Related
I'm trying to find a name for my problem, so I don't have to re-invent wheel when coding an algorithm which solves it...
I have say 2,000 binary (row) vectors and I need to pick 500 from them. In the picked sample I do column sums and I want my sample to be as close as possible to a pre-defined distribution of the column sums. I'll be working with 20 to 60 columns.
A tiny example:
Out of the vectors:
110
010
011
110
100
I need to pick 2 to get column sums 2, 1, 0. The solution (exact in this case) would be
110
100
My ideas so far
one could maybe call this a binary multidimensional knapsack, but I did not find any algos for that
Linear Programming could help, but I'd need some step by step explanation as I got no experience with it
as exact solution is not always feasible, something like simulated annealing brute force could work well
a hacky way using constraint solvers comes to mind - first set the constraints tight and gradually loosen them until some solution is found - given that CSP should be much faster than ILP...?
My concrete, practical (if the approximation guarantee works out for you) suggestion would be to apply the maximum entropy method (in Chapter 7 of Boyd and Vandenberghe's book Convex Optimization; you can probably find several implementations with your favorite search engine) to find the maximum entropy probability distribution on row indexes such that (1) no row index is more likely than 1/500 (2) the expected value of the row vector chosen is 1/500th of the predefined distribution. Given this distribution, choose each row independently with probability 500 times its distribution likelihood, which will give you 500 rows on average. If you need exactly 500, repeat until you get exactly 500 (shouldn't take too many tries due to concentration bounds).
Firstly I will make some assumptions regarding this problem:
Regardless whether the column sum of the selected solution is over or under the target, it weighs the same.
The sum of the first, second, and third column are equally weighted in the solution (i.e. If there's a solution whereas the first column sum is off by 1, and another where the third column sum is off by 1, the solution are equally good).
The closest problem I can think of this problem is the Subset sum problem, which itself can be thought of a special case of Knapsack problem.
However both of these problem are NP-Complete. This means there are no polynomial time algorithm that can solve them, even though it is easy to verify the solution.
If I were you the two most arguably efficient solution of this problem are linear programming and machine learning.
Depending on how many columns you are optimising in this problem, with linear programming you can control how much finely tuned you want the solution, in exchange of time. You should read up on this, because this is fairly simple and efficient.
With Machine learning, you need a lot of data sets (the set of vectors and the set of solutions). You don't even need to specify what you want, a lot of machine learning algorithms can generally deduce what you want them to optimise based on your data set.
Both solution has pros and cons, you should decide which one to use yourself based on the circumstances and problem set.
This definitely can be modeled as (integer!) linear program (many problems can). Once you have it, you can use a program such as lpsolve to solve it.
We model vector i is selected as x_i which can be 0 or 1.
Then for each column c, we have a constraint:
sum of all (x_i * value of i in column c) = target for column c
Taking your example, in lp_solve this could look like:
min: ;
+x1 +x4 +x5 >= 2;
+x1 +x4 +x5 <= 2;
+x1 +x2 +x3 +x4 <= 1;
+x1 +x2 +x3 +x4 >= 1;
+x3 <= 0;
+x3 >= 0;
bin x1, x2, x3, x4, x5;
If you are fine with a heuristic based search approach, here is one.
Go over the list and find the minimum squared sum of the digit wise difference between each bit string and the goal. For example, if we are looking for 2, 1, 0, and we are scoring 0, 1, 0, we would do it in the following way:
Take the digit wise difference:
2, 0, 1
Square the digit wise difference:
4, 0, 1
Sum:
5
As a side note, squaring the difference when scoring is a common method when doing heuristic search. In your case, it makes sense because bit strings that have a 1 in as the first digit are a lot more interesting to us. In your case this simple algorithm would pick first 110, then 100, which would is the best solution.
In any case, there are some optimizations that could be made to this, I will post them here if this kind of approach is what you are looking for, but this is the core of the algorithm.
You have a given target binary vector. You want to select M vectors out of N that have the closest sum to the target. Let's say you use the eucilidean distance to measure if a selection is better than another.
If you want an exact sum, have a look at the k-sum problem which is a generalization of the 3SUM problem. The problem is harder than the subset sum problem, because you want an exact number of elements to add to a target value. There is a solution in O(N^(M/2)). lg N), but that means more than 2000^250 * 7.6 > 10^826 operations in your case (in the favorable case where vectors operations have a cost of 1).
First conclusion: do not try to get an exact result unless your vectors have some characteristics that may reduce the complexity.
Here's a hill climbing approach:
sort the vectors by number of 1's: 111... first, 000... last;
use the polynomial time approximate algorithm for the subset sum;
you have an approximate solution with K elements. Because of the order of elements (the big ones come first), K should be a little as possible:
if K >= M, you take the M first vectors of the solution and that's probably near the best you can do.
if K < M, you can remove the first vector and try to replace it with 2 or more vectors from the rest of the N vectors, using the same technique, until you have M vectors. To sumarize: split the big vectors into smaller ones until you reach the correct number of vectors.
