loaded die algorithm - algorithm

I want an algorithm to simulate this loaded die:
the probabilities are:
1: 1/18
2: 5/18
3: 1/18
4: 5/18
5: 1/18
6: 5/18
It favors even numbers.
My idea is to calculate in matlab the possibility of the above.
I can do it with 1/6 (normal die), but I am having difficulties applying it for a loaded die.

One way: generate two random numbers: first one is from 0 to 5 (0: odd, 1 - 5: even), which is used to determine even or odd. Then generate a second between 0 and 2, which determines exact number within its category. For example, if the first number is 3 (which says even) and second is 2 (which says the third chunk, 1-2 is a chunk, 3-4 is another chunk and 5-6 is the last chunk), the the result is 6.
Another way: generate a random number between 0 and 17, then you can simply / 6 and % 6 and use those two numbers to decide. For example, if /6 gives you 0, then the choice is between 1 and 2, then if % 6 == 0, the choice lands on 1, otherwise lands on 2.

In matlab:
ceil(rand*3)*2-(rand>(5/6))

The generic solution:
Use roulette wheel selection
n = generate number between 0 and sum( probabilities )
s = 0;
i = 0;
while s <= n do
i = i + 1;
s = s + probability of element i;
done
After the loop is done i will be the number of the chosen element. This works for any kind of skewed probability distribution, even when you have weights instead of a probability and want to skip normalizing.

In the concise language of J,
>:3(<([++:#])|)?18

Related

Minimum number of operations to make A and B equal simultaneously

Given two non-negative integers A and B, find the minimum number of operations to make them equal simultaneously. In one operation, you can:
either change A to 2*A
or change B to 2*B
or change both A and B to A-1, B-1
For example: A = 7, B = 25
Sequence of operations would be:
6 24
12 24
24 24
We cannot make them equal in less than 3 operations
I was asked this coding question in a test a week ago. Cannot think of a solution, it is stuck in my head.The input A and B were somewhat over 10^12 so it is clear that I cannot use a loop else it will exceed time limit.
A slow but working solution:
If they are equal, stop.
If one of them is 0, stop with failure (there is no solution if negative numbers are not allowed).
While both are larger than 1, decrease both.
Now the smaller is 1, the other is larger.
While the smaller has a shorter binary representation, double the smaller.
Continue at step 1.
In step 4, the maximum decreases. In step 5, the absolute difference decreases. Thus eventually the algorithm terminates.
This should give the optimal solution. We have to compare a few different ways and take the best solution.
One working solution is to double the smaller number as many times as it stays below the larger number (can be zero times). Then calculate the difference between the double of the (possibly multiple times) doubled smaller number and the larger number. And decrease the numbers as many times. Then double the smaller number one more time. [If the numbers are equal from the beginning, the solution is trivial instead.] This gives an upper bound of the steps.
