I have a web application that stores project in the database.
I have decided to use App Farbic Caching to speed performance.
What would be the best pattern regarding the below (or on which criteria should I decide):
store each project separately in the cache.
OR store the whole list in the cache (i.e. one key which represent the list of items)?
Many Thanks,
Joseph
It depends. There are a couple of considerations.
If the list was potentially enormous, the content of the individual cache key could get very large (obviously this could be mitigated by enabling local caching). Serializing and de-serializing a large object graph like this is going to consume time and resources on your client.
You may however want to do this, as you may in your application want to execute a linq to objects query against your list after it has been de-serialized back from the cache.
If the queries you execute against the list are well defined, you could cache multiple flavors of the list under different cache keys - instead of people, you could have PeopleMale, PeopleFemale, PeopleAmerican, PeopleIrish, PeopleFrench etc.
If you do this you could potentially have the same person appearing under multiple cached person lists and you would have to manage this.
For example, I have a female person with dual american and irish citizenship. If I edit that person so the gender changes from female to make and the citizenship is changed to dutch, it would be necessary to ensure that four keys are invalidated PeopleMale, PeopleFemale, PeopleAmerican, PeopleIrish.
The example I've given above could get tricky to manage - whether its worth it or not really depends on your exact use case.
In general, where possible, I'd advise you to only use cache keys containing lists for relatively non-volatile reference data (countries, status types, nationalities etc).
Hope this helps.
Related
My application should handle a lot of entities (100.000 or more) with location and needs to display them only within a given radius. I basically store everything in SQL but using Redis for caching and optimization (mainly GEORADIUS).
I am adding the entities like the following example (not exactly this, I use Laravel framework with the built-in Redis facade but it does the same as here in the background):
GEOADD k 19.059982 47.494338 {\"id\":1,\"name\":\"Foo\",\"address\":\"Budapest, Astoria\",\"lat\":47.494338,\"lon\":19.059982}
Is it bad practice? Or will it make a negative impact on performance? Should I store only ID-s as member and make a following query to get the corresponding entities?
This is a matter of the requirements. There's nothing wrong with storing the raw data as members as long as it is unique (and it unique given the "id" field). In fact, this is both simple and performant as all data is returned with a single query (assuming that's what actually needed).
That said, there are at least two considerations for storing the data outside the Geoset, and just "referencing" it by having members reflect some form of their key names:
A single data structure, such as a Geoset, is limited by the resources of a single Redis server. Storing a lot of data and members can require more memory than a single server can provide, which would limit the scalability of this approach.
Unless each entry's data is small, it is unlikely that all query types would require all data returned. In such cases, keeping the raw data in the Geoset generates a lot of wasted bandwidth and ultimately degrades performance.
When data needs to be updated, it can become too expensive to try and update (i.e. ZDEL and then GEOADD) small parts of it. Having everything outside, perhaps in a Hash (or maybe something like RedisJSON) makes more sense then.
We have an existing API with a very simple cache-hit/cache-miss system using Redis. It supports being searched by Key. So a query that translates to the following is easily cached based on it's primary key.
SELECT * FROM [Entities] WHERE PrimaryKeyCol = #p1
Any subsequent requests can lookup the entity in REDIS by it's primary key or fail back to the database, and then populate the cache with that result.
We're in the process of building a new API that will allow searches by a lot more params, will return multiple entries in the results, and will be under fairly high request volume (enough so that it will impact our existing DTU utilization in SQL Azure).
Queries will be searchable by several other terms, Multiple PKs in one search, various other FK lookup columns, LIKE/CONTAINS statements on text etc...
In this scenario, are there any design patterns, or cache strategies that we could consider. Redis doesn't seem to lend itself particularly well to these type of queries. I'm considering simply hashing the query params, and then cache that hash as the key, and the entire result set as the value.
But this feels like a bit of a naive approach given the key-value nature of Redis, and the fact that one entity might be contained within multiple result sets under multiple query hashes.