Here's a proof of concept with numbers, in Python:
import random
def distance(x, y):
return abs(x-y)
def show(ls):
if len(ls) < 10:
return str(ls)
else:
return ", ".join(map(str, ls[:5]+("...",)+ls[-5:]))
def find(is_xs, target):
# see https://en.wikipedia.org/wiki/Subset_sum_problem#Pseudo-polynomial_time_dynamic_programming_solution
S = [(0, ())] # we store indices along with values to get the path
for i, x in is_xs:
T = [(x + t, js + (i,)) for t, js in S]
U = sorted(S + T)
y, ks = U[0]
S = [(y, ks)]
for z, ls in U:
if z == target: # use the euclidean distance here if you want an approximation
return ls
if z != y and z < target:
y, ks = z, ls
S.append((z, ls))
ls = S[-1][1] # take the closest element to target
return ls
N = 2000
M = 500
target = 1000
xs = [random.randint(0, 10) for _ in range(N)]
print ("Take {} numbers out of {} to make a sum of {}", M, xs, target)
xs = sorted(xs, reverse = True)
is_xs = list(enumerate(xs))
print ("Sorted numbers: {}".format(show(tuple(is_xs))))
ls = find(is_xs, target)
print("FIRST TRY: {} elements ({}) -> {}".format(len(ls), show(ls), sum(x for i, x in is_xs if i in ls)))
splits = 0
while len(ls) < M:
first_x = xs[ls[0]]
js_ys = [(i, x) for i, x in is_xs if i not in ls and x != first_x]
replace = find(js_ys, first_x)
splits += 1
if len(replace) < 2 or len(replace) + len(ls) - 1 > M or sum(xs[i] for i in replace) != first_x:
print("Give up: can't replace {}.\nAdd the lowest elements.")
ls += tuple([i for i, x in is_xs if i not in ls][len(ls)-M:])
break
print ("Replace {} (={}) by {} (={})".format(ls[:1], first_x, replace, sum(xs[i] for i in replace)))
ls = tuple(sorted(ls[1:] + replace)) # use a heap?
print("{} elements ({}) -> {}".format(len(ls), show(ls), sum(x for i, x in is_xs if i in ls)))
print("AFTER {} splits, {} -> {}".format(splits, ls, sum(x for i, x in is_xs if i in ls)))
The result is obviously not guaranteed to be optimal.
Remarks:
Complexity: find has a polynomial time complexity (see the Wikipedia page) and is called at most M^2 times, hence the complexity remains polynomial. In practice, the process is reasonably fast (split calls have a small target).
Vectors: to ensure that you reach the target with the minimum of elements, you can improve the order of element. Your target is (t_1, ..., t_c): if you sort the t_js from max to min, you get the more importants columns first. You can sort the vectors: by number of 1s and then by the presence of a 1 in the most important columns. E.g. target = 4 8 6 => 1 1 1 > 0 1 1 > 1 1 0 > 1 0 1 > 0 1 0 > 0 0 1 > 1 0 0 > 0 0 0.
find (Vectors) if the current sum exceed the target in all the columns, then you're not connecting to the target (any vector you add to the current sum will bring you farther from the target): don't add the sum to S (z >= target case for numbers).
I propose a simple ad hoc algorithm, which, broadly speaking, is a kind of gradient descent algorithm. It seems to work relatively well for input vectors which have a distribution of 1s “similar” to the target sum vector, and probably also for all “nice” input vectors, as defined in a comment of yours. The solution is not exact, but the approximation seems good.
The distance between the sum vector of the output vectors and the target vector is taken to be Euclidean. To minimize it means minimizing the sum of the square differences off sum vector and target vector (the square root is not needed because it is monotonic). The algorithm does not guarantee to yield the sample that minimizes the distance from the target, but anyway makes a serious attempt at doing so, by always moving in some locally optimal direction.
The algorithm can be split into 3 parts.
First of all the first M candidate output vectors out of the N input vectors (e.g., N=2000, M=500) are put in a list, and the remaining vectors are put in another.
Then "approximately optimal" swaps between vectors in the two lists are done, until either the distance would not decrease any more, or a predefined maximum number of iterations is reached. An approximately optimal swap is one where removing the first vector from the list of output vectors causes a maximal decrease or minimal increase of the distance, and then, after the removal of the first vector, adding the second vector to the same list causes a maximal decrease of the distance. The whole swap is avoided if the net result is not a decrease of the distance.
