Caching Strategy/Design Pattern for complex queries - caching

We have an existing API with a very simple cache-hit/cache-miss system using Redis. It supports being searched by Key. So a query that translates to the following is easily cached based on it's primary key.
SELECT * FROM [Entities] WHERE PrimaryKeyCol = #p1
Any subsequent requests can lookup the entity in REDIS by it's primary key or fail back to the database, and then populate the cache with that result.
We're in the process of building a new API that will allow searches by a lot more params, will return multiple entries in the results, and will be under fairly high request volume (enough so that it will impact our existing DTU utilization in SQL Azure).
Queries will be searchable by several other terms, Multiple PKs in one search, various other FK lookup columns, LIKE/CONTAINS statements on text etc...
In this scenario, are there any design patterns, or cache strategies that we could consider. Redis doesn't seem to lend itself particularly well to these type of queries. I'm considering simply hashing the query params, and then cache that hash as the key, and the entire result set as the value.
But this feels like a bit of a naive approach given the key-value nature of Redis, and the fact that one entity might be contained within multiple result sets under multiple query hashes.
(For reference, the source of this data is currently SQL Azure, we're using Azure's hosted Redis service. We're also looking at alternative approaches to hitting the DB incl. denormalizing the data, ETLing the data to CosmosDB, hosting the data in Azure Search but there's other implications for doing these including Implementation time, "freshness" of data etc...)

Personally, I wouldn't try and cache the results, just the individual entities. When I've done things like this in the past, I return a list of IDs from live queries, and retrieve individual entities from my cache layer. That way the ID list is always "fresh", and you don't have nasty cache invalidation logic issues.
If you really do have commonly reoccurring searches, you can cache the results (of ids), but you will likely run into issues of pagination and such. Caching query results can be tricky, as you generally need to cache all the results, not just the first "page" worth. This is generally very expensive, and has high transfer costs that exceed the value of the caching.
Additionally, you will absolutely have freshness issues with caching query results. As new records show up, they won't be in the cached list. This is avoided with the entity-only cache, as the list of IDs is always fresh, just the entities themselves can be stale (but that has a much easier cache-expiration methodology).
If you are worried about the staleness of the entities, you can return not only an ID, but also a "Last updated date", which allows you to compare the freshness of each entity to the cache.

Related

Is it bad practice to store JSON members with Redis GEOADD?

My application should handle a lot of entities (100.000 or more) with location and needs to display them only within a given radius. I basically store everything in SQL but using Redis for caching and optimization (mainly GEORADIUS).
I am adding the entities like the following example (not exactly this, I use Laravel framework with the built-in Redis facade but it does the same as here in the background):
GEOADD k 19.059982 47.494338 {\"id\":1,\"name\":\"Foo\",\"address\":\"Budapest, Astoria\",\"lat\":47.494338,\"lon\":19.059982}
Is it bad practice? Or will it make a negative impact on performance? Should I store only ID-s as member and make a following query to get the corresponding entities?
This is a matter of the requirements. There's nothing wrong with storing the raw data as members as long as it is unique (and it unique given the "id" field). In fact, this is both simple and performant as all data is returned with a single query (assuming that's what actually needed).
That said, there are at least two considerations for storing the data outside the Geoset, and just "referencing" it by having members reflect some form of their key names:
A single data structure, such as a Geoset, is limited by the resources of a single Redis server. Storing a lot of data and members can require more memory than a single server can provide, which would limit the scalability of this approach.
Unless each entry's data is small, it is unlikely that all query types would require all data returned. In such cases, keeping the raw data in the Geoset generates a lot of wasted bandwidth and ultimately degrades performance.
When data needs to be updated, it can become too expensive to try and update (i.e. ZDEL and then GEOADD) small parts of it. Having everything outside, perhaps in a Hash (or maybe something like RedisJSON) makes more sense then.

Searching/selecting query in cache

I have been using cache for a long time. We store data against some key and fetch it from cache whenever required. I know that StackOverflow and many other sites heavily rely on cache. My question is do they always use key-value mechanism for caching or do they form some sql like query within a cache? For instance, I want to view last week report. This report's content will vary each day. Do i need to store different reports against each day (where day as a key) or can I get this result from forming some query that aggregate result across different key? Does any caching product (like redis) provide this functionality?
Thanks In Advance
Cache is always done as a key-value hash table. This is how it stays so fast. If you're doing querying then you're not doing cache.
What you may be trying to ask is... you could have in your database a table that contains agregated report data. And you could query against that pre-calculated table.
One of the reasons for cache (e.g. memcached ) being fast is its simplicity of data access and querying protocol.
The more functionality you add, more tradeoff you will have to do on the efficiency part. A full fledged SQL engine in a "caching" database is not a good design. Though you can utilize a data structures oriented database like Redis to design your cache data to suit your querying needs. For example: one set or one hash for each date.
A step further, you can use databases like MongoDb , or memsql which are pretty fast and have rich querying support.So an aggregation report once a while won't be an issue.
However, as a design decision, you will have to accept that their caching throughput will not be as much as memcached or redis.

