VowpalWabbit: Differences and scalability - performance

I am trying to ascertain how VowpalWabbit's "state" is maintained as the size of our input set grows. In a typical machine learning environment, if I have 1000 input vectors, I would expect to send all of those at once, wait for a model building phase to complete, and then use the model to create new predictions.
In VW, it appears that the "online" nature of the algorithm shifts this paradigm to be more performant and capable of adjusting in real-time.
How is this real-time model modification implemented ?
Does VW take increasing resources with respect to total input data size over time ? That is, as i add more data to my VW model (when it is small), do the real-time adjustment calculations begin to take longer once the cumulative # of feature vector inputs increases to 1000s, 10000s, or millions?

Just to add to carlosdc's good answer.
Some of the features that set vowpal wabbit apart, and allow it to scale to tera-feature (1012) data-sizes are:
The online weight vector:
vowpal wabbit maintains an in memory weight-vector which is essentially the vector of weights for the model that it is building. This is what you call "the state" in your question.
Unbounded data size:
The size of the weight-vector is proportional to the number of features (independent input variables), not the number of examples (instances). This is what makes vowpal wabbit, unlike many other (non online) learners, scale in space. Since it doesn't need to load all the data into memory like a typical batch-learner does, it can still learn from data-sets that are too big to fit in memory.
Cluster mode:
vowpal wabbit supports running on multiple hosts in a cluster, imposing a binary tree graph structure on the nodes and using the all-reduce reduction from leaves to root.
Hash trick:
vowpal wabbit employs what's called the hashing trick. All feature names get hashed into an integer using murmurhash-32. This has several advantages: it is very simple and time-efficient not having to deal with hash-table management and collisions, while allowing features to occasionally collide. It turns out (in practice) that a small number of feature collisions in a training set with thousands of distinct features is similar to adding an implicit regularization term. This counter-intuitively, often improves model accuracy rather than decrease it. It is also agnostic to sparseness (or density) of the feature space. Finally, it allows the input feature names to be arbitrary strings unlike most conventional learners which require the feature names/IDs to be both a) numeric and b) unique.
Parallelism:
vowpal wabbit exploits multi-core CPUs by running the parsing and learning in two separate threads, adding further to its speed. This is what makes vw be able to learn as fast as it reads data. It turns out that most supported algorithms in vw, counter-intuitively, are bottlenecked by IO speed, rather than by learning speed.
Checkpointing and incremental learning:
vowpal wabbit allows you to save your model to disk while you learn, and then to load the model and continue learning where you left off with the --save_resume option.
Test-like error estimate:
The average loss calculated by vowpal wabbit "as it goes" is always on unseen (out of sample) data (*). This eliminates the need to bother with pre-planned hold-outs or do cross validation. The error rate you see during training is 'test-like'.
Beyond linear models:
vowpal wabbit supports several algorithms, including matrix factorization (roughly sparse matrix SVD), Latent Dirichlet Allocation (LDA), and more. It also supports on-the-fly generation of term interactions (bi-linear, quadratic, cubic, and feed-forward sigmoid neural-net with user-specified number of units), multi-class classification (in addition to basic regression and binary classification), and more.
There are tutorials and many examples in the official vw wiki on github.
(*) One exception is if you use multiple passes with --passes N option.

VW is a (very) sophisticated implementation of stochastic gradient descent. You can read more about stochastic gradient descent here
It turns out that a good implementation of stochastic gradient descent is basically I/O bound, it goes as fast as you can get it the data, so VW has some sophisticated data structures to "compile" the data.
Therefore the answer the answer to question (1) is by doing stochastic gradient descent and the answer to question (2) is definitely not.