Then, as a last phase, "optimal" swaps are done, again stopping on no decrease in distance or maximum number of iterations reached. Optimal swaps cause a maximal decrease of the distance, without requiring the removal of the first vector to be optimal in itself. To find an optimal swap all vector pairs have to be checked. This phase is much more expensive, being O(M(N-M)), while the previous "approximate" phase is O(M+(N-M))=O(N). Luckily, when entering this phase, most of the work has already been done by the previous phase.
from typing import List, Tuple
def get_sample(vects: List[Tuple[int]], target: Tuple[int], n_out: int,
max_approx_swaps: int = None, max_optimal_swaps: int = None,
verbose: bool = False) -> List[Tuple[int]]:
"""
Get a sample of the input vectors having a sum close to the target vector.
Closeness is measured in Euclidean metrics. The output is not guaranteed to be
optimal (minimum square distance from target), but a serious attempt is made.
The max_* parameters can be used to avoid too long execution times,
tune them to your needs by setting verbose to True, or leave them None (∞).
:param vects: the list of vectors (tuples) with the same number of "columns"
:param target: the target vector, with the same number of "columns"
:param n_out: the requested sample size
:param max_approx_swaps: the max number of approximately optimal vector swaps,
None means unlimited (default: None)
:param max_optimal_swaps: the max number of optimal vector swaps,
None means unlimited (default: None)
:param verbose: print some info if True (default: False)
:return: the sample of n_out vectors having a sum close to the target vector
"""
def square_distance(v1, v2):
return sum((e1 - e2) ** 2 for e1, e2 in zip(v1, v2))
n_vec = len(vects)
assert n_vec > 0
assert n_out > 0
n_rem = n_vec - n_out
assert n_rem > 0
output = vects[:n_out]
remain = vects[n_out:]
n_col = len(vects[0])
assert n_col == len(target) > 0
sumvect = (0,) * n_col
for outvect in output:
sumvect = tuple(map(int.__add__, sumvect, outvect))
sqdist = square_distance(sumvect, target)
if verbose:
print(f"sqdist = {sqdist:4} after"
f" picking the first {n_out} vectors out of {n_vec}")
if max_approx_swaps is None:
max_approx_swaps = sqdist
n_approx_swaps = 0
while sqdist and n_approx_swaps < max_approx_swaps:
# find the best vect to subtract (the square distance MAY increase)
sqdist_0 = None
index_0 = None
sumvect_0 = None
for index in range(n_out):
tmp_sumvect = tuple(map(int.__sub__, sumvect, output[index]))
tmp_sqdist = square_distance(tmp_sumvect, target)
if sqdist_0 is None or sqdist_0 > tmp_sqdist:
sqdist_0 = tmp_sqdist
index_0 = index
sumvect_0 = tmp_sumvect
# find the best vect to add,
# but only if there is a net decrease of the square distance
sqdist_1 = sqdist
index_1 = None
sumvect_1 = None
for index in range(n_rem):
tmp_sumvect = tuple(map(int.__add__, sumvect_0, remain[index]))
tmp_sqdist = square_distance(tmp_sumvect, target)
if sqdist_1 > tmp_sqdist:
sqdist_1 = tmp_sqdist
index_1 = index
sumvect_1 = tmp_sumvect
if sumvect_1:
tmp = output[index_0]
output[index_0] = remain[index_1]
remain[index_1] = tmp
sqdist = sqdist_1
sumvect = sumvect_1
n_approx_swaps += 1
else:
break
if verbose:
print(f"sqdist = {sqdist:4} after {n_approx_swaps}"
f" approximately optimal swap{'s'[n_approx_swaps == 1:]}")
diffvect = tuple(map(int.__sub__, sumvect, target))
if max_optimal_swaps is None:
max_optimal_swaps = sqdist
n_optimal_swaps = 0
while sqdist and n_optimal_swaps < max_optimal_swaps:
# find the best pair to swap,
# but only if the square distance decreases
best_sqdist = sqdist
best_diffvect = diffvect
best_pair = None
for i0 in range(M):
tmp_diffvect = tuple(map(int.__sub__, diffvect, output[i0]))
for i1 in range(n_rem):
new_diffvect = tuple(map(int.__add__, tmp_diffvect, remain[i1]))
new_sqdist = sum(d * d for d in new_diffvect)
if best_sqdist > new_sqdist:
best_sqdist = new_sqdist
best_diffvect = new_diffvect
best_pair = (i0, i1)
if best_pair:
tmp = output[best_pair[0]]
output[best_pair[0]] = remain[best_pair[1]]
remain[best_pair[1]] = tmp
sqdist = best_sqdist
diffvect = best_diffvect
n_optimal_swaps += 1
else:
break
if verbose:
print(f"sqdist = {sqdist:4} after {n_optimal_swaps}"
f" optimal swap{'s'[n_optimal_swaps == 1:]}")
return output
from random import randrange
C = 30 # number of columns
N = 2000 # total number of vectors
M = 500 # number of output vectors
F = 0.9 # fill factor of the target sum vector
T = int(M * F) # maximum value + 1 that can be appear in the target sum vector
A = 10000 # maximum number of approximately optimal swaps, may be None (∞)
B = 10 # maximum number of optimal swaps, may be None (unlimited)
target = tuple(randrange(T) for _ in range(C))
vects = [tuple(int(randrange(M) < t) for t in target) for _ in range(N)]
sample = get_sample(vects, target, M, A, B, True)
Typical output:
sqdist = 2639 after picking the first 500 vectors out of 2000
sqdist = 9 after 27 approximately optimal swaps
sqdist = 1 after 4 optimal swaps
P.S.: As it stands, this algorithm is not limited to binary input vectors, integer vectors would work too. Intuitively I suspect that the quality of the optimization could suffer, though. I suspect that this algorithm is more appropriate for binary vectors.