Now try out the following optimizations:
2a) Choose a number n between 0 and up to the number of steps of the best solution so far.
2b) Choose one number as A and one number as B (two possibilities).
2c) Now count the applied steps of the following procedure.
Double A n times.
Calculate the smallest power of 2 (=m), with which B * 2^m >= A. m should be at least 1.
Calculate the difference of A with the product from step 4 in a mixed base (correct term?) system with each digit having a positional value of 2^(n+1)-1, which is from the least significant right digit to the left: 1, 3, 7, 15, 31, 63, ... From all possible representations the number must have the smallest crosssum, e.g. 100 for 7 is correct, 021 not. Sidenote: For the least checksum there will mostly be digits 0 and 1 and at most one digit 2, no other digits. There will never be a digit 1 right of a 2.)
Represent the number as m digits by filling the left positions with zero. If the number does not fit, go back to step 2 for another selection.
Take the most significant not processed digit from step 6 and do as many decreasing steps.
Double B.
Repeat from 7. with the next digit; if there are no more digits left, the numbers are equal.
If the number of steps is less than the best solution so far, choose this as the proposed solution.
Go back to step 2 for another selection.
After doing all selections from 2 we should have the optimal solution with the minimum number of steps.
The following examples are from an earlier version of the answer, where A is always the larger number and n=0, so we test only one selection.
Example 17 and 65
Power of 2: 2^2=4; 4x17=68
Difference: 68-65=3
3 = 010=10 in base 7/3/1
Start => 17/65
Decrease. Double. => 32/64
Double. => 64/64
Example 18 and 67
Power of 2: 2^2=4; 4x18=72
Difference: 72-67=5
5 = 012=12 in base 7/3/1
Start => 18/67
Decrease. Double. => 34/66
Decrease. Decrease. Double. => 64/64
Example 10 and 137
Power of 2: 2^4=16; 16*10=160
Difference: 160-137=23
23 = 1101 in base 15/7/3/1
Start => 10/137
Decrease. Double. => 18/136
Decrease. Double. => 34/135
Double. => 68/135
Decrease. Double. => 134/134
Here's a breadth-first search that does return the correct answer but may not be an optimal method of finding it. Maybe it can help others detect a pattern.
JavasScript code:
function f(a, b) {
const q = [[a, b, [a, b]]];
while (true){
const [x, y, path] = q.shift();
if (x == y) {
return path;
}
if (x > 0 && y > 0) {
q.push([x-1, y-1, path.concat([x-1, y-1])]);
}
q.push([2*x, y, path.concat([2*x, y])]);
q.push([x, 2*y, path.concat([x, 2*y])]);
}
return [];
}
function showPath(path) {
let out1 = "";
let out2 = "";
for (let i = 0; i < path.length; i += 2) {
const s1 = path[i].toString(2);
const s2 = path[i+1].toString(2);
const len = Math.max(s1.length, s2.length);
out1 += s1.padStart(len, "0");
out2 += s2.padStart(len, "0");
if (i < path.length - 2) {
out1 += " --> ";
out2 += " --> ";
}
}
console.log(out1);
console.log(out2);
}
showPath(f(89, 7));

