Is there a reason why arbitrary precision arithmetic (such as BigInt in JavaScript) is implemented in binary? - v8

From this question, it seems Google Chrome and Node.js both chose to implement arbitrary precision arithmetic in binary. Is there a good reason to do that?
If we can add, subtract, multiply, or divide, and do 7 + 8 = 15 and carry to the next digit, it is faster than doing it bit by bit, with 7 + 8 needing to add two bits 4 times.

V8 developer here. Binary is a good choice because hardware is binary [*]. That doesn't mean that operations happen one bit at a time. In V8, a BigInt's "digits" are uintptr_t values, i.e. register-sized (32 bit on a 32-bit machine, 64 bit on a 64-bit machine) unsigned integers. See our blog post for an overview, and the source for all the gory details. FWIW, many other implementations (e.g. GMP, OpenJDK, Go, Dart) have made the same basic choice.
[*] Some hardware architectures have instructions for "binary coded decimal" arithmetic, which is similar to what you're describing, but this approach is (1) generally considered less efficient, and (2) not available on all architectures that we want V8 to run on.

One possible answer: it is done by adding two 32 or 64 bit integer together, so it is faster than doing it one decimal digit at a time.
To get the result of a multiplication, probably in one machine code cycle, two 64 bit integers can multiply and all digits of the result can be obtained.

Related

Bitboard algorithms for board sizes greater than 64?

I know the Magic BitBoard technique is useful for modern games that are on a n 8x8 grid because you it aligns perfectly with a single 64-bit integer, but is the idea extensible to board sizes greater than 64 squares?
Some games like Shogi have larger board sizes such as 81 squares, which doesn't cleanly fit into a 64-bit integer.
I assume you'd have to use multiple integers but would it would it be better to use 2 64-bit integers or something like 3 32-bit ones?
I know there probably isn't a trivial answer to this, but what kind of knowledge would I need in order to research something like this? I only have some basic/intermediate algorithms and data structures knowledge.
Yes, you could do this with a structure that contains multiple integers of varying lengths. For example, you could use 11 unsigned bytes. Or a 64-bit integer and a 32-bit integer, etc. Anything that will add up to 81 or more bits.
I rather like the idea of three 32-bit integers because you can store three rows per integer. It makes your indexing code simpler than if you used a 64-bit integer and a 32-bit integer. 9 16-bit words would work well, too, but you're wasting almost half your bits.
You could use 11 unsigned bytes, but the indexing is kind of ugly.
All things considered, I'd probably go with the 3 32-bit integers, using the low 27 bits of each.

Arithmetic Operations using only 32 bit integers

How would you compute the multiplication of two 1024 bit numbers on a microprocessor that is only capable of multiplying 32 bit numbers?
The starting point is to realize that you already know how to do this: in elementary school you were taught how to do arithmetic on single digit numbers, and then given data structures to represent larger numbers (e.g. decimals) and algorithms to compute arithmetic operations (e.g. long division).
If you have a way to multiply two 32-bit numbers to give a 64-bit result (note that unsigned long long is guaranteed to be at least 64 bits), then you can use those same algorithms to do arithmetic in base 2^32.
You'll also need, e.g., an add with carry operation. You can determine the carry when adding two unsigned numbers of the same type by detecting overflow, e.g. as follows:
uint32_t x, y; // set to some value
uint32_t sum = x + y;
uint32_t carry = (sum < x);
(technically, this sort of operation requires that you do unsigned arithmetic: overflow in signed arithmetic is undefined behavior, and optimizers will do surprising things to your code you least expect it)
(modern processors usually give a way to multiply two 64-bit numbers to give a 128-bit result, but to access it you will have to use compiler extensions like 128-bit types, or you'll have to write inline assembly code. modern processors also have specialized add-with-carry instructions)
Now, to do arithmetic efficiently is an immense project; I found it quite instructive to browse through the documentation and source code to gmp, the GNU multiple precision arithmetic library.
look at any implementation of bigint operations
here are few of mine approaches in C++ for fast bignum square
some are solely for sqr but others are usable for multiplication...
use 32bit arithmetics as a module for 64/128/256/... bit arithmetics
see mine 32bit ALU in x86 C++
use long multiplication with digit base 2^32
can use also Karatsuba this way

Can long integer routines benefit from SSE?