P.P.S.: Execution times with your kind of data are probably acceptable with standard CPython, but get better (like a couple of seconds, almost a factor of 10) with PyPy. To handle bigger sets of data, the algorithm would have to be translated to C or some other language, which should not be difficult at all.
I'm searching for an algorithm (no matter what programming language, maybe Pseudo-code?) where you get a random number with different probability's.
For example:
A random Generator, which simulates a dice where the chance for a '6'
is 50% and for the other 5 numbers it's 10%.
The algorithm should be scalable, because this is my exact problem:
I have a array (or database) of elements, from which i want to
select 1 random element. But each element should have a different
probability to be selected. So my idea is that every element get a
number. And this number divided by the sum of all numbers results the
chance for the number to be randomly selected.
Anybody know a good programming language (or library) for this problem?
The best solution would be a good SQL Query which delivers 1 random entry.
But i would also be happy with every hint or attempt in an other programming language.
A simple algorithm to achieve it is:
Create an auexillary array where sum[i] = p1 + p2 + ... + pi. This is done only once.
When you draw a number, draw a number r with uniform distribution over [0,sum[n]), and binary search for the first number higher than the uniformly distributed random number. It can be done using binary search efficiently.
It is easy to see that indeed the probability for r to lay in a certain range [sum[i-1],sum[i]), is indeed sum[i]-sum[i-1] = pi
(In the above, we regard sum[-1]=0, for completeness)
For your cube example:
You have:
p1=p2=....=p5 = 0.1
p6 = 0.5
First, calculate sum array:
sum[1] = 0.1
sum[2] = 0.2
sum[3] = 0.3
sum[4] = 0.4
sum[5] = 0.5
sum[6] = 1
Then, each time you need to draw a number: Draw a random number r in [0,1), and choose the number closest to it, for example:
r1 = 0.45 -> element = 4
r2 = 0.8 -> element = 6
r3 = 0.1 -> element = 2
r4 = 0.09 -> element = 1
An alternative answer. Your example was in percentages, so set up an array with 100 slots. A 6 is 50%, so put 6 in 50 of the slots. 1 to 5 are at 10% each, so put 1 in 10 slots, 2 in 10 slots etc. until you have filled all 100 slots in the array. Now pick one of the slots at random using a uniform distribution in [0, 99] or [1, 100] depending on the language you are using.
The contents of the selected array slot will give you the distribution you want.
ETA: On second thoughts, you don't actually need the array, just use cumulative probabilities to emulate the array:
r = rand(100) // In range 0 -> 99 inclusive.
if (r < 50) return 6; // Up to 50% returns a 6.
if (r < 60) return 1; // Between 50% and 60% returns a 1.
if (r < 70) return 2; // Between 60% and 70% returns a 2.
etc.
You already know what numbers are in what slots, so just use cumulative probabilities to pick a virtual slot: 50; 50 + 10; 50 + 10 + 10; ...
Be careful of edge cases and whether your RNG is 0 -> 99 or 1 -> 100.
Since this is about remapping a uniform distribution to another with a different range, this is not a PHP question specifically although I am using PHP.
I have a cryptographicaly secure random number generator that gives me evenly distributed integers (uniform discrete distribution) between 0 and PHP_INT_MAX.
How do I remap these results to fit into a different range in an efficient manner?
Currently I am using $mappedRandomNumber = $randomNumber % ($range + 1) + $min where $range = $max - $min, but that obvioulsy doesn't work since the first PHP_INT_MAX%$range integers from the range have a higher chance to be picked, breaking the uniformity of the distribution.