Related

How to test if my implementation of back propagation neural Network is correct

I am working on an implementation of the back propagation algorithm. What I have implemented so far seems working but I can't be sure that the algorithm is well implemented, here is what I have noticed during training test of my network :
Specification of the implementation :
A data set containing almost 100000 raw containing (3 variable as input, the sinus of the sum of those three variables as expected output).
The network does have 7 layers all the layers use the Sigmoid activation function
When I run the back propagation training process:
The minimum of costs of the error is found at the fourth iteration (The minimum cost of error is 140, is it normal? I was expecting much less than that)
After the fourth Iteration the costs of the error start increasing (I don't know if it is normal or not?)
The short answer would be "no, very likely your implementation is incorrect". Your network is not training as can be observed by the very high cost of error. As discussed in comments, your network suffers very heavily from vanishing gradient problem, which is inevitable in deep networks. In essence, the first layers of you network learn much slower than the later. All neurons get some random weights at the beginning, right? Since the first layer almost doesn't learn anything, the large initial error propagates through the whole network!
How to fix it? From the description of your problem it seems that a feedforward network with just a single hidden layer in should be able to do the trick (as proven in universal approximation theorem).
Check e.g. free online book by Michael Nielsen if you'd like to learn more.
so I do understand from that the back propagation can't deal with deep neural networks? or is there some method to prevent this problem?
It can, but it's by no mean a trivial challenge. Deep neural networks have been used since 60', but only in 90' researchers came up with methods how to deal with them efficiently. I recommend reading "Efficient BackProp" chapter (by Y.A. LeCun et al.) of "Neural Networks: Tricks of the Trade".
Here is the summary:
Shuffle the examples
Center the input variables by subtracting the mean
Normalize the input variable to a standard deviation of 1
If possible, decorrelate the input variables.
Pick a network with the sigmoid function f(x)=1.7159*(tanh(2/3x): it won't saturate at +1 / -1, but instead will have highest gain at these points (second derivative is at max.)
Set the target values within the range of the sigmoid, typically +1 and -1.
The weights should be randomly drawn from a distribution with mean zero and a standard deviation given by m^(-1/2), where m is the number of inputs to the unit
The preferred method for training the network should be picked as follows:
If the training set is large (more than a few hundred samples) and redundant, and if the task is classification, use stochastic gradient with careful tuning, or use the stochastic diagonal Levenberg Marquardt method.
If the training set is not too large, or if the task is regression, use conjugate gradient.
Also, some my general remarks:
Watch for numerical stability if you implement it yourself. It's easy to get into troubles.
Think of the architecture. Fully-connected multi-layer networks are rarely a smart idea. Unfortunately ANN are poorly understood from theoretical point of view and one of the best things you can do is just check what worked for others and learn useful patterns (with regularization, pooling and dropout layers and such).

Neural network with categorical variables (enum) as inputs

I'm trying to solve some machine-learning problems using neural networks, mostly with the NEAT evolution (NeuroEvolution of Augmented Topologies).
Some of my input variables are continuous, but some of them are of a categorical nature, like:
Species: {Lion,Leopard,Tiger,Jaguar}
Branches of Trade: {Health care,Insurances,Finance,IT,Advertising}
At first I wanted to model such a variable by mapping the categories to discrete numbers, like:
{Lion:1, Leopard:2, Tiger:3, Jaguar:4}
But I'm afraid this adds some kind of arbitrary topology on the variable. A Tiger is not the sum of a Lion and a Leopard.
What approaches to this problem are usually employed?
Unfortunately there is no good solution, each leads to some kind of problems:
Your solution is adding the topology, as you mentioned; it may not be that bad, as NN can fit arbitrary functions and represent "ifs", but in many cases it will (as NN are often falling into some local minima).
You can encode your data in form of is_categorical_feature_i_equal_j, which won't induce any additional topology, but will grow the number of features quadratically. So instaed of "species" you get features "is_lion", "is_leopard", etc. and only one of them is equal 1 at the time
in case of large amount of data as compared to the possible categorical values (for example you have 10000 od data points, and only 10 possible categorical values) one can also split the problem into 10 independent ones, each trained on one particular value (so we have "neural network for lions" "neural network for jaguars" etc.)
These two first approaches are to "extreme" cases - one is very computationally cheap, but can lead to high bias, while the second introduces much complexity, but should not influence the classification process itself. The last one is rarely usable (due to assumption of small number of categorical values) yet quite reasonable in terms of machine learning.
Update
So many things changes in 8 years. Solution 2 is definitely the most popular one, and with growth of compute, wide adoption of neural networks, and support of sparse inputs, the costs is now negliegiable

Neural Network with correlated features

Is there a Neural Network algorithm that supports adding features on the fly (non-fixed feature set) and where it does not assume features isn't correlated with each other?
I don't think you can add features on fly, becouse NN as many other algorithm work with vector of input vector with same size, although it is sparse vectors. You can train with one feature set, then store weights add new features and start new training I think it will coverege much faster than first one.
NN(of first order) is work like Logistic regression and solve problem for global maximum, there are no assumption about features at all, just finding function which is related to probabilistic distribution which maximize likehood of training data, unlike Naive Bayes where each propability is calulcated separetly and then they combined with independence assumption.

