Linq Parsing Error when trying to create seperation of concerns - linq

I am in the middle of a refactoring cycle where I converted some extension methods that used to look like this:
public static IQueryable<Family> FilterOnRoute(this IQueryable<Family> families, WicRoute route)
{
return families.Where(fam => fam.PODs
.Any(pod => pod.Route.RouteID == route.RouteID));
}
to a more fluent implementation like this:
public class SimplifiedFamilyLinqBuilder
{
private IQueryable<Family> _families;
public SimplifiedFamilyLinqBuilder Load(IQueryable<Family> families)
{
_families = families;
return this;
}
public SimplifiedFamilyLinqBuilder OnRoute(WicRoute route)
{
_families = _families.Where(fam => fam.PODs
.Any(pod => pod.Route.RouteID == route.RouteID));
return this;
}
public IQueryable<Family> AsQueryable()
{
return _families;
}
}
which I can call like this: (note this is using Linq-to-Nhibernate)
var families =
new SimplifiedFamilyLinqBuilder()
.Load(session.Query<Family>())
.OnRoute(new WicRoute() {RouteID = 1})
.AsQueryable()
.ToList();
this produces the following SQL which is fine with me at the moment: (of note is that the above Linq is being translated to a SQL Query)
select ... from "Family" family0_
where exists (select pods1_.PODID from "POD" pods1_
inner join Route wicroute2_ on pods1_.RouteID=wicroute2_.RouteID
where family0_.FamilyID=pods1_.FamilyID
and wicroute2_.RouteID=#p0);
#p0 = 1
my next effort in refactoring is to move the query part that deals with the child to another class like this:
public class SimplifiedPODLinqBuilder
{
private IQueryable<POD> _pods;
public SimplifiedPODLinqBuilder Load(IQueryable<POD> pods)
{
_pods = pods;
return this;
}
public SimplifiedPODLinqBuilder OnRoute(WicRoute route)
{
_pods = _pods.Where(pod => pod.Route.RouteID == route.RouteID);
return this;
}
public IQueryable<POD> AsQueryable()
{
return _pods;
}
}
with SimplifiedFamilyLinqBuilder changing to this:
public SimplifiedFamilyLinqBuilder OnRoute(WicRoute route)
{
_families = _families.Where(fam =>
_podLinqBuilder.Load(fam.PODs.AsQueryable())
.OnRoute(route)
.AsQueryable()
.Any()
);
return this;
}
only I now get this error:
Remotion.Linq.Parsing.ParserException : Cannot parse expression 'value(Wic.DataTests.LinqBuilders.SimplifiedPODLinqBuilder)' as it has an unsupported type. Only query sources (that is, expressions that implement IEnumerable) and query operators can be parsed.
I started to implement IQueryable on SimplifiedPODLinqBuilder(as that seemed more logical than implementing IEnumberable) and thought I would be clever by doing this:
public class SimplifiedPODLinqBuilder : IQueryable
{
private IQueryable<POD> _pods;
...
public IEnumerator GetEnumerator()
{
return _pods.GetEnumerator();
}
public Expression Expression
{
get { return _pods.Expression; }
}
public Type ElementType
{
get { return _pods.ElementType; }
}
public IQueryProvider Provider
{
get { return _pods.Provider; }
}
}
only to get this exception (apparently Load is not being called and _pods is null):
System.NullReferenceException : Object reference not set to an instance of an object.
is there a way for me to refactor this code out that will parse properly into an expression that will go to SQL?

The part fam => _podLinqBuilder.Load(fam.PODs.AsQueryable() is never going to work, because the linq provider will try to parse this into SQL and for that it needs mapped members of Family after the =>, or maybe a mapped user-defined function but I don't know if Linq-to-Nhibernate supports that (I never really worked with it, because I still doubt if it is production-ready).
So, what can you do?
To be honest, I like the extension methods much better. You switched to a stateful approach, which doesn't mix well with the stateless paradigm of linq. So you may consider to retrace your steps.
Another option: the expression in .Any(pod => pod.Route.RouteID == route.RouteID)); could be paremeterized (.Any(podExpression), with
OnRoute(WicRoute route, Expression<Func<POD,bool>> podExpression)
(pseudocode).
Hope this makes any sense.