Well, having zero knowledge of PHP definitely qualifies me as an expert, so
mentally converting to float U[0,1)
f = r / PHP_MAX_INT
then doing
mapped = min + f*(max - min)
going back to integers
mapped = min + (r * max - r * min)/PHP_MAX_INT
if computation is done via 64bit math, and PHP_MAX_INT being 2^31 it should work
This is what I ended up doing. PRNG 101 (if it does not fit, ignore and generate again). Not very sophisticated, but simple:
public function rand($min = 0, $max = null){
// pow(2,$numBits-1) calculated as (pow(2,$numBits-2)-1) + pow(2,$numBits-2)
// to avoid overflow when $numBits is the number of bits of PHP_INT_MAX
$maxSafe = (int) floor(
((pow(2,8*$this->intByteCount-2)-1) + pow(2,8*$this->intByteCount-2))
/
($max - $min)
) * ($max - $min);
// discards anything above the last interval N * {0 .. max - min -1}
// that fits in {0 .. 2^(intBitCount-1)-1}
do {
$chars = $this->getRandomBytesString($this->intByteCount);
$n = 0;
for ($i=0;$i<$this->intByteCount;$i++) {$n|=(ord($chars[$i])<<(8*($this->intByteCount-$i-1)));}
} while (abs($n)>$maxSafe);
return (abs($n)%($max-$min+1))+$min;
}
Any improvements are welcomed.
(Full code on https://github.com/elcodedocle/cryptosecureprng/blob/master/CryptoSecurePRNG.php)
Here is the sketch how I would do it:
Consider you have uniform random integer distribution in range [A, B) that's what your random number generator provide.
Let L = B - A.
Let P be the highest power of 2 such that P <= L.
Let X be a sample from this range.
First calculate Y = X - A.
If Y >= P, discard it and start with new X until you get an Y that fits.
Now Y contains log2(P) uniformly random bits - zero extend it up to log2(P) bits.
Now we have uniform random bit generator that can be used to provide arbitrary number of random bits as needed.
To generate a number in the target range, let [A_t, B_t) be the target range. Let L_t = B_t - A_t.
Let P_t be the smallest power of 2 such that P_t >= L_t.
Read log2(P_t) random bits and make an integer from it, let's call it X_t.
If X_t >= L_t, discard it and try again until you get a number that fits.
Your random number in the desired range will be L_t + A_t.
Implementation considerations: if your L_t and L are powers of 2, you never have to discard anything. If not, then even in the worst case you should get the right number in less than 2 trials on average.
I want to implement an iterative algorithm, which calculates weighted average. The specific weight law does not matter, but it should be close to 1 for the newest values and close to 0 to the oldest.
The algorithm should be iterative. i.e. it should not remember all previous values. It should know only one newest value and any aggregative information about past, like previous values of the average, sums, counts etc.
Is it possible?
For example, the following algorithm can be:
void iterate(double value) {
sum *= 0.99;
sum += value;
count++;
avg = sum / count;
}
It will give exponential decreasing weight, which may be not good. Is it possible to have step decreasing weight or something?
EDIT 1
The the requirements for weighing law is follows:
1) The weight decreases into past
2) I has some mean or characteristic duration so that values older this duration matters much lesser than newer ones
3) I should be able to set this duration
EDIT 2
I need the following. Suppose v_i are values, where v_1 is the first. Also suppose w_i are weights. But w_0 is THE LAST.
So, after first value came I have first average
a_1 = v_1 * w_0
After the second value v_2 came, I should have average
a_2 = v_1 * w_1 + v_2 * w_0
With next value I should have
a_3 = v_1 * w_2 + v_2 * w_1 + v_3 * w_0
Note, that weight profile is moving with me, while I am moving along value sequence.
I.e. each value does not have it's own weight all the time. My goal is to have this weight lower while going to past.
First a bit of background. If we were keeping a normal average, it would go like this:
average(a) = 11
average(a,b) = (average(a)+b)/2
average(a,b,c) = (average(a,b)*2 + c)/3
average(a,b,c,d) = (average(a,b,c)*3 + d)/4
As you can see here, this is an "online" algorithm and we only need to keep track of pieces of data: 1) the total numbers in the average, and 2) the average itself. Then we can undivide the average by the total, add in the new number, and divide it by the new total.
Weighted averages are a bit different. It depends on what kind of weighted average. For example if you defined:
weightedAverage(a,wa, b,wb, c,wc, ..., z,wz) = a*wa + b*wb + c*wc + ... + w*wz
or
weightedAverage(elements, weights) = elements·weights
...then you don't need to do anything besides add the new element*weight! If however you defined the weighted average akin to an expected-value from probability:
weightedAverage(elements,weights) = elements·weights / sum(weights)
...then you'd need to keep track of the total weights. Instead of undividing by the total number of elements, you undivide by the total weight, add in the new element*weight, then divide by the new total weight.
Alternatively you don't need to undivide, as demonstrated below: you can merely keep track of the temporary dot product and weight total in a closure or an object, and divide it as you yield (this can help a lot with avoiding numerical inaccuracy from compounded rounding errors).