I'm still working on routines for arbitrary long integers in C++. So far, I have implemented addition/subtraction and multiplication for 64-bit Intel CPUs.
Everything works fine, but I wondered if I can speed it a bit by using SSE. I browsed through the SSE docs and processor instruction lists, but I could not find anything I think I can use and here is why:
SSE has some integer instructions, but most instructions handle floating point. It doesn't look like it was designed for use with integers (e.g. is there an integer compare for less?)
The SSE idea is SIMD (same instruction, multiple data), so it provides instructions for 2 or 4 independent operations. I, on the other hand, would like to have something like a 128 bit integer add (128 bit input and output). This doesn't seem to exist. (Yet? In AVX2 maybe?)
The integer additions and subtractions handle neither input nor output carries. So it's very cumbersome (and thus, slow) to do it by hand.
My question is: is my assessment correct or is there anything I have overlooked? Can long integer routines benefit from SSE? In particular, can they help me to write a quicker add, sub or mul routine?
In the past, the answer to this question was a solid, "no". But as of 2017, the situation is changing.
But before I continue, time for some background terminology:
Full Word Arithmetic
Partial Word Arithmetic
Full-Word Arithmetic:
This is the standard representation where the number is stored in base 232 or 264 using an array of 32-bit or 64-bit integers.
Many bignum libraries and applications (including GMP) use this representation.
In full-word representation, every integer has a unique representation. Operations like comparisons are easy. But stuff like addition are more difficult because of the need for carry-propagation.
It is this carry-propagation that makes bignum arithmetic almost impossible to vectorize.
Partial-Word Arithmetic
This is a lesser-used representation where the number uses a base less than the hardware word-size. For example, putting only 60 bits in each 64-bit word. Or using base 1,000,000,000 with a 32-bit word-size for decimal arithmetic.
The authors of GMP call this, "nails" where the "nail" is the unused portion of the word.
In the past, use of partial-word arithmetic was mostly restricted to applications working in non-binary bases. But nowadays, it's becoming more important in that it allows carry-propagation to be delayed.
Problems with Full-Word Arithmetic:
Vectorizing full-word arithmetic has historically been a lost cause:
SSE/AVX2 has no support for carry-propagation.
SSE/AVX2 has no 128-bit add/sub.
SSE/AVX2 has no 64 x 64-bit integer multiply.*
*AVX512-DQ adds a lower-half 64x64-bit multiply. But there is still no upper-half instruction.
Furthermore, x86/x64 has plenty of specialized scalar instructions for bignums:
Add-with-Carry: adc, adcx, adox.
Double-word Multiply: Single-operand mul and mulx.
In light of this, both bignum-add and bignum-multiply are difficult for SIMD to beat scalar on x64. Definitely not with SSE or AVX.
With AVX2, SIMD is almost competitive with scalar bignum-multiply if you rearrange the data to enable "vertical vectorization" of 4 different (and independent) multiplies of the same lengths in each of the 4 SIMD lanes.
AVX512 will tip things more in favor of SIMD again assuming vertical vectorization.
But for the most part, "horizontal vectorization" of bignums is largely still a lost cause unless you have many of them (of the same size) and can afford the cost of transposing them to make them "vertical".
Vectorization of Partial-Word Arithmetic
With partial-word arithmetic, the extra "nail" bits enable you to delay carry-propagation.
So as long as you as you don't overflow the word, SIMD add/sub can be done directly. In many implementations, partial-word representation uses signed integers to allow words to go negative.
Because there is (usually) no need to perform carryout, SIMD add/sub on partial words can be done equally efficiently on both vertically and horizontally-vectorized bignums.
Carryout on horizontally-vectorized bignums is still cheap as you merely shift the nails over the next lane. A full carryout to completely clear the nail bits and get to a unique representation usually isn't necessary unless you need to do a comparison of two numbers that are almost the same.
Multiplication is more complicated with partial-word arithmetic since you need to deal with the nail bits. But as with add/sub, it is nevertheless possible to do it efficiently on horizontally-vectorized bignums.
AVX512-IFMA (coming with Cannonlake processors) will have instructions that give the full 104 bits of a 52 x 52-bit multiply (presumably using the FPU hardware). This will play very well with partial-word representations that use 52 bits per word.
Large Multiplication using FFTs
For really large bignums, multiplication is most efficiently done using Fast-Fourier Transforms (FFTs).
FFTs are completely vectorizable since they work on independent doubles. This is possible because fundamentally, the representation that FFTs use is
a partial word representation.
To summarize, vectorization of bignum arithmetic is possible. But sacrifices must be made.
If you expect SSE/AVX to be able to speed up some existing bignum code without fundamental changes to the representation and/or data layout, that's not likely to happen.
But nevertheless, bignum arithmetic is possible to vectorize.
Disclosure:
I'm the author of y-cruncher which does plenty of large number arithmetic.

