign. Yes, you can safely do this trick if there's no overflow risk and you can do this for subparts of any lengths, for example, you can think that your 64-bit number holds two 13-bit numbers and one 38-bit number.

If you assume no overflow, you can do this down to single bits. Of course, 1+1 overflows.
But in pratice, you either have overflow, or you really had 31 bit integers to start with.
One other thing: it only works on unsigned types. You can't have a sign bit in the middle of a 64 bit number.
But why do you care? If you're going "ultra-performance-intensive", use SSE. It will do parallel addition properly.

Yes, you can do this, but it would only work for unsigned values. With signed 32bit integers, the sign bit is the high order bit, which causes overflow when adding.
You probably don't need to do this - if your native C compiler isn't giving the performance you need, then look at using the vector operations (MMX, SSE etc) that do this sort of vector operations extremely efficiently.

Related

Is there a reason why arbitrary precision arithmetic (such as BigInt in JavaScript) is implemented in binary?

From this question, it seems Google Chrome and Node.js both chose to implement arbitrary precision arithmetic in binary. Is there a good reason to do that?
If we can add, subtract, multiply, or divide, and do 7 + 8 = 15 and carry to the next digit, it is faster than doing it bit by bit, with 7 + 8 needing to add two bits 4 times.
V8 developer here. Binary is a good choice because hardware is binary [*]. That doesn't mean that operations happen one bit at a time. In V8, a BigInt's "digits" are uintptr_t values, i.e. register-sized (32 bit on a 32-bit machine, 64 bit on a 64-bit machine) unsigned integers. See our blog post for an overview, and the source for all the gory details. FWIW, many other implementations (e.g. GMP, OpenJDK, Go, Dart) have made the same basic choice.
[*] Some hardware architectures have instructions for "binary coded decimal" arithmetic, which is similar to what you're describing, but this approach is (1) generally considered less efficient, and (2) not available on all architectures that we want V8 to run on.
One possible answer: it is done by adding two 32 or 64 bit integer together, so it is faster than doing it one decimal digit at a time.
To get the result of a multiplication, probably in one machine code cycle, two 64 bit integers can multiply and all digits of the result can be obtained.

Bitboard algorithms for board sizes greater than 64?

I know the Magic BitBoard technique is useful for modern games that are on a n 8x8 grid because you it aligns perfectly with a single 64-bit integer, but is the idea extensible to board sizes greater than 64 squares?
Some games like Shogi have larger board sizes such as 81 squares, which doesn't cleanly fit into a 64-bit integer.
I assume you'd have to use multiple integers but would it would it be better to use 2 64-bit integers or something like 3 32-bit ones?
I know there probably isn't a trivial answer to this, but what kind of knowledge would I need in order to research something like this? I only have some basic/intermediate algorithms and data structures knowledge.
Yes, you could do this with a structure that contains multiple integers of varying lengths. For example, you could use 11 unsigned bytes. Or a 64-bit integer and a 32-bit integer, etc. Anything that will add up to 81 or more bits.
I rather like the idea of three 32-bit integers because you can store three rows per integer. It makes your indexing code simpler than if you used a 64-bit integer and a 32-bit integer. 9 16-bit words would work well, too, but you're wasting almost half your bits.
You could use 11 unsigned bytes, but the indexing is kind of ugly.
All things considered, I'd probably go with the 3 32-bit integers, using the low 27 bits of each.