You need to separate methods you intend to call from expressions you intend to translate.
This is great, you want each of those methods to run. They return an instance that implements IQueryable<Family> and operate on that instance.
var families = new SimplifiedFamilyLinqBuilder()
.Load(session.Query<Family>())
.OnRoute(new WicRoute() {RouteID = 1})
.AsQueryable()
.ToList();
This is no good. you don't want Queryable.Where to get called, you want it to be an expression tree which can be translated to SQL. But PodLinqBuilder.Load is a node in that expression tree which can't be translated to SQL!
families = _families
.Where(fam => _podLinqBuilder.Load(fam.PODs.AsQueryable())
.OnRoute(route)
.AsQueryable()
.Any();
You can't call .Load inside the Where expression (it won't translate to sql).
You can't call .Load outside the Where expression (you don't have the fam parameter).
In the name of "separation of concerns", you are mixing query construction methods with query definition expressions. LINQ, by its Integrated nature, encourages you to attempt this thing which will not work.
Consider making expression construction methods instead of query construction methods.
public static Expression<Func<Pod, bool>> GetOnRouteExpr(WicRoute route)
{
int routeId = route.RouteID;
Expression<Func<Pod, bool>> result = pod => pod.Route.RouteID == route.RouteID;
return result;
}
called by:
Expression<Func<Pod, bool>> onRoute = GetOnRouteExpr(route);
families = _families.Where(fam => fam.PODs.Any(onRoute));
With this approach, the question is now - how do I fluidly hang my ornaments from the expression tree?

Related

Writing dynamic LINQ queries as closure methods

I'm trying to write a C# repository with atomic contexts and feel like this is a perfect situation for the usage of a closure, but I can't quite grok how to get it done in C#. I have this as a main method in my repository:
...
protected virtual IQueryable<T> AsQueryable()
{
return _context.ObjectSet<T>().AsQueryable();
}
...
Meanwhile, I have derived classes with methods like:
...
public IQueryable<Arc> ByRun(Run run)
{
IQueryable<Arc> query = from o in AsQueryable()
from r in o.Runs
where r.Id == run.Id
select o;
return query;
}
...
and I want to change my query method to return IEnumerable and to dispose quickly of the context, so want to use (something like) this:
...
protected virtual IEnumerable<T> AsEnumerable()
{
using (IContextUnitOfWork unitOfWork = new EFUnitOfWork())
{
return unitOfWork.ObjectSet<T>().ToList();
}
}
...
The problem, of course, is that once the context is disposed, calling LINQ on the resulting IEnumerable set will fail. Thus, my thought is that I should bundle up the ByRun() method and pass it to AsEnumerable() to be used as a closure.
While not my original language style, I learned closures in Ruby. There, what I'm trying to do would look something like this mixed up pseudo-code:
ByRun(Run run)
AsEnumerable do |query|
from o in query
from r in o.Runs
where r.Id == run.Id
select o;
end
end
where the AsEnumerable method would open the context, perform the operation that was passed in, and return. I'm sure I can do this once I understand the syntax, so I'm looking for my desired AsEnumerable and ByRun methods implemented this way.
If I understand the question correctly, you want to have a wrapper on any query to ensure that AsEnumerable is called at the end and context is disposed just after the query?
If so (assuming that your base class is generic with T parameter), try this:
protected virtual IEnumerable<T> AsEnumerable(Func<ObjectSet<T>, IQueryable<T>> query)
{
using (IContextUnitOfWork unitOfWork = new EFUnitOfWork())
{
return query(unitOfWork.ObjectSet<T>()).AsEnumerable();
}
}
And usage example:
public IEnumerable<Arc> ByRun(Run run)
{
return AsEnumerable(query => from o in query
from r in o.Runs
where r.Id == run.Id
select o);
}
The parameter of AsEnumerable here is the lambda expression containing any delegate that takes ObjectSet<T> as the only parameter and returns IQueryable<T>. So it's logically equivalent to have the following code in the derived class:
public IEnumerable<Arc> ByRun(Run run)
{
using (IContextUnitOfWork unitOfWork = new EFUnitOfWork())
{
return (from o in unitOfWork.ObjectSet<T>()
from r in o.Runs
where r.Id == run.Id
select o).AsEnumerable();
}
}