splitting a 64-bit addition into two 32-bit additions

I'm working on an ultra-performance-intensive computational task. For adding-pairwise two 32-bit integer arrays, could one, on a 64-bit architecture, treat two 32-bit values as a single 64-bit value, add them to their complement on the other array, then split them up again with a bitwise & operator. Obviously if there is an overflow, they will not be the same, but assuming there is none, will there be a problem? (And can you continue this to 16 and 8 bit additions?)
Does the behavior change for unsigned vs signed?
There's no difference between signed and unsigned - on two's complement machine it's just one instruction that doesn't know about the sign. Yes, you can safely do this trick if there's no overflow risk and you can do this for subparts of any lengths, for example, you can think that your 64-bit number holds two 13-bit numbers and one 38-bit number.
If you assume no overflow, you can do this down to single bits. Of course, 1+1 overflows.
But in pratice, you either have overflow, or you really had 31 bit integers to start with.
One other thing: it only works on unsigned types. You can't have a sign bit in the middle of a 64 bit number.
But why do you care? If you're going "ultra-performance-intensive", use SSE. It will do parallel addition properly.
Yes, you can do this, but it would only work for unsigned values. With signed 32bit integers, the sign bit is the high order bit, which causes overflow when adding.
You probably don't need to do this - if your native C compiler isn't giving the performance you need, then look at using the vector operations (MMX, SSE etc) that do this sort of vector operations extremely efficiently.