Split array into four boxes such that sum of XOR's of the boxes is maximum

Given an array of integers which are needed to be split into four
boxes such that sum of XOR's of the boxes is maximum.
I/P -- [1,2,1,2,1,2]
O/P -- 9
Explanation: Box1--[1,2]
Box2--[1,2]
Box3--[1,2]
Box4--[]
I've tried using recursion but failed for larger test cases as the
Time Complexity is exponential. I'm expecting a solution using dynamic
programming.
def max_Xor(b1,b2,b3,b4,A,index,size):
if index == size:
return b1+b2+b3+b4
m=max(max_Xor(b1^A[index],b2,b3,b4,A,index+1,size),
max_Xor(b1,b2^A[index],b3,b4,A,index+1,size),
max_Xor(b1,b2,b3^A[index],b4,A,index+1,size),
max_Xor(b1,b2,b3,b4^A[index],A,index+1,size))
return m
def main():
print(max_Xor(0,0,0,0,A,0,len(A)))
Thanks in Advance!!
There are several things to speed up your algorithm:
Build in some start-up logic: it doesn't make sense to put anything into box 3 until boxes 1 & 2 are differentiated. In fact, you should generally have an order of precedence to keep you from repeating configurations in a different order.
Memoize your logic; this avoids repeating computations.
For large cases, take advantage of what value algebra exists.
This last item may turn out to be the biggest saving. For instance, if your longest numbers include several 5-bit and 4-bit numbers, it makes no sense to consider shorter numbers until you've placed those decently in the boxes, gaining maximum advantage for the leading bits. With only four boxes, you cannot have a num from 3-bit numbers that dominates a single misplaced 5-bit number.
Your goal is to place an odd number of 5-bit numbers into 3 or all 4 boxes; against this, check only whether this "pessimizes" bit 4 of the remaining numbers. For instance, given six 5-digit numbers (range 16-31) and a handful of small ones (0-7), your first consideration is to handle only combinations that partition the 5-digit numbers by (3, 1, 1, 1), as this leaves that valuable 5-bit turned on in each set.
With a more even mixture of values in your input, you'll also need to consider how to distribute the 4-bits for a similar "keep it odd" heuristic. Note that, as you work from largest to smallest, you need worry only about keeping it odd, and watching the following bit.
These techniques should let you prune your recursion enough to finish in time.
We can use Dynamic programming here to break the problem into smaller sets then store their result in a table. Then use already stored result to calculate answer for bigger set.
For example:
Input -- [1,2,1,2,1,2]
We need to divide the array consecutively into 4 boxed such that sum of XOR of all boxes is maximised.
Lets take your test case, break the problem into smaller sets and start solving for smaller set.
box = 1, num = [1,2,1,2,1,2]
ans = 1 3 2 0 1 3
Since we only have one box so all numbers will go into this box. We will store this answer into a table. Lets call the matrix as DP.
DP[1] = [1 3 2 0 1 3]
DP[i][j] stores answer for distributing 0-j numbers to i boxes.
now lets take the case where we have two boxes and we will take numbers one by one.
num = [1] since we only have one number it will go into the first box.
DP[1][0] = 1
Lets add another number.
num = [1 2]
now there can be two ways to put this new number into the box.
case 1: 2 will go to the First box. Since we already have answer
for both numbers in one box. we will just use that.
answer = DP[0][1] + 0 (Second box is empty)
case 2: 2 will go to second box.
answer = DP[0][0] + 2 (only 2 is present in the second box)
Maximum of the two cases will be stored in DP[1][1].
DP[1][1] = max(3+0, 1+2) = 3.
Now for num = [1 2 1].
Again for new number we have three cases.
box1 = [1 2 1], box2 = [], DP[0][2] + 0
box1 = [1 2], box2 = [1], DP[0][1] + 1
box1 = [1 ], box2 = [2 1], DP[0][0] + 2^1
Maximum of these three will be answer for DP[1][2].
Similarly we can find answer of num = [1 2 1 2 1 2] box = 4
1 3 2 0 1 3
1 3 4 6 5 3
1 3 4 6 7 9
1 3 4 6 7 9
Also note that a xor b xor a = b. you can use this property to get xor of a segment of an array in constant time as suggested in comments.
This way you can break the problem in smaller subset and use smaller set answer to compute for the bigger ones. Hope this helps. After understanding the concept you can go ahead and implement it with better time than exponential.
I would go bit by bit from the highest bit to the lowest bit. For every bit, try all combinations that distribute the still unused numbers that have that bit set so that an odd number of them is in each box, nothing else matters. Pick the best path overall. One issue that complicates this greedy method is that two boxes with a lower bit set can equal one box with the next higher bit set.
Alternatively, memoize the boxes state in your recursion as an ordered tuple.

How to implement Random(a,b) with only Random(0,1)? [duplicate]