Anomaly Detection Algorithms

I am tasked with detecting anomalies (known or unknown) using machine-learning algorithms from data in various formats - e.g. emails, IMs etc.
What are your favorite and most effective anomaly detection algorithms?
What are their limitations and sweet-spots?
How would you recommend those limitations be addressed?
All suggestions very much appreciated.
Statistical filters like Bayesian filters or some bastardised version employed by some spam filters are easy to implement. Plus there are lots of online documentation about it.
The big downside is that it cannot really detect unknown things. You train it with a large sample of known data so that it can categorize new incoming data. But you can turn the traditional spam filter upside down: train it to recognize legitimate data instead of illegitimate data so that anything it doesn't recognize is an anomaly.
There are various types of anomaly detection algorithms, depending on the type of data and the problem you are trying to solve:
Anomalies in time series signals:
Time series signals is anything you can draw as a line graph over time (e.g., CPU utilization, temperature, rate per minute of number of emails, rate of visitors on a webpage, etc). Example algorithms are Holt-Winters, ARIMA models, Markov Models, and more. I gave a talk on this subject a few months ago - it might give you more ideas about algorithms and their limitations.
The video is at: https://www.youtube.com/watch?v=SrOM2z6h_RQ
Anomalies in Tabular data: These are cases where you have feature vector that describe something (e.g, transforming an email to a feature vector that describes it: number of recipients, number of words, number of capitalized words, counts of keywords, etc....). Given a large set of such feature vectors, you want to detect some that are anomalies compared to the rest (sometimes called "outlier detection"). Almost any clustering algorithm is suitable in these cases, but which one would be most suitable depends on the type of features and their behavior -- real valued features, ordinal, nominal or anything other. The type of features determine if certain distance functions are suitable (the basic requirement for most clustering algorithms), and some algorithms are better with certain types of features than others.
The simplest algo to try is k-means clustering, where an anomaly sample would be either very small clusters or vectors that are far from all cluster centers. One sided SVM can also detect outliers, and has the flexibility of choosing different kernels (and effectively different distance functions). Another popular algo is DBSCAN.
When anomalies are known, the problem becomes a supervised learning problem, so you can use classification algorithms and train them on the known anomalies examples. However, as mentioned - it would only detect those known anomalies and if the number of training samples for anomalies is very small, the trained classifiers may not be accurate. Also, because the number of anomalies is typically very small compared to "no-anomalies", when training the classifiers you might want to use techniques like boosting/bagging, with over sampling of the anomalies class(es), but optimize on very small False Positive rate. There are various techniques to do it in the literature --- one idea that I found to work many times very well is what Viola-Jones used for face detection - a cascade of classifiers. see: http://www.vision.caltech.edu/html-files/EE148-2005-Spring/pprs/viola04ijcv.pdf
(DISCLAIMER: I am the chief data scientist for Anodot, a commercial company doing real time anomaly detection for time series data).