Entity Framework 4.1 simple dynamic expression for object.property = value

I know there is a way to use Expressions and Lambdas to accomplish this but I having a hard time piecing it all together. All I need is a method that will dynamically query an Entity Framework DBSet object to find the row where the propery with the given name matches the value.
My context:
public class MyContext : DbContext
{
public IDbSet<Account> Accoounts{ get { return Set<Account>(); } }
}
The method that I'm looking to write:
public T Get<T>(string property, object value) : where T is Account
{...}
I would rather not have to use Dynamic SQL to accomplish this so no need to suggest it because I already know it's possible. What I'm really looking for is some help to accomplish this using Expressions and Lambdas
Thanks in advance, I know it's brief but it should be pretty self-explanatory. Comment if more info is needed
I'm trying to avoid dynamic linq as much as possible because the main point of linq is strongly typed access. Using dynamic linq is a solution but it is exactly the oppose of the linq purpose and it is quite close to using ESQL and building the query from sting concatenation. Anyway dynamic linq is sometimes real time saver (especially when it comes to complex dynamic ordering) and I successfully use it in a large project with Linq-to-Sql.
What I usually do is defining some SearchCriteria class like:
public class SearchCriteria
{
public string Property1 { get; set; }
public int? Property2 { get; set; }
}
And helper query extension method like:
public static IQueryable<SomeClass> Filter(this IQueryable<SomeClass> query, SearchCriteria filter)
{
if (filter.Property1 != null) query = query.Where(s => s.Property1 == filter.Property1);
if (filter.Property2 != null) query = query.Where(s => s.Property2 == filter.Property2);
return query;
}
It is not generic solution. Again generic solution is for some strongly typed processing of classes sharing some behavior.
The more complex solution would be using predicate builder and build expression tree yourselves but again building expression tree is only more complex way to build ESQL query by concatenating strings.
Here's my implementation:
public T Get<T>(string property, object value) : where T is Account
{
//p
var p = Expression.Parameter(typeof(T));
//p.Property
var propertyExpression = Expression.Property(p, property);
//p.Property == value
var equalsExpression = Expression.Equal(propertyExpression, Expression.Constant(value));
//p => p.Property == value
var lambda = Expression.Lambda<Func<T,bool>>(equalsExpression, p);
return context.Set<T>().SingleOrDefault(lambda);
}
It uses EF 5's Set<T>() method. If you are using a lower version, you'll need to implement a way of getting the DbSet based on the <T> type.
Hope it helps.
Dynamic Linq may be an option. Specify your criteria as a string and it will get built as an expression and ran against your data;
An example from something I have done;
var context = new DataContext(ConfigurationManager.ConnectionStrings["c"].ConnectionString);
var statusConditions = "Status = 1";
var results = (IQueryable)context.Contacts.Where(statusConditions);
http://weblogs.asp.net/scottgu/archive/2008/01/07/dynamic-linq-part-1-using-the-linq-dynamic-query-library.aspx