This question already has answers here:
Closed 11 years ago.
Possible Duplicate:
how to get uniformed random between a, b by a known uniformed random function RANDOM(0,1)
In the book of Introduction to algorithms, there is an excise:
Describe an implementation of the procedure Random(a, b) that only makes calls to Random(0,1). What is the expected running time of your procedure, as a function of a and b? The probability of the result of Random(a,b) should be pure uniformly distributed, as Random(0,1)
For the Random function, the results are integers between a and b, inclusively. For e.g., Random(0,1) generates either 0 or 1; Random(a, b) generates a, a+1, a+2, ..., b
My solution is like this:
for i = 1 to b-a
r = a + Random(0,1)
return r
the running time is T=b-a
Is this correct? Are the results of my solutions uniformly distributed?
Thanks
What if my new solution is like this:
r = a
for i = 1 to b - a //including b-a
r += Random(0,1)
return r
If it is not correct, why r += Random(0,1) makes r not uniformly distributed?
Others have explained why your solution doesn't work. Here's the correct solution:
1) Find the smallest number, p, such that 2^p > b-a.
2) Perform the following algorithm:
r=0
for i = 1 to p
r = 2*r + Random(0,1)
3) If r is greater than b-a, go to step 2.
4) Your result is r+a
So let's try Random(1,3).
So b-a is 2.
2^1 = 2, so p will have to be 2 so that 2^p is greater than 2.
So we'll loop two times. Let's try all possible outputs:
00 -> r=0, 0 is not > 2, so we output 0+1 or 1.
01 -> r=1, 1 is not > 2, so we output 1+1 or 2.
10 -> r=2, 2 is not > 2, so we output 2+1 or 3.
11 -> r=3, 3 is > 2, so we repeat.
So 1/4 of the time, we output 1. 1/4 of the time we output 2. 1/4 of the time we output 3. And 1/4 of the time we have to repeat the algorithm a second time. Looks good.
Note that if you have to do this a lot, two optimizations are handy:
1) If you use the same range a lot, have a class that computes p once so you don't have to compute it each time.
2) Many CPUs have fast ways to perform step 1 that aren't exposed in high-level languages. For example, x86 CPUs have the BSR instruction.
No, it's not correct, that method will concentrate around (a+b)/2. It's a binomial distribution.
Are you sure that Random(0,1) produces integers? it would make more sense if it produced floating point values between 0 and 1. Then the solution would be an affine transformation, running time independent of a and b.
An idea I just had, in case it's about integer values: use bisection. At each step, you have a range low-high. If Random(0,1) returns 0, the next range is low-(low+high)/2, else (low+high)/2-high.
Details and complexity left to you, since it's homework.
That should create (approximately) a uniform distribution.
Edit: approximately is the important word there. Uniform if b-a+1 is a power of 2, not too far off if it's close, but not good enough generally. Ah, well it was a spontaneous idea, can't get them all right.
No, your solution isn't correct. This sum'll have binomial distribution.
However, you can generate a pure random sequence of 0, 1 and treat it as a binary number.
repeat
result = a
steps = ceiling(log(b - a))
for i = 0 to steps
result += (2 ^ i) * Random(0, 1)
until result <= b
KennyTM: my bad.
I read the other answers. For fun, here is another way to find the random number:
Allocate an array with b-a elements.
Set all the values to 1.
Iterate through the array. For each nonzero element, flip the coin, as it were. If it is came up 0, set the element to 0.
Whenever, after a complete iteration, you only have 1 element remaining, you have your random number: a+i where i is the index of the nonzero element (assuming we start indexing on 0). All numbers are then equally likely. (You would have to deal with the case where it's a tie, but I leave that as an exercise for you.)
This would have O(infinity) ... :)
On average, though, half the numbers would be eliminated, so it would have an average case running time of log_2 (b-a).
First of all I assume you are actually accumulating the result, not adding 0 or 1 to a on each step.
Using some probabilites you can prove that your solution is not uniformly distibuted. The chance that the resulting value r is (a+b)/2 is greatest. For instance if a is 0 and b is 7, the chance that you get a value 4 is (combination 4 of 7) divided by 2 raised to the power 7. The reason for that is that no matter which 4 out of the 7 values are 1 the result will still be 4.
The running time you estimate is correct.
Your solution's pseudocode should look like:
r=a
for i = 0 to b-a
r+=Random(0,1)
return r
As for uniform distribution, assuming that the random implementation this random number generator is based on is perfectly uniform the odds of getting 0 or 1 are 50%. Therefore getting the number you want is the result of that choice made over and over again.
So for a=1, b=5, there are 5 choices made.
The odds of getting 1 involves 5 decisions, all 0, the odds of that are 0.5^5 = 3.125%
The odds of getting 5 involves 5 decisions, all 1, the odds of that are 0.5^5 = 3.125%
As you can see from this, the distribution is not uniform -- the odds of any number should be 20%.
In the algorithm you created, it is really not equally distributed.
The result "r" will always be either "a" or "a+1". It will never go beyond that.
It should look something like this:
r=0;
for i=0 to b-a
r = a + r + Random(0,1)
return r;
By including "r" into your computation, you are including the "randomness" of all the previous "for" loop runs.

Algorithm to count the number of valid blocks in a permutation [duplicate]