(For reference, the source of this data is currently SQL Azure, we're using Azure's hosted Redis service. We're also looking at alternative approaches to hitting the DB incl. denormalizing the data, ETLing the data to CosmosDB, hosting the data in Azure Search but there's other implications for doing these including Implementation time, "freshness" of data etc...)
Personally, I wouldn't try and cache the results, just the individual entities. When I've done things like this in the past, I return a list of IDs from live queries, and retrieve individual entities from my cache layer. That way the ID list is always "fresh", and you don't have nasty cache invalidation logic issues.
If you really do have commonly reoccurring searches, you can cache the results (of ids), but you will likely run into issues of pagination and such. Caching query results can be tricky, as you generally need to cache all the results, not just the first "page" worth. This is generally very expensive, and has high transfer costs that exceed the value of the caching.
Additionally, you will absolutely have freshness issues with caching query results. As new records show up, they won't be in the cached list. This is avoided with the entity-only cache, as the list of IDs is always fresh, just the entities themselves can be stale (but that has a much easier cache-expiration methodology).
If you are worried about the staleness of the entities, you can return not only an ID, but also a "Last updated date", which allows you to compare the freshness of each entity to the cache.
We are trying to implement a FHIR Rest Server for our application. In our current data model (and thus live data) several FHIR resources are represented by multiple tables, e.g. what would all be Observations are stored in tables for vital values, laboratory values and diagnosis. Each table has an independent, auto-incrementing primary ID, so there are entries with the same ID in different tables. But for GET or DELETE calls to the FHIR server a unique ID is needed. What would be the most sensible way to handle this?
Searching didn't reveal an inherent way of doing this, so I'm considering these two options:
Add a prefix to all (or just the problematic) table IDs, e.g lab-123 and vit-123
Add a UUID to every table and use that as the logical identifier
Both have drawbacks: an ID parser is necessary for the first one and the second requires multiple database calls to identify the correct record.
Is there a FHIR way that allows to split a resource into several sub-resources, even in the Rest URL? Ideally I'd get something like GET server:port/Observation/laboratory/123
Server systems will have all sorts of different divisions of data in terms of how data is stored internally. What FHIR does is provide an interface that tries to hide those variations. So Observation/laboratory/123 would be going against what we're trying to do - because every system would have different divisions and it would be very difficult to get interoperability happening.
Either of the options you've proposed could work. I have a slight leaning towards the first option because it doesn't involve changing your persistence layer and it's a relatively straight-forward transformation to convert between external/fhir and internal.
Is there a FHIR way that allows to split a resource into several
sub-resources, even in the Rest URL? Ideally I'd get something like
GET server:port/Observation/laboratory/123
What would this mean for search? So, what would /Obervation?code=xxx search through? Would that search labs, vitals etc combined, or would you just allow access on /Observation/laboratory?
If these are truly "silos", maybe you could use http://servername/lab/Observation (so swap the last two path parts), which suggests your server has multiple "endpoints" for the different observations. I think more clients will be able to handle that url than the url you suggested.
Best, still, I think is having one of your two other options, for which the first is indeed the easiest to implement.
We have a fantasy football application that uses memcached and the classic memcached-object-read-with-sql-server-fallback. This works fairly well, but recently I've been contemplating the overhead involved and whether or not this is the best approach.
Case in point - we need to generate a drop down list of the users teams, so we follow this pattern:
Get a list of the users teams from memcached
If not available get the list from SQL server and store in memcached.
Do a multiget to get the team objects.
Fallback to loading objects from sql store these.
This is all very well - each cached piece of data is relatively easily cached and invalidated, but there are two major downsides to this:
1) Because we are operating on objects we are incurring a rather large overhead - a single team occupies some hundred bytes in memcached and what we really just need for this case is a list of team names and ids - not all the other stuff in the team objects.
2) Due to the fallback to loading individual objects, the number of SQL queries generated on an empty cache or when the items expire can be massive:
1 x Memcached multiget (which misses, which and causes)
1 x SELECT ... FROM Team WHERE Id IN (...)