Using eager loading with specification pattern

I've implemented the specification pattern with Linq as outlined here https://www.packtpub.com/article/nhibernate-3-using-linq-specifications-data-access-layer
I now want to add the ability to eager load and am unsure about the best way to go about it.
The generic repository class in the linked example:
public IEnumerable<T> FindAll(Specification<T> specification)
{
var query = GetQuery(specification);
return Transact(() => query.ToList());
}
public T FindOne(Specification<T> specification)
{
var query = GetQuery(specification);
return Transact(() => query.SingleOrDefault());
}
private IQueryable<T> GetQuery(
Specification<T> specification)
{
return session.Query<T>()
.Where(specification.IsSatisfiedBy());
}
And the specification implementation:
public class MoviesDirectedBy : Specification<Movie>
{
private readonly string _director;
public MoviesDirectedBy(string director)
{
_director = director;
}
public override
Expression<Func<Movie, bool>> IsSatisfiedBy()
{
return m => m.Director == _director;
}
}
This is working well, I now want to add the ability to be able to eager load. I understand NHibernate eager loading can be done by using Fetch on the query.
What I am looking for is whether to encapsulate the eager loading logic within the specification or to pass it into the repository, and also the Linq/expression tree syntax required to achieve this (i.e. an example of how it would be done).
A possible solution would be to extend the Specification class to add:
public virtual IEnumerable<Expression<Func<T, object>>> FetchRelated
{
get
{
return Enumerable.Empty<Expression<Func<T, object>>>();
}
}
And change GetQuery to something like:
return specification.FetchRelated.Aggregate(
session.Query<T>().Where(specification.IsSatisfiedBy()),
(current, related) => current.Fetch(related));
Now all you have to do is override FetchRelated when needed
public override IEnumerable<Expression<Func<Movie, object>>> FetchRelated
{
get
{
return new Expression<Func<Movie, object>>[]
{
m => m.RelatedEntity1,
m => m.RelatedEntity2
};
}
}
An important limitation of this implementation I just wrote is that you can only fetch entities that are directly related to the root entity.
An improvement would be to support arbitrary levels (using ThenFetch), which would require some changes in the way we work with generics (I used object to allow combining different entity types easily)
You wouldn't want to put the Fetch() call into the specification, because it's not needed. Specification is just for limiting the data that can then be shared across many different parts of your code, but those other parts could have drastically different needs in what data they want to present to the user, which is why at those points you would add your Fetch statements.

How can I create an Expression within another Expression?

Forgive me if this has been asked already. I've only just started using LINQ. I have the following Expression:
public static Expression<Func<TblCustomer, CustomerSummary>> SelectToSummary()
{
return m => (new CustomerSummary()
{
ID = m.ID,
CustomerName = m.CustomerName,
LastSalesContact = // This is a Person entity, no idea how to create it
});
}
I want to be able to populate LastSalesContact, which is a Person entity.
The details that I wish to populate come from m.LatestPerson, so how can I map over the fields from m.LatestPerson to LastSalesContact. I want the mapping to be re-useable, i.e. I do not want to do this:
LastSalesContact = new Person()
{
// Etc
}
Can I use a static Expression, such as this:
public static Expression<Func<TblUser, User>> SelectToUser()
{
return x => (new User()
{
// Populate
});
}
UPDATE:
This is what I need to do:
return m => (new CustomerSummary()
{
ID = m.ID,
CustomerName = m.CustomerName,
LastSalesContact = new Person()
{
PersonId = m.LatestPerson.PersonId,
PersonName = m.LatestPerson.PersonName,
Company = new Company()
{
CompanyId = m.LatestPerson.Company.CompanyId,
etc
}
}
});
But I will be re-using the Person() creation in about 10-15 different classes, so I don't want exactly the same code duplicated X amount of times. I'd probably also want to do the same for Company.
Can't you just use automapper for that?
public static Expression<Func<TblCustomer, CustomerSummary>> SelectToSummary()
{
return m => Mapper.Map<TblCustomer, CustommerSummary>(m);
}
You'd have to do some bootstrapping, but then it's very reusable.
UPDATE:
I may not be getting something, but what it the purpose of this function? If you just want to map one or collection of Tbl object to other objects, why have the expression?
You could just have something like this:
var customers = _customerRepository.GetAll(); // returns IEnumerable<TblCustomer>
var summaries = Mapper.Map<IEnumerable<TblCustomer>, IEnumerable<CustomerSummary>>(customers);
Or is there something I missed?
I don't think you'll be able to use a lambda expression to do this... you'll need to build up the expression tree by hand using the factory methods in Expression. It's unlikely to be pleasant, to be honest.
My generally preferred way of working out how to build up expression trees is to start with a simple example of what you want to do written as a lambda expression, and then decompile it. That should show you how the expression tree is built - although the C# compiler gets to use the metadata associated with properties more easily than we can (we have to use Type.GetProperty).
This is always assuming I've understood you correctly... it's quite possible that I haven't.
How about this:
public static Person CreatePerson(TblPerson data)
{
// ...
}
public static Expression<Func<TblPerson, Person>> CreatePersonExpression()
{
return d => CreatePerson(d);
}
return m => (new CustomerSummary()
{
ID = m.ID,
CustomerName = m.CustomerName,
LastSalesContact = CreatePerson(m.LatestPerson)
});