This question already has answers here:
Closed 12 years ago.
Possible Duplicate:
Finding sorted sub-sequences in a permutation
Given an array A which holds a permutation of 1,2,...,n. A sub-block A[i..j]
of an array A is called a valid block if all the numbers appearing in A[i..j]
are consecutive numbers (may not be in order).
Given an array A= [ 7 3 4 1 2 6 5 8] the valid blocks are [3 4], [1,2], [6,5],
[3 4 1 2], [3 4 1 2 6 5], [7 3 4 1 2 6 5], [7 3 4 1 2 6 5 8]
So the count for above permutation is 7.
Give an O( n log n) algorithm to count the number of valid blocks.
Ok, I am down to 1 rep because I put 200 bounty on a related question: Finding sorted sub-sequences in a permutation
so I cannot leave comments for a while.
I have an idea:
1) Locate all permutation groups. They are: (78), (34), (12), (65). Unlike in group theory, their order and position, and whether they are adjacent matters. So, a group (78) can be represented as a structure (7, 8, false), while (34) would be (3,4,true). I am using Python's notation for tuples, but it is actually might be better to use a whole class for the group. Here true or false means contiguous or not. Two groups are "adjacent" if (max(gp1) == min(gp2) + 1 or max(gp2) == min(gp1) + 1) and contigous(gp1) and contiguos(gp2). This is not the only condition, for union(gp1, gp2) to be contiguous, because (14) and (23) combine into (14) nicely. This is a great question for algo class homework, but a terrible one for interview. I suspect this is homework.
Just some thoughts:
At first sight, this sounds impossible: a fully sorted array would have O(n2) valid sub-blocks.
So, you would need to count more than one valid sub-block at a time. Checking the validity of a sub-block is O(n). Checking whether a sub-block is fully sorted is O(n) as well. A fully sorted sub-block contains n·(n - 1)/2 valid sub-blocks, which you can count without further breaking this sub-block up.
Now, the entire array is obviously always valid. For a divide-and-conquer approach, you would need to break this up. There are two conceivable breaking points: the location of the highest element, and that of the lowest element. If you break the array into two at one of these points, including the extremum in the part that contains the second-to-extreme element, there cannot be a valid sub-block crossing this break-point.
By always choosing the extremum that produces a more even split, this should work quite well (average O(n log n)) for "random" arrays. However, I can see problems when your input is something like (1 5 2 6 3 7 4 8), which seems to produce O(n2) behaviour. (1 4 7 2 5 8 3 6 9) would be similar (I hope you see the pattern). I currently see no trick to catch this kind of worse case, but it seems that it requires other splitting techniques.
This question does involve a bit of a "math trick" but it's fairly straight forward once you get it. However, the rest of my solution won't fit the O(n log n) criteria.
The math portion:
For any two consecutive numbers their sum is 2k+1 where k is the smallest element. For three it is 3k+3, 4 : 4k+6 and for N such numbers it is Nk + sum(1,N-1). Hence, you need two steps which can be done simultaneously:
Create the sum of all the sub-arrays.
Determine the smallest element of a sub-array.
The dynamic programming portion
Build two tables using the results of the previous row's entries to build each successive row's entries. Unfortunately, I'm totally wrong as this would still necessitate n^2 sub-array checks. Ugh!
My proposition
STEP = 2 // amount of examed number
B [0,0,0,0,0,0,0,0]
B [1,1,0,0,0,0,0,0]
VALID(A,B) - if not valid move one
B [0,1,1,0,0,0,0,0]
VALID(A,B) - if valid move one and step
B [0,0,0,1,1,0,0,0]
VALID (A,B)
B [0,0,0,0,0,1,1,0]
STEP = 3
B [1,1,1,0,0,0,0,0] not ok
B [0,1,1,1,0,0,0,0] ok
B [0,0,0,0,1,1,1,0] not ok
STEP = 4
B [1,1,1,1,0,0,0,0] not ok
B [0,1,1,1,1,0,0,0] ok
.....
CON <- 0
STEP <- 2
i <- 0
j <- 0
WHILE(STEP <= LEN(A)) DO
j <- STEP
WHILE(STEP <= LEN(A) - j) DO
IF(VALID(A,i,j)) DO
CON <- CON + 1
i <- j + 1
j <- j + STEP
ELSE
i <- i + 1
j <- j + 1
END
END
STEP <- STEP + 1
END
The valid method check that all elements are consecutive
Never tested but, might be ok
The original array doesn't contain duplicates so must itself be a consecutive block. Lets call this block (1 ~ n). We can test to see whether block (2 ~ n) is consecutive by checking if the first element is 1 or n which is O(1). Likewise we can test block (1 ~ n-1) by checking whether the last element is 1 or n.
I can't quite mould this into a solution that works but maybe it will help someone along...