Dumping Azure tables quickly

My task is to dump entire Azure tables with arbitrary unknown schemas. Standard code to do this resembles the following:
TableQuery<DynamicTableEntity> query = new TableQuery<DynamicTableEntity>();
foreach (DynamicTableEntity entity in table.ExecuteQuery(query))
{
// Write a dump of the entity (row).
}
Depending on the table, this works at a rate of 1000-3000 rows per second on my system. I'm guessing this (lack of) performance has something to do with separate HTTP requests issued to retrieve the data in chunks. Unfortunately, some of the tables are multi-gigabyte in size, so this takes a rather long time.
Is there a good way to parallelize the above or speed it up some other way? It would seem that those HTTP requests could be sent by multiple threads, as in web crawlers and the like. However, I don't see an immediate method to do so.
Unless you know the PartitionKeys of the entities in the table (or some other querying criteria which includes PartitionKey), AFAIK you would need to take a top down approach which you're doing right now. In order for you to fire queries in parallel which would work efficiently you have to include PartitionKey in your queries.

What is the most efficient way to filter a search?

I am working with node.js and mongodb.
I am going to have a database setup and use socket.io to have real-time updates that will have the db queried again as well or push the new update to the client.
I am trying to figure out what is the best way to filter the database?
Some more information in regards to what is being queried and what the real time updates are:
A document in the database will include information such as an address, city, time, number of packages, name, price.
Filters include city/price/name/time (meaning only to see addresses within the same city, or within the same time period)
Real-time info: includes adding a new document to the database which will essentially update the admin on the website with a notification of a new address added.
Method 1: Query the db with the filters being searched?
Method 2: Query the db for all searches and then filter it on the client side (Javascript)?
Method 3: Query the db for all searches then store it in localStorage then query localStorage for what the filters are?
Trying to figure out what is the fastest way for the user to filter it?
Also, if it is different than what is the most cost effective way, then the most cost effective as well (which I am assuming is less db queries)...
It's hard to say because we don't see exact conditions of the filter, but in general:
Mongo can use only 1 index in a query condition. Thus whatever fields are covered by this index can be used in an efficient filtering. Otherwise it might do full table scan which is slow. If you are using an index then you are probably doing the most efficient query. (Mongo can still use another index for sorting though).
Sometimes you will be forced to do processing on client side because Mongo can't do what you want or it takes too many queries.
The least efficient option is to store results somewhere just because IO is slow. This would only benefit you if you use them as cache and do not recalculate.
Also consider overhead and latency of networking. If you have to send lots of data back to the client it will be slower. In general Mongo will do better job filtering stuff than you would do on the client.
According to you if you can filter by addresses within time period then you could have an index that cuts down lots of documents. You most likely need a compound index - multiple fields.

Caching strategy suggestions needed

We have a fantasy football application that uses memcached and the classic memcached-object-read-with-sql-server-fallback. This works fairly well, but recently I've been contemplating the overhead involved and whether or not this is the best approach.
Case in point - we need to generate a drop down list of the users teams, so we follow this pattern:
Get a list of the users teams from memcached
If not available get the list from SQL server and store in memcached.
Do a multiget to get the team objects.
Fallback to loading objects from sql store these.
This is all very well - each cached piece of data is relatively easily cached and invalidated, but there are two major downsides to this:
1) Because we are operating on objects we are incurring a rather large overhead - a single team occupies some hundred bytes in memcached and what we really just need for this case is a list of team names and ids - not all the other stuff in the team objects.
2) Due to the fallback to loading individual objects, the number of SQL queries generated on an empty cache or when the items expire can be massive:
1 x Memcached multiget (which misses, which and causes)
1 x SELECT ... FROM Team WHERE Id IN (...)
20 x Store in memcached
So that's 21 network request just for this one query, and also the IN query is slower than a specific join.
Obviously we could just do a simple
SELECT Id, Name FROM Teams WHERE UserId = XYZ
And cache that result, but this this would mean that this data would need to be specifically invalidated whenever the user creates a new team. In this case it might seem relatively simple , but we have many of these type of queries, and many of them operate on axes that are not easily invalidated (like a list of id and names of the teams that your friends have created in a specific game).
Sooo.. My question is - do any of you have ideas for resolving the mentioned drawbacks, or should I just accept that there is an overhead and that cache misses are bad, live with it?
First, cache what you need, maybe that two fields, not a complete record.
Second, cache what you need again, break the result set into records and cache them seperately
about caching:
You generally use caching to offload the slower disc-based storage, in this case mysql. The memory cache scales up rather easily, mysql scales less easy.
Given that, even if you double the cpu/netowork/memory usage of the cache and putting it all together again, it will still offload the db. Adding another nodejs instance or another memcached server is easy.
back to your question
You say its a user's team, you could go and fetch it when the user logs-in, and keep it updated in cache while the user changes it throughout his session.
I presume the team member's names do not change, if so you can load all team members by id,name and store those in cache or even local on nodejs, use the same fallback strategy as you do now. Only step 1 and 2 and 4 will be left then.
personally i usually try to split the sql results into smaller ready-made pieces and cache those, and keep the cache updated as long as possible, untimately trying to use mysql only as storage and never read from it
usually you will run some logic on the returned rows form mysql anyways, theres no need to keep repeating that.

Resources