20 x Store in memcached
So that's 21 network request just for this one query, and also the IN query is slower than a specific join.
Obviously we could just do a simple
SELECT Id, Name FROM Teams WHERE UserId = XYZ
And cache that result, but this this would mean that this data would need to be specifically invalidated whenever the user creates a new team. In this case it might seem relatively simple , but we have many of these type of queries, and many of them operate on axes that are not easily invalidated (like a list of id and names of the teams that your friends have created in a specific game).
Sooo.. My question is - do any of you have ideas for resolving the mentioned drawbacks, or should I just accept that there is an overhead and that cache misses are bad, live with it?
First, cache what you need, maybe that two fields, not a complete record.
Second, cache what you need again, break the result set into records and cache them seperately
about caching:
You generally use caching to offload the slower disc-based storage, in this case mysql. The memory cache scales up rather easily, mysql scales less easy.
Given that, even if you double the cpu/netowork/memory usage of the cache and putting it all together again, it will still offload the db. Adding another nodejs instance or another memcached server is easy.
back to your question
You say its a user's team, you could go and fetch it when the user logs-in, and keep it updated in cache while the user changes it throughout his session.
I presume the team member's names do not change, if so you can load all team members by id,name and store those in cache or even local on nodejs, use the same fallback strategy as you do now. Only step 1 and 2 and 4 will be left then.
personally i usually try to split the sql results into smaller ready-made pieces and cache those, and keep the cache updated as long as possible, untimately trying to use mysql only as storage and never read from it
usually you will run some logic on the returned rows form mysql anyways, theres no need to keep repeating that.
My latest project deals with a lot of "staging" data.
Like when a customer registers, the data is stored in "customer_temp" table, and when he is verified, the data is moved to "customer" table.
Before I start shooting e-mails, go on a rampage on how I think this is wrong and you should just put a flag on the row, there is always a chance that I'm the idiot.
Can anybody explain to me why this is desirable?
Creating 2 tables with the same structure, populating a table (table 1), then moving the whole row to a different table (table 2) when certain events occur.
I can understand if table 2 will store archival, non seldom used data.
But I can't understand if table 2 stores live data that can changes constantly.
To recap:
Can anyone explain how wrong (or right) this seemingly counter-productive approach is?
If there is a significant difference between a "customer" and a "potential customer" in the business logic, separating them out in the database can make sense (you don't need to always remember to query by the flag, for example). In particular if the data stored for the two may diverge in the future.
It makes reporting somewhat easier and reduces the chances of treating both types of entities as the same one.
As you say, however, this does look redundant and would probably not be the way most people design the database.
There seems to be several explanations about why would you want "customer_temp".
As you noted would be for archival purposes. To allow analyzing data but in that case the historical data should be aggregated according to some interesting query. However it using live data does not sound plausible
As oded noted, there could be a certain business logic that differentiates between customer and potential customer.
Or it could be a security feature which requires logging all attempts to register a customer in addition to storing approved customers.
Any time I see a permenant table names "customer_temp" I see a red flag. This typically means that someone was working through a problem as they were going along and didn't think ahead about it.
As for the structure you describe there are some advantages. For example the tables could be indexed differently or placed on different File locations for performance.
But typically these advantages aren't worth the cost cost of keeping the structures in synch for changes (adding a column to different tables searching for two sets of dependencies etc. )
If you really need them to be treated differently then its better to handle that by adding a layer of abstraction with a view rather than creating two separate models.
I would have used a single table design, as you suggest. But I only know what you posted about the case. Before deciding that the designer was an idiot, I would want to know what other consequences, intended or unintended, may have followed from the two table design.
For, example, it may reduce contention between processes that are storing new potential customers and processes accessing the existing customer base. Or it may permit certain columns to be constrained to be not null in the customer table that are permitted to be null in the potential customer table. Or it may permit write access to the customer table to be tightly controlled, and unavailable to operations that originate from the web.
Or the original designer may simply not have seen the benefits you and I see in a single table design.