Arithmetic Operations using only 32 bit integers

How would you compute the multiplication of two 1024 bit numbers on a microprocessor that is only capable of multiplying 32 bit numbers?
The starting point is to realize that you already know how to do this: in elementary school you were taught how to do arithmetic on single digit numbers, and then given data structures to represent larger numbers (e.g. decimals) and algorithms to compute arithmetic operations (e.g. long division).
If you have a way to multiply two 32-bit numbers to give a 64-bit result (note that unsigned long long is guaranteed to be at least 64 bits), then you can use those same algorithms to do arithmetic in base 2^32.
You'll also need, e.g., an add with carry operation. You can determine the carry when adding two unsigned numbers of the same type by detecting overflow, e.g. as follows:
uint32_t x, y; // set to some value
uint32_t sum = x + y;
uint32_t carry = (sum < x);
(technically, this sort of operation requires that you do unsigned arithmetic: overflow in signed arithmetic is undefined behavior, and optimizers will do surprising things to your code you least expect it)
(modern processors usually give a way to multiply two 64-bit numbers to give a 128-bit result, but to access it you will have to use compiler extensions like 128-bit types, or you'll have to write inline assembly code. modern processors also have specialized add-with-carry instructions)
Now, to do arithmetic efficiently is an immense project; I found it quite instructive to browse through the documentation and source code to gmp, the GNU multiple precision arithmetic library.
look at any implementation of bigint operations
here are few of mine approaches in C++ for fast bignum square
some are solely for sqr but others are usable for multiplication...
use 32bit arithmetics as a module for 64/128/256/... bit arithmetics
see mine 32bit ALU in x86 C++
use long multiplication with digit base 2^32
can use also Karatsuba this way