Arbitrary precision arithmetic with Ruby

How the heck does Ruby do this? Does Jörg or anyone else know what's happening behind the scenes?
Unfortunately I don't know C very well so bignum.c is of little help to me. I was just kind of curious it someone could explain (in plain English) the theory behind whatever miracle algorithm its using.
irb(main):001:0> 999**999
368063488259223267894700840060521865838338232037353204655959621437025609300472231530103873614505175218691345257589896391130393189447969771645832382192366076536631132001776175977932178658703660778465765811830827876982014124022948671975678131724958064427949902810498973271030787716781467419524180040734398996952930832508934116945966120176735120823151959779536852290090377452502236990839453416790640456116471139751546750048602189291028640970574762600185950226138244530187489211615864021135312077912018844630780307462205252807737757672094320692373101032517459518497524015120165166724189816766397247824175394802028228160027100623998873667435799073054618906855460488351426611310634023489044291860510352301912426608488807462312126590206830413782664554260411266378866626653755763627796569082931785645600816236891168141774993267488171702172191072731069216881668294625679492696148976999868715671440874206427212056717373099639711168901197440416590226524192782842896415414611688187391232048327738965820265934093108172054875188246591760877131657895633586576611857277011782497943522945011248430439201297015119468730712364007639373910811953430309476832453230123996750235710787086641070310288725389595138936784715274150426495416196669832679980253436807864187160054589045664027158817958549374490512399055448819148487049363674611664609890030088549591992466360050042566270348330911795487647045949301286614658650071299695652245266080672989921799342509291635330827874264789587306974472327718704306352445925996155619153783913237212716010410294999877569745287353422903443387562746452522860420416689019732913798073773281533570910205207767157128174184873357050830752777900041943256738499067821488421053870869022738698816059810579221002560882999884763252161747566893835178558961142349304466506402373556318707175710866983035313122068321102457824112014969387225476259342872866363550383840720010832906695360553556647545295849966279980830561242960013654529514995113584909050813015198928283202189194615501403435553060147713139766323195743324848047347575473228198492343231496580885057330510949058490527738662697480293583612233134502078182014347192522391449087738579081585795613547198599661273567662441490401862839817822686573112998663038868314974259766039340894024308383451039874674061160538242392803580758232755749310843694194787991556647907091849600704712003371103926967137408125713631396699343733288014254084819379380555174777020843568689927348949484201042595271932630685747613835385434424807024615161848223715989797178155169951121052285149157137697718850449708843330475301440373094611119631361702936342263219382793996895988331701890693689862459020775599439506870005130750427949747071390095256759203426671803377068109744629909769176319526837824364926844730545524646494321826241925107158040561607706364484910978348669388142016838792902926158979355432483611517588605967745393958061959024834251565197963477521095821435651996730128376734574843289089682710350244222290017891280419782767803785277960834729869249991658417000499998999
Simple: it does it the same way you do, ever since first grade. Except it doesn't compute in base 10, it computes in base 4 billion (and change).
Think about it: with our number system, we can only represent numbers from 0 to 9. So, how can we compute 6+7 without overflowing? Easy: we do actually overflow! We cannot represent the result of 6+7 as a number between 0 and 9, but we can overflow to the next place and represent it as two numbers between 0 and 9: 3×100 + 1×101. If you want to add two numbers, you add them digit-wise from the right and overflow ("carry") to the left. If you want to multiply two numbers, you have to multiply every digit of one number individually with the other number, then add up the intermediate results.
BigNum arithmetic (this is what this kind of arithmetic where the numbers are bigger than the native machine numbers is usually called) works basically the same way. Except that the base is not 10, and its not 2, either – it's the size of a native machine integer. So, on a 32 bit machine, it would be base 232 or 4 294 967 296.
Specifically, in Ruby Integer is actually an abstract class that is never instianted. Instead, it has two subclasses, Fixnum and Bignum, and numbers automagically migrate between them, depending on their size. In MRI and YARV, Fixnum can hold a 31 or 63 bit signed integer (one bit is used for tagging) depending on the native word size of the machine. In JRuby, a Fixnum can hold a full 64 bit signed integer, even on an 32 bit machine.
The simplest operation is adding two numbers. And if you look at the implementation of + or rather bigadd_core in YARV's bignum.c, it's not too bad to follow. I can't read C either, but you can cleary see how it loops over the individual digits.
You could read the source for bignum.c...
At a very high level, without going into any implementation details, bignums are calculated "by hand" like you used to do in grade school. Now, there are certainly many optimizations that can be applied, but that's the gist of it.
I don't know of the implementation details so I'll cover how a basic Big Number implementation would work.
Basically instead of relying on CPU "integers" it will create it's own using multiple CPU integers. To store arbritrary precision, well lets say you have 2 bits. So the current integer is 11. You want to add one. In normal CPU integers, this would roll over to 00
But, for big number, instead of rolling over and keeping a "fixed" integer width, it would allocate another bit and simulate an addition so that the number becomes the correct 100.
Try looking up how binary math can be done on paper. It's very simple and is trivial to convert to an algorithm.
Beaconaut APICalc 2 just released on Jan.18, 2011, which is an arbitrary-precision integer calculator for bignum arithmetic, cryptography analysis and number theory research......
http://www.beaconaut.com/forums/default.aspx?g=posts&t=13
It uses the Bignum class
irb(main):001:0> (999**999).class
=> Bignum
Rdoc is available of course

Resources