In python this would be:
def makeAverager():
dotProduct = 0
totalWeight = 0
def averager(newValue, weight):
nonlocal dotProduct,totalWeight
dotProduct += newValue*weight
totalWeight += weight
return dotProduct/totalWeight
return averager
Demo:
>>> averager = makeAverager()
>>> [averager(value,w) for value,w in [(100,0.2), (50,0.5), (100,0.1)]]
[100.0, 64.28571428571429, 68.75]
>>> averager(10,1.1)
34.73684210526316
>>> averager(10,1.1)
25.666666666666668
>>> averager(30,2.0)
27.4
> But my task is to have average recalculated each time new value arrives having old values reweighted. –OP
Your task is almost always impossible, even with exceptionally simple weighting schemes.
You are asking to, with O(1) memory, yield averages with a changing weighting scheme. For example, {values·weights1, (values+[newValue2])·weights2, (values+[newValue2,newValue3])·weights3, ...} as new values are being passed in, for some nearly arbitrarily changing weights sequence. This is impossible due to injectivity. Once you merge the numbers in together, you lose a massive amount of information. For example, even if you had the weight vector, you could not recover the original value vector, or vice versa. There are only two cases I can think of where you could get away with this:
Constant weights such as [2,2,2,...2]: this is equivalent to an on-line averaging algorithm, which you don't want because the old values are not being "reweighted".
The relative weights of previous answers do not change. For example you could do weights of [8,4,2,1], and add in a new element with arbitrary weight like ...+[1], but you must increase all the previous by the same multiplicative factor, like [16,8,4,2]+[1]. Thus at each step, you are adding a new arbitrary weight, and a new arbitrary rescaling of the past, so you have 2 degrees of freedom (only 1 if you need to keep your dot-product normalized). The weight-vectors you'd get would look like:
[w0]
[w0*(s1), w1]
[w0*(s1*s2), w1*(s2), w2]
[w0*(s1*s2*s3), w1*(s2*s3), w2*(s3), w3]
...
Thus any weighting scheme you can make look like that will work (unless you need to keep the thing normalized by the sum of weights, in which case you must then divide the new average by the new sum, which you can calculate by keeping only O(1) memory). Merely multiply the previous average by the new s (which will implicitly distribute over the dot-product into the weights), and tack on the new +w*newValue.
I think you are looking for something like this:
void iterate(double value) {
count++;
weight = max(0, 1 - (count / 1000));
avg = ( avg * total_weight * (count - 1) + weight * value) / (total_weight * (count - 1) + weight)
total_weight += weight;
}
Here I'm assuming you want the weights to sum to 1. As long as you can generate a relative weight without it changing in the future, you can end up with a solution which mimics this behavior.
That is, suppose you defined your weights as a sequence {s_0, s_1, s_2, ..., s_n, ...} and defined the input as sequence {i_0, i_1, i_2, ..., i_n}.
Consider the form: sum(s_0*i_0 + s_1*i_1 + s_2*i_2 + ... + s_n*i_n) / sum(s_0 + s_1 + s_2 + ... + s_n). Note that it is trivially possible to compute this incrementally with a couple of aggregation counters:
int counter = 0;
double numerator = 0;
double denominator = 0;
void addValue(double val)
{
double weight = calculateWeightFromCounter(counter);
numerator += weight * val;
denominator += weight;
}
double getAverage()
{
if (denominator == 0.0) return 0.0;
return numerator / denominator;
}
Of course, calculateWeightFromCounter() in this case shouldn't generate weights that sum to one -- the trick here is that we average by dividing by the sum of the weights so that in the end, the weights virtually seem to sum to one.
The real trick is how you do calculateWeightFromCounter(). You could simply return the counter itself, for example, however note that the last weighted number would not be near the sum of the counters necessarily, so you may not end up with the exact properties you want. (It's hard to say since, as mentioned, you've left a fairly open problem.)
This is too long to post in a comment, but it may be useful to know.
Suppose you have:
w_0*v_n + ... w_n*v_0 (we'll call this w[0..n]*v[n..0] for short)
Then the next step is:
w_0*v_n1 + ... w_n1*v_0 (and this is w[0..n1]*v[n1..0] for short)
This means we need a way to calculate w[1..n1]*v[n..0] from w[0..n]*v[n..0].
It's certainly possible that v[n..0] is 0, ..., 0, z, 0, ..., 0 where z is at some location x.
If we don't have any 'extra' storage, then f(z*w(x))=z*w(x + 1) where w(x) is the weight for location x.
Rearranging the equation, w(x + 1) = f(z*w(x))/z. Well, w(x + 1) better be constant for a constant x, so f(z*w(x))/z better be constant. Hence, f must let z propagate -- that is, f(z*w(x)) = z*f(w(x)).
But here again we have an issue. Note that if z (which could be any number) can propagate through f, then w(x) certainly can. So f(z*w(x)) = w(x)*f(z). Thus f(w(x)) = w(x)/f(z).