Like everybody else, I'm just throwing this out ... it works for the single example below, but YMMV!
The idea is to count the number of illegal sub-blocks, and subtract this from the total possible number. We count the illegal ones by examining each array element in turn and ruling out sub-blocks that include the element but not its predecessor or successor.
Foreach i in [1,N], compute B[A[i]] = i.
Let Count = the total number of sub-blocks with length>1, which is N-choose-2 (one for each possible combination of starting and ending index).
Foreach i, consider A[i]. Ignoring edge cases, let x=A[i]-1, and let y=A[i]+1. A[i] cannot participate in any sub-block that does not include x or y. Let iX=B[x] and iY=B[y]. There are several cases to be treated independently here. The general case is that iX<i<iY<i. In this case, we can eliminate the sub-block A[iX+1 .. iY-1] and all intervening blocks containing i. There are (i - iX + 1) * (iY - i + 1) such sub-blocks, so call this number Eliminated. (Other cases left as an exercise for the reader, as are those edge cases.) Set Count = Count - Eliminated.
Return Count.
The total cost appears to be N * (cost of step 2) = O(N).
WRINKLE: In step 2, we must be careful not to eliminate each sub-interval more than once. We can accomplish this by only eliminating sub-intervals that lie fully or partly to the right of position i.
Example:
A = [1, 3, 2, 4]
B = [1, 3, 2, 4]
Initial count = (4*3)/2 = 6
i=1: A[i]=1, so need sub-blocks with 2 in them. We can eliminate [1,3] from consideration. Eliminated = 1, Count -> 5.
i=2: A[i]=3, so need sub-blocks with 2 or 4 in them. This rules out [1,3] but we already accounted for it when looking right from i=1. Eliminated = 0.
i=3: A[i] = 2, so need sub-blocks with [1] or [3] in them. We can eliminate [2,4] from consideration. Eliminated = 1, Count -> 4.
i=4: A[i] = 4, so we need sub-blocks with [3] in them. This rules out [2,4] but we already accounted for it when looking right from i=3. Eliminated = 0.
Final Count = 4, corresponding to the sub-blocks [1,3,2,4], [1,3,2], [3,2,4] and [3,2].
(This is an attempt to do this N.log(N) worst case. Unfortunately it's wrong -- it sometimes undercounts. It incorrectly assumes you can find all the blocks by looking at only adjacent pairs of smaller valid blocks. In fact you have to look at triplets, quadruples, etc, to get all the larger blocks.)
You do it with a struct that represents a subblock and a queue for subblocks.
struct
c_subblock
{
int index ; /* index into original array, head of subblock */
int width ; /* width of subblock > 0 */
int lo_value;
c_subblock * p_above ; /* null or subblock above with same index */
};
Alloc an array of subblocks the same size as the original array, and init each subblock to have exactly one item in it. Add them to the queue as you go. If you start with array [ 7 3 4 1 2 6 5 8 ] you will end up with a queue like this:
queue: ( [7,7] [3,3] [4,4] [1,1] [2,2] [6,6] [5,5] [8,8] )
The { index, width, lo_value, p_above } values for subbblock [7,7] will be { 0, 1, 7, null }.
Now it's easy. Forgive the c-ish pseudo-code.
loop {
c_subblock * const p_left = Pop subblock from queue.
int const right_index = p_left.index + p_left.width;
if ( right_index < length original array ) {
// Find adjacent subblock on the right.
// To do this you'll need the original array of length-1 subblocks.
c_subblock const * p_right = array_basic_subblocks[ right_index ];
do {
Check the left/right subblocks to see if the two merged are also a subblock.
If they are add a new merged subblock to the end of the queue.
p_right = p_right.p_above;
}
while ( p_right );
}
}
This will find them all I think. It's usually O(N log(N)), but it'll be O(N^2) for a fully sorted or anti-sorted list. I think there's an answer to this though -- when you build the original array of subblocks you look for sorted and anti-sorted sequences and add them as the base-level subblocks. If you are keeping a count increment it by (width * (width + 1))/2 for the base-level. That'll give you the count INCLUDING all the 1-length subblocks.
After that just use the loop above, popping and pushing the queue. If you're counting you'll have to have a multiplier on both the left and right subblocks and multiply these together to calculate the increment. The multiplier is the width of the leftmost (for p_left) or rightmost (for p_right) base-level subblock.
Hope this is clear and not too buggy. I'm just banging it out, so it may even be wrong.
[Later note. This doesn't work after all. See note below.]