IEqualityComparer exception

I am using Entity Framework 4.0 and trying to use the "Contains" function of one the object sets in my context object. to do so i coded a Comparer class:
public class RatingInfoComparer : IEqualityComparer<RatingInfo>
{
public bool Equals(RatingInfo x, RatingInfo y)
{
var a = new {x.PlugInID,x.RatingInfoUserIP};
var b = new {y.PlugInID,y.RatingInfoUserIP};
if(a.PlugInID == b.PlugInID && a.RatingInfoUserIP.Equals(b.RatingInfoUserIP))
return true;
else
return false;
}
public int GetHashCode(RatingInfo obj)
{
var a = new { obj.PlugInID, obj.RatingInfoUserIP };
if (Object.ReferenceEquals(obj, null))
return 0;
return a.GetHashCode();
}
}
when i try to use the comparer with this code:
public void SaveRatingInfo2(int plugInId, string userInfo)
{
RatingInfo ri = new RatingInfo()
{
PlugInID = plugInId,
RatingInfoUser = userInfo,
RatingInfoUserIP = "192.168.1.100"
};
//This is where i get the execption
if (!context.RatingInfoes.Contains<RatingInfo>(ri, new RatingInfoComparer()))
{
//my Entity Framework context object
context.RatingInfoes.AddObject(ri);
context.SaveChanges();
}
}
i get an execption:
"LINQ to Entities does not recognize the method 'Boolean Contains[RatingInfo](System.Linq.IQueryable1[OlafCMSLibrary.Models.RatingInfo], OlafCMSLibrary.Models.RatingInfo,
System.Collections.Generic.IEqualityComparer1[OlafCMSLibrary.Models.RatingInfo])' method, and his method cannot be translated into a store expression."
Since i am not proficient with linQ and Entity Framework i might be making a mistake with my use of the "var" either in the "GetHashCode" function or in general.
If my mistake is clear to you do tell me :) it does not stop my project! but it is essential for me to understand why a simple comparer doesnt work.
Thanks
Aaron
LINQ to Entities works by converting an expression tree into queries against an object model through the IQueryable interface. This means than you can only put things into the expression tree which LINQ to Entities understands.
It doesn't understand the Contains method you are using, so it throws the exception you see. Here is a list of methods which it understands.
Under the Set Methods section header, it lists Contains using an item as supported, but it lists Contains with an IEqualityComparer as not supported. This is presumably because it would have to be able to work out how to convert your IEqualityComparer into a query against the object model, which would be difficult. You might be able to do what you want using multiple Where clauses, see which ones are supported further up the document.

Resources