But for a constant x, w(x) is constant, and thus f(w(x)) better be constant, too. w(x) is constant, so f(z) better be constant so that w(x)/f(z) is constant. Thus f(w(x)) = w(x)/c where c is a constant.
So, f(x)=c*x where c is a constant when x is a weight value.
So w(x+1) = c*w(x).
That is, each weight is a multiple of the previous. Thus, the weights take the form w(x)=m*b^x.
Note that this assumes the only information f has is the last aggregated value. Note that at some point you will be reduced to this case unless you're willing to store a non-constant amount of data representing your input. You cannot represent an infinite length vector of real numbers with a real number, but you can approximate them somehow in a constant, finite amount of storage. But this would merely be an approximation.
Although I haven't rigorously proven it, it is my conclusion that what you want is impossible to do with a high degree of precision, but you may be able to use log(n) space (which may as well be O(1) for many practical applications) to generate a quality approximation. You may be able to use even less.
I tried to practically code something (in Java). As has been said, your goal is not achievable. You can only count average from some number of last remembered values. If you don't need to be exact, you can approximate the older values. I tried to do it by remembering last 5 values exactly and older values only SUMmed by 5 values, remembering the last 5 SUMs. Then, the complexity is O(2n) for remembering last n+n*n values. This is a very rough approximation.
You can modify the "lastValues" and "lasAggregatedSums" array sizes as you want. See this ascii-art picture trying to display a graph of last values, showing that the first columns (older data) are remembered as aggregated value (not individually), and only the earliest 5 values are remembered individually.
values:
#####
##### ##### #
##### ##### ##### # #
##### ##### ##### ##### ## ##
##### ##### ##### ##### ##### #####
time: --->
Challenge 1: My example doesn't count weights, but I think it shouldn't be problem for you to add weights for the "lastAggregatedSums" appropriately - the only problem is, that if you want lower weights for older values, it would be harder, because the array is rotating, so it is not straightforward to know which weight for which array member. Maybe you can modify the algorithm to always "shift" values in the array instead of rotating? Then adding weights shouldn't be a problem.
Challenge 2: The arrays are initialized with 0 values, and those values are counting to the average from the beginning, even when we haven't receive enough values. If you are running the algorithm for long time, you probably don't bother that it is learning for some time at the beginning. If you do, you can post a modification ;-)
public class AverageCounter {
private float[] lastValues = new float[5];
private float[] lastAggregatedSums = new float[5];
private int valIdx = 0;
private int aggValIdx = 0;
private float avg;
public void add(float value) {
lastValues[valIdx++] = value;
if(valIdx == lastValues.length) {
// count average of last values and save into the aggregated array.
float sum = 0;
for(float v: lastValues) {sum += v;}
lastAggregatedSums[aggValIdx++] = sum;
if(aggValIdx >= lastAggregatedSums.length) {
// rotate aggregated values index
aggValIdx = 0;
}
valIdx = 0;
}
float sum = 0;
for(float v: lastValues) {sum += v;}
for(float v: lastAggregatedSums) {sum += v;}
avg = sum / (lastValues.length + lastAggregatedSums.length * lastValues.length);
}
public float getAvg() {
return avg;
}
}
you can combine (weighted sum) exponential means with different effective window sizes (N) in order to get the desired weights.
Use more exponential means to define your weight profile more detailed.
(more exponential means also means to store and calculate more values, so here is the trade off)
A memoryless solution is to calculate the new average from a weighted combination of the previous average and the new value:
average = (1 - P) * average + P * value
where P is an empirical constant, 0 <= P <= 1
expanding gives:
average = sum i (weight[i] * value[i])
where value[0] is the newest value, and
weight[i] = P * (1 - P) ^ i
When P is low, historical values are given higher weighting.
The closer P gets to 1, the more quickly it converges to newer values.
When P = 1, it's a regular assignment and ignores previous values.
If you want to maximise the contribution of value[N], maximize
weight[N] = P * (1 - P) ^ N
where 0 <= P <= 1
I discovered weight[N] is maximized when
P = 1 / (N + 1)
I have a difficult mathematical question that is breaking my brain, my whiteboard, and all my pens. I am working with a file that expresses 2 values, a multiplicand and a percentage. Both of those values must be integers. These two values are multiplied together to produce a range. Range is a float value.
My users edit the range, and I have to calculate a new percentage and multiplicand value. Confused yet? Here's an example:
Multiplicand: 25000 Apples
Percentage: 400 (This works out to .4% or .004)
Range: 100.0 Apples (Calculated by Multiplicand * Percentage)
To complicate things, the allowable values for Percentage are 0-100000. (Meaning 0-100%) Multiplicand is a value between 1 and 32bit int max (presumably unsigned).