long double (GCC specific) and __float128

I'm looking for detailed information on long double and __float128 in GCC/x86 (more out of curiosity than because of an actual problem).
Few people will probably ever need these (I've just, for the first time ever, truly needed a double), but I guess it is still worthwile (and interesting) to know what you have in your toolbox and what it's about.
In that light, please excuse my somewhat open questions:
Could someone explain the implementation rationale and intended usage of these types, also in comparison of each other? For example, are they "embarrassment implementations" because the standard allows for the type, and someone might complain if they're only just the same precision as double, or are they intended as first-class types?
Alternatively, does someone have a good, usable web reference to share? A Google search on "long double" site:gcc.gnu.org/onlinedocs didn't give me much that's truly useful.
Assuming that the common mantra "if you believe that you need double, you probably don't understand floating point" does not apply, i.e. you really need more precision than just float, and one doesn't care whether 8 or 16 bytes of memory are burnt... is it reasonable to expect that one can as well just jump to long double or __float128 instead of double without a significant performance impact?
The "extended precision" feature of Intel CPUs has historically been source of nasty surprises when values were moved between memory and registers. If actually 96 bits are stored, the long double type should eliminate this issue. On the other hand, I understand that the long double type is mutually exclusive with -mfpmath=sse, as there is no such thing as "extended precision" in SSE. __float128, on the other hand, should work just perfectly fine with SSE math (though in absence of quad precision instructions certainly not on a 1:1 instruction base). Am I right in these assumptions?
(3. and 4. can probably be figured out with some work spent on profiling and disassembling, but maybe someone else had the same thought previously and has already done that work.)
Background (this is the TL;DR part):
I initially stumbled over long double because I was looking up DBL_MAX in <float.h>, and incidentially LDBL_MAX is on the next line. "Oh look, GCC actually has 128 bit doubles, not that I need them, but... cool" was my first thought. Surprise, surprise: sizeof(long double) returns 12... wait, you mean 16?
The C and C++ standards unsurprisingly do not give a very concrete definition of the type. C99 (6.2.5 10) says that the numbers of double are a subset of long double whereas C++03 states (3.9.1 8) that long double has at least as much precision as double (which is the same thing, only worded differently). Basically, the standards leave everything to the implementation, in the same manner as with long, int, and short.
Wikipedia says that GCC uses "80-bit extended precision on x86 processors regardless of the physical storage used".
The GCC documentation states, all on the same page, that the size of the type is 96 bits because of the i386 ABI, but no more than 80 bits of precision are enabled by any option (huh? what?), also Pentium and newer processors want them being aligned as 128 bit numbers. This is the default under 64 bits and can be manually enabled under 32 bits, resulting in 32 bits of zero padding.
Time to run a test:
#include <stdio.h>
#include <cfloat>
int main()
{
#ifdef USE_FLOAT128
typedef __float128 long_double_t;
#else
typedef long double long_double_t;
#endif
long_double_t ld;
int* i = (int*) &ld;
i[0] = i[1] = i[2] = i[3] = 0xdeadbeef;
for(ld = 0.0000000000000001; ld < LDBL_MAX; ld *= 1.0000001)
printf("%08x-%08x-%08x-%08x\r", i[0], i[1], i[2], i[3]);
return 0;
}
The output, when using long double, looks somewhat like this, with the marked digits being constant, and all others eventually changing as the numbers get bigger and bigger:
5636666b-c03ef3e0-00223fd8-deadbeef
^^ ^^^^^^^^
This suggests that it is not an 80 bit number. An 80-bit number has 18 hex digits. I see 22 hex digits changing, which looks much more like a 96 bits number (24 hex digits). It also isn't a 128 bit number since 0xdeadbeef isn't touched, which is consistent with sizeof returning 12.
The output for __int128 looks like it's really just a 128 bit number. All bits eventually flip.
Compiling with -m128bit-long-double does not align long double to 128 bits with a 32-bit zero padding, as indicated by the documentation. It doesn't use __int128 either, but indeed seems to align to 128 bits, padding with the value 0x7ffdd000(?!).
Further, LDBL_MAX, seems to work as +inf for both long double and __float128. Adding or subtracting a number like 1.0E100 or 1.0E2000 to/from LDBL_MAX results in the same bit pattern.
Up to now, it was my belief that the foo_MAX constants were to hold the largest representable number that is not +inf (apparently that isn't the case?). I'm also not quite sure how an 80-bit number could conceivably act as +inf for a 128 bit value... maybe I'm just too tired at the end of the day and have done something wrong.
Ad 1.
Those types are designed to work with numbers with huge dynamic range. The long double is implemented in a native way in the x87 FPU. The 128b double I suspect would be implemented in software mode on modern x86s, as there's no hardware to do the computations in hardware.
The funny thing is that it's quite common to do many floating point operations in a row and the intermediate results are not actually stored in declared variables but rather stored in FPU registers taking advantage of full precision. That's why comparison:
double x = sin(0); if (x == sin(0)) printf("Equal!");
Is not safe and cannot be guaranteed to work (without additional switches).
Ad. 3.
There's an impact on the speed depending what precision you use. You can change used the precision of the FPU by using:
void
set_fpu (unsigned int mode)
{
asm ("fldcw %0" : : "m" (*&mode));
}
It will be faster for shorter variables, slower for longer. 128bit doubles will be probably done in software so will be much slower.
It's not only about RAM memory wasted, it's about cache being wasted. Going to 80 bit double from 64b double will waste from 33% (32b) to almost 50% (64b) of the memory (including cache).
Ad 4.
On the other hand, I understand that the long double type is mutually