Continuous vs Discrete artificial neural networks

I realize that this is probably a very niche question, but has anyone had experience with working with continuous neural networks? I'm specifically interested in what a continuous neural network may be useful for vs what you normally use discrete neural networks for.
For clarity I will clear up what I mean by continuous neural network as I suppose it can be interpreted to mean different things. I do not mean that the activation function is continuous. Rather I allude to the idea of a increasing the number of neurons in the hidden layer to an infinite amount.
So for clarity, here is the architecture of your typical discreet NN:
(source: garamatt at sites.google.com)
The x are the input, the g is the activation of the hidden layer, the v are the weights of the hidden layer, the w are the weights of the output layer, the b is the bias and apparently the output layer has a linear activation (namely none.)
The difference between a discrete NN and a continuous NN is depicted by this figure:
(source: garamatt at sites.google.com)
That is you let the number of hidden neurons become infinite so that your final output is an integral. In practice this means that instead of computing a deterministic sum you instead must approximate the corresponding integral with quadrature.
Apparently its a common misconception with neural networks that too many hidden neurons produces over-fitting.
My question is specifically, given this definition of discrete and continuous neural networks, I was wondering if anyone had experience working with the latter and what sort of things they used them for.
Further description on the topic can be found here:
http://www.iro.umontreal.ca/~lisa/seminaires/18-04-2006.pdf
I think this is either only of interest to theoreticians trying to prove that no function is beyond the approximation power of the NN architecture, or it may be a proposition on a method of constructing a piecewise linear approximation (via backpropagation) of a function. If it's the latter, I think there are existing methods that are much faster, less susceptible to local minima, and less prone to overfitting than backpropagation.
My understanding of NN is that the connections and neurons contain a compressed representation of the data it's trained on. The key is that you have a large dataset that requires more memory than the "general lesson" that is salient throughout each example. The NN is supposedly the economical container that will distill this general lesson from that huge corpus.
If your NN has enough hidden units to densely sample the original function, this is equivalent to saying your NN is large enough to memorize the training corpus (as opposed to generalizing from it). Think of the training corpus as also a sample of the original function at a given resolution. If the NN has enough neurons to sample the function at an even higher resolution than your training corpus, then there is simply no pressure for the system to generalize because it's not constrained by the number of neurons to do so.
Since no generalization is induced nor required, you might as well just memorize the corpus by storing all of your training data in memory and use k-nearest neighbor, which will always perform better than any NN, and will always perform as well as any NN even as the NN's sampling resolution approaches infinity.
The term hasn't quite caught on in the machine learning literature, which explains all the confusion. It seems like this was a one off paper, an interesting one at that, but it hasn't really led to anything, which may mean several things; the author may have simply lost interest.
I know that Bayesian neural networks (with countably many hidden units, the 'continuous neural networks' paper extends to the uncountable case) were successfully employed by Radford Neal (see his thesis all about this stuff) to win the NIPS 2003 Feature Selection Challenge using Bayesian neural networks.
In the past I've worked on a few research projects using continuous NN's. Activation was done using a bipolar hyperbolic tan, the network took several hundred floating point inputs and output around one hundred floating point values.
In this particular case the aim of the network was to learn the dynamic equations of a mineral train. The network was given the current state of the train and predicted speed, inter-wagon dynamics and other train behaviour 50 seconds into the future.
The rationale for this particular project was mainly about performance. This was being targeted for an embedded device and evaluating the NN was much more performance friendly then solving a traditional ODE (ordinary differential equation) system.
In general a continuous NN should be able to learn any kind of function. This is particularly useful when its impossible/extremely difficult to solve a system using deterministic methods. As opposed to binary networks which are often used for pattern recognition/classification purposes.
Given their non-deterministic nature NN's of any kind are touchy beasts, choosing the right kinds of inputs/network architecture can be somewhat a black art.
Feed forward neural networks are always "continuous" -- it's the only way that backpropagation learning actually works (you can't backpropagate through a discrete/step function because it's non-differentiable at the bias threshold).
You might have a discrete (e.g. "one-hot") encoding of the input or target output, but all of the computation is continuous-valued. The output may be constrained (i.e. with a softmax output layer such that the outputs always sum to one, as is common in a classification setting) but again, still continuous.
If you mean a network that predicts a continuous, unconstrained target -- think of any prediction problem where the "correct answer" isn't discrete, and a linear regression model won't suffice. Recurrent neural networks have at various times been a fashionable method for various financial prediction applications, for example.
Continuous neural networks are not known to be universal approximators (in the sense of density in $L^p$ or $C(\mathbb{R})$ for the topology of uniform convergence on compacts, i.e.: as in the universal approximation theorem) but only universal interpolators in the sense of this paper:
https://arxiv.org/abs/1908.07838

Resources