I need to allow for users to input a range, like so:
Range: .04 Apples
And calculate the appropriate Percentage and Multiplicand. Using the first example:
OriginalMultiplicand: 25000 Apples
OriginalPercentage: 400 (This works out to .4% or .004)
OriginalRange: 100.0 Apples (Calculated by Multiplicand * Percentage)
NewRange: .01 Apples
NewPercentage: 40
NewMultiplicand: 25 Apples
The example calculation is easy, all that was required was adjusting down the multiplicand and percentage down by the scale factor of the new and old range. The problem arises when the user changes the value to something like 1400.00555. Suddenly I don't have a clean way to adjust the two values.
I need an algorithmic approach to getting values for M & P that produce the closest possible value to the desired range. Any suggestions?
To maximize the numbers of decimal points stored, you should use a P of 1, or 0.1%. If that overflows M, then increment P.
So for your example of 1400.00555, P is 1 and M is 1400006
Your algorithm would search for the lowest P such that M does not overflow. And you can do a binary search here.
public int binarySearch(int P0, int P1) {
P = (P1 - P0)/2;
if(P == P0) {
if(R/(P0/100f) does not overflows 32-bit int) {
return P0;
} else {
return P1;
}
}
if(R/(P/100f) does not overflows 32-bit int) {
return binarySearch(P0, P);
} else {
return binarSearch(P, P1);
}
}
P = binarySearch(1, 100000);
M = round(R/(P/100f));
(I had a bad method here, but I erased it because it sucked.)
EDIT:
There's got to be a better way than that. Let's rephrase the problem:
What you have is an arbitrary floating-point number. You want to represent this floating-point number with two integers. The integers, when multiplied together and then divided by 100000.0, are equal to the floating-point number. The only other constraint is that one of the integers must be equal to or less than 100000.
It's clear that you can't actually represent floating-point numbers accurately. In fact, you can ONLY represent numbers that are expressible in 1/100000s accurately, even if you have an infinite number of digits of precision in "multiplicand". You can represent 333.33333 accurately, with 33333333 as one number and 1 as the other; you just can't get any more 3s.
Given this limitation, I think your best bet is the following:
Multiply your float by 100000 in an integer format, probably a long or some variant of BigNumber.
Factor it. Record all the factors. It doesn't matter if you store them as 2^3 or 2*2*2 or what.
Grab as many factors as you can without the multiplication of them all exceeding 100000. That becomes your percent. (Don't try to do this perfectly; finding the optimal solution is an NP-hard problem.)
Take the rest of the factors and multiply them together. That's your multiplicand.
As I understand from your example, you could represent the range in 100000 different multiplicand * percentage. any choice of multiplicand will give you a satisfying value of percentage, and vice versa. So you have this equation in two variables:
Multiplicand * Percentage = 100.0
You should figure out another equation(constraint), to get a specific value of Multiplicand OR Percentage to solve this equation. Otherwise, you could choose Percentage to be any number between 0-100000 and just substitute it in the first equation to get the value of Multiplicand. I hope I understood the question correctly :)
Edit: OK, then you should factorize the range easily. Get the range, then try to factorize it by dividing range by percentage(2-100000). Once the reminder of division is zero you got the factors. This is a quick pseudo-code:
get range;
percentage = 2;
while(range % percentage != 0)
{
percentage++;
}
multiplicand = range / percentage;
All what you have to do now is to calculate your limits:
max of percentage = 100000;
max of multiplicand = 4294967295;
Max of range = 4294967295 * 100000 = 429496729500000 (15-digit);
your Max range consists of 15 digit at a maximum. double data types in most programming languages can represent it. Do the calculation using doubles and just convert the Multiplicand & Percentage to int at the end.
It seems you want to choose M and P such that R = (M * P) / 100000.
So M * P = 100000 * R, where you have to round the right-hand side to an integer.
I'd multiply the range by 100000, and then choose M and P as factors of the result so that they don't overflow their allowed ranges.
say you have
1) M * P = A
then you have a second value for A, so also new values for M and P, lets call then M2, P2 and A2:
2) M2 * P2 = A2
This I dont know for sure, but that is what you seem to be saying imho: the ratio has to stay the same, then
3) M/P = M2/P2
Now we have 3 equations and 2 unknowns M2 and P2
One way to solve it:
3) becomes
M/P = M2/P2
=>M2 = (M/P)*P2
than substitute that in 2)
(M/P)*P2*P2 = A2
=> P2*P2 = A2 * (P/M)
=> P2 = sqrt(A2 * (P/M))
so first solve P2, then M2 if i didn't make any mistakes
There will have to be some rounding if M2 and P2 have to be integers.
EDIT: i forgot about the integer percentage, so say
P = percentage/100000 or P*100000 = percentage
P2 = percentage2/100000 or P2*100000 = percentage2
so just solve for P2 and M2, and multiply P2 with 100000