exclusive with -mfpmath=sse, as there is no such thing as "extended
precision" in SSE. __float128, on the other hand, should work just
perfectly fine with SSE math (though in absence of quad precision
instructions certainly not on a 1:1 instruction base). Am I right under
these assumptions?
The FPU and SSE units are totally separate. You can write code using FPU at the same time as SSE. The question is what will the compiler generate if you constrain it to use only SSE? Will it try to use FPU anyway? I've been doing some programming with SSE and GCC will generate only single SISD on its own. You have to help it to use SIMD versions. __float128 will probably work on every machine, even the 8-bit AVR uC. It's just fiddling with bits after all.
The 80 bit in hex representation is actually 20 hex digits. Maybe the bits which are not used are from some old operation? On my machine, I compiled your code and only 20 bits change in long
mode: 66b4e0d2-ec09c1d5-00007ffe-deadbeef
The 128-bit version has all the bits changing. Looking at the objdump it looks as if it was using software emulation, there are almost no FPU instructions.
Further, LDBL_MAX, seems to work as +inf for both long double and
__float128. Adding or subtracting a number like 1.0E100 or 1.0E2000 to/from LDBL_MAX results in the same bit pattern. Up to now, it was my
belief that the foo_MAX constants were to hold the largest
representable number that is not +inf (apparently that isn't the
case?).
This seems to be strange...
I'm also not quite sure how an 80-bit number could conceivably
act as +inf for a 128-bit value... maybe I'm just too tired at the end
of the day and have done something wrong.
It's probably being extended. The pattern which is recognized to be +inf in 80-bit is translated to +inf in 128-bit float too.
IEEE-754 defined 32 and 64 floating-point representations for the purpose of efficient data storage, and an 80-bit representation for the purpose of efficient computation. The intention was that given float f1,f2; double d1,d2; a statement like d1=f1+f2+d2; would be executed by converting the arguments to 80-bit floating-point values, adding them, and converting the result back to a 64-bit floating-point type. This would offer three advantages compared with performing operations on other floating-point types directly:
While separate code or circuitry would be required for conversions to/from 32-bit types and 64-bit types, it would only be necessary to have only one "add" implementation, one "multiply" implementation, one "square root" implementation, etc.
Although in rare cases using an 80-bit computational type could yield results that were very slightly less accurate than using other types directly (worst-case rounding error is 513/1024ulp in cases where computations on other types would yield an error of 511/1024ulp), chained computations using 80-bit types would frequently be more accurate--sometimes much more accurate--than computations using other types.
On a system without a FPU, separating a double into a separate exponent and mantissa before performing computations, normalizing a mantissa, and converting a separate mantissa and exponent into a double, are somewhat time consuming. If the result of one computation will be used as input to another and discarded, using an unpacked 80-bit type will allow these steps to be omitted.
In order for this approach to floating-point math to be useful, however, it is imperative that it be possible for code to store intermediate results with the same precision as would be used in computation, such that temp = d1+d2; d4=temp+d3; will yield the same result as d4=d1+d2+d3;. From what I can tell, the purpose of long double was to be that type. Unfortunately, even though K&R designed C so that all floating-point values would be passed to variadic methods the same way, ANSI C broke that. In C as originally designed, given the code float v1,v2; ... printf("%12.6f", v1+v2);, the printf method wouldn't have to worry about whether v1+v2 would yield a float or a double, since the result would get coerced to a known type regardless. Further, even if the type of v1 or v2 changed to double, the printf statement wouldn't have to change.
ANSI C, however, requires that code which calls printf must know which arguments are double and which are long double; a lot of code--if not a majority--of code which uses long double but was written on platforms where it's synonymous with double fails to use the correct format specifiers for long double values. Rather than having long double be an 80-bit type except when passed as a variadic method argument, in which case it would be coerced to 64 bits, many compilers decided to make long double be synonymous with double and not offer any means of storing the results of intermediate computations. Since using an extended precision type for computation is only good if that type is made available to the programmer, many people came to conclude regard extended precision as evil even though it was only ANSI C's failure to handle variadic arguments sensibly that made it problematic.
PS--The intended purpose of long double would have benefited if there had also been a long float which was defined as the type to which float arguments could be most efficiently promoted; on many machines without floating-point units that would probably be a 48-bit type, but the optimal size could range anywhere from 32 bits (on machines with an FPU that does 32-bit math directly) up to 80 (on machines which use the design envisioned by IEEE-754). Too late now, though.
It boils down to the difference between 4.9999999999999999999 and 5.0.
Although the range is the main difference, it is precision that is important.
These type of data will be needed in great circle calculations or coordinate mathematics that is likely to be used with GPS systems.
As the precision is much better than normal double, it means you can retain typically 18 significant digits without loosing accuracy in calculations.
Extended precision I believe uses 80 bits (used mostly in maths processors), so 128 bits will be much more accurate.
C99 and C++11 added types float_t and double_t which are aliases for built-in floating-point types. Roughly, float_t is the type of the result of doing arithmetic among values of type float, and double_t is the type of the result of doing arithmetic among values of type double.