Random number generator that fills an interval

How would you implement a random number generator that, given an interval, (randomly) generates all numbers in that interval, without any repetition?
It should consume as little time and memory as possible.
Example in a just-invented C#-ruby-ish pseudocode:
interval = new Interval(0,9)
rg = new RandomGenerator(interval);
count = interval.Count // equals 10
count.times.do{
print rg.GetNext() + " "
}
This should output something like :
1 4 3 2 7 5 0 9 8 6
Fill an array with the interval, and then shuffle it.
The standard way to shuffle an array of N elements is to pick a random number between 0 and N-1 (say R), and swap item[R] with item[N]. Then subtract one from N, and repeat until you reach N =1.
This has come up before. Try using a linear feedback shift register.
One suggestion, but it's memory intensive:
The generator builds a list of all numbers in the interval, then shuffles it.
A very efficient way to shuffle an array of numbers where each index is unique comes from image processing and is used when applying techniques like pixel-dissolve.
Basically you start with an ordered 2D array and then shift columns and rows. Those permutations are by the way easy to implement, you can even have one exact method that will yield the resulting value at x,y after n permutations.
The basic technique, described on a 3x3 grid:
1) Start with an ordered list, each number may exist only once
0 1 2
3 4 5
6 7 8
2) Pick a row/column you want to shuffle, advance it one step. In this case, i am shifting the second row one to the right.
0 1 2
5 3 4
6 7 8
3) Pick a row/column you want to shuffle... I suffle the second column one down.
0 7 2
5 1 4
6 3 8
4) Pick ... For instance, first row, one to the left.
2 0 7
5 1 4
6 3 8
You can repeat those steps as often as you want. You can always do this kind of transformation also on a 1D array. So your result would be now [2, 0, 7, 5, 1, 4, 6, 3, 8].
An occasionally useful alternative to the shuffle approach is to use a subscriptable set container. At each step, choose a random number 0 <= n < count. Extract the nth item from the set.
The main problem is that typical containers can't handle this efficiently. I have used it with bit-vectors, but it only works well if the largest possible member is reasonably small, due to the linear scanning of the bitvector needed to find the nth set bit.
99% of the time, the best approach is to shuffle as others have suggested.
EDIT
I missed the fact that a simple array is a good "set" data structure - don't ask me why, I've used it before. The "trick" is that you don't care whether the items in the array are sorted or not. At each step, you choose one randomly and extract it. To fill the empty slot (without having to shift an average half of your items one step down) you just move the current end item into the empty slot in constant time, then reduce the size of the array by one.
For example...
class remaining_items_queue
{
private:
std::vector<int> m_Items;
public:
...
bool Extract (int &p_Item); // return false if items already exhausted
};
bool remaining_items_queue::Extract (int &p_Item)
{
if (m_Items.size () == 0) return false;
int l_Random = Random_Num (m_Items.size ());
// Random_Num written to give 0 <= result < parameter
p_Item = m_Items [l_Random];
m_Items [l_Random] = m_Items.back ();
m_Items.pop_back ();
}
The trick is to get a random number generator that gives (with a reasonably even distribution) numbers in the range 0 to n-1 where n is potentially different each time. Most standard random generators give a fixed range. Although the following DOESN'T give an even distribution, it is often good enough...
int Random_Num (int p)
{
return (std::rand () % p);
}
std::rand returns random values in the range 0 <= x < RAND_MAX, where RAND_MAX is implementation defined.
Take all numbers in the interval, put them to list/array
Shuffle the list/array
Loop over the list/array
One way is to generate an ordered list (0-9) in your example.
Then use the random function to select an item from the list. Remove the item from the original list and add it to the tail of new one.
The process is finished when the original list is empty.
Output the new list.
You can use a linear congruential generator with parameters chosen randomly but so that it generates the full period. You need to be careful, because the quality of the random numbers may be bad, depending on the parameters.

Resources