Can long integer routines benefit from SSE?

I'm still working on routines for arbitrary long integers in C++. So far, I have implemented addition/subtraction and multiplication for 64-bit Intel CPUs.
Everything works fine, but I wondered if I can speed it a bit by using SSE. I browsed through the SSE docs and processor instruction lists, but I could not find anything I think I can use and here is why:
SSE has some integer instructions, but most instructions handle floating point. It doesn't look like it was designed for use with integers (e.g. is there an integer compare for less?)
The SSE idea is SIMD (same instruction, multiple data), so it provides instructions for 2 or 4 independent operations. I, on the other hand, would like to have something like a 128 bit integer add (128 bit input and output). This doesn't seem to exist. (Yet? In AVX2 maybe?)
The integer additions and subtractions handle neither input nor output carries. So it's very cumbersome (and thus, slow) to do it by hand.
My question is: is my assessment correct or is there anything I have overlooked? Can long integer routines benefit from SSE? In particular, can they help me to write a quicker add, sub or mul routine?
In the past, the answer to this question was a solid, "no". But as of 2017, the situation is changing.
But before I continue, time for some background terminology:
Full Word Arithmetic
Partial Word Arithmetic
Full-Word Arithmetic:
This is the standard representation where the number is stored in base 232 or 264 using an array of 32-bit or 64-bit integers.
Many bignum libraries and applications (including GMP) use this representation.
In full-word representation, every integer has a unique representation. Operations like comparisons are easy. But stuff like addition are more difficult because of the need for carry-propagation.
It is this carry-propagation that makes bignum arithmetic almost impossible to vectorize.
Partial-Word Arithmetic
This is a lesser-used representation where the number uses a base less than the hardware word-size. For example, putting only 60 bits in each 64-bit word. Or using base 1,000,000,000 with a 32-bit word-size for decimal arithmetic.
The authors of GMP call this, "nails" where the "nail" is the unused portion of the word.
In the past, use of partial-word arithmetic was mostly restricted to applications working in non-binary bases. But nowadays, it's becoming more important in that it allows carry-propagation to be delayed.
Problems with Full-Word Arithmetic:
Vectorizing full-word arithmetic has historically been a lost cause:
SSE/AVX2 has no support for carry-propagation.
SSE/AVX2 has no 128-bit add/sub.
SSE/AVX2 has no 64 x 64-bit integer multiply.*
*AVX512-DQ adds a lower-half 64x64-bit multiply. But there is still no upper-half instruction.
Furthermore, x86/x64 has plenty of specialized scalar instructions for bignums:
Add-with-Carry: adc, adcx, adox.
Double-word Multiply: Single-operand mul and mulx.
In light of this, both bignum-add and bignum-multiply are difficult for SIMD to beat scalar on x64. Definitely not with SSE or AVX.
With AVX2, SIMD is almost competitive with scalar bignum-multiply if you rearrange the data to enable "vertical vectorization" of 4 different (and independent) multiplies of the same lengths in each of the 4 SIMD lanes.
AVX512 will tip things more in favor of SIMD again assuming vertical vectorization.
But for the most part, "horizontal vectorization" of bignums is largely still a lost cause unless you have many of them (of the same size) and can afford the cost of transposing them to make them "vertical".
Vectorization of Partial-Word Arithmetic
With partial-word arithmetic, the extra "nail" bits enable you to delay carry-propagation.
So as long as you as you don't overflow the word, SIMD add/sub can be done directly. In many implementations, partial-word representation uses signed integers to allow words to go negative.
Because there is (usually) no need to perform carryout, SIMD add/sub on partial words can be done equally efficiently on both vertically and horizontally-vectorized bignums.
Carryout on horizontally-vectorized bignums is still cheap as you merely shift the nails over the next lane. A full carryout to completely clear the nail bits and get to a unique representation usually isn't necessary unless you need to do a comparison of two numbers that are almost the same.
Multiplication is more complicated with partial-word arithmetic since you need to deal with the nail bits. But as with add/sub, it is nevertheless possible to do it efficiently on horizontally-vectorized bignums.
AVX512-IFMA (coming with Cannonlake processors) will have instructions that give the full 104 bits of a 52 x 52-bit multiply (presumably using the FPU hardware). This will play very well with partial-word representations that use 52 bits per word.
Large Multiplication using FFTs
For really large bignums, multiplication is most efficiently done using Fast-Fourier Transforms (FFTs).
FFTs are completely vectorizable since they work on independent doubles. This is possible because fundamentally, the representation that FFTs use is
a partial word representation.
To summarize, vectorization of bignum arithmetic is possible. But sacrifices must be made.
If you expect SSE/AVX to be able to speed up some existing bignum code without fundamental changes to the representation and/or data layout, that's not likely to happen.
But nevertheless, bignum arithmetic is possible to vectorize.
Disclosure:
I'm the author of y-cruncher which does plenty of large number arithmetic.

Resources