When timing my (web) application for performance/latency, should I use the minimum time measured in n runs, or the average? Or something else?
If it's the latter case, when to use what?
If your answer is going to be something along the lines of, "research it, dude", could you point me to a good resource?
You could retrieve the values, store them by time, with couple (time_of_the_call, response_time). Then you may treat these data with tools, draw graphs, make statistics.
I think an average, minimum, etc, is not sufficient, you need a set of measures.
For example you may put you data in a csv file and import in excel, or even use google graph api to draw real time graphs.
Use median rather than mean (or average).
For reasoning, see the page Mean Delay Considered Harmful by Stanislav Shalunov (the author of thrulay).
I would say you have to figure that one out your self. Are you benchmarking for
Request throughput
User experience
Checking timeout thresholds
Depending on what you want your analysis to answer different metrics should be used.
http://www.webperformancetoday.com/2012/02/13/non-geeky-guide-to-performance-measurement/
This is a good article on "response time" timing. (Websites.)
Related
I am working on a information retrieval system which aims to select the first result and to link it to other database. Indeed, our system is based on a Keyword description of a video and try to interlink the video to a DBpedia entity which has the same meaning of the description. In the step of evaluation, i noticid that the majority of evaluation set the minimum of the precision cut-off to 5, whereas in our system is not suitable. I am thinking to put an interval [1,5]: (P#1,...P#5).Will it be possible? !!
Please provide your suggestions and your reference to some notes.. Thanks..
You can definitely calculate P#1 for a retrieval system, if you have truth labels. (In this case, it sounds like they would be [Video, DBPedia] matching pairs generated by humans).
People generally look at this measure for things like Question-Answering or recommendation systems. The only caveat is that you typically wouldn't use it to train a learning to rank system or any other learning system -- it's not "continuous enough" a near miss (best at rank 2) and a total miss (best at rank 4 million) get equivalent scores, so it can be hard to smoothly improve a system by tuning weights in such a case.
For those kinds of tasks, using Mean Reciprocal Rank is pretty common, if you need something tunable. Also NDCG tends to be okay, too, since it has an exponential discounting factor.
But there's nothing in the definition of precision that prevents you from calculating it at rank 1. It may be more correct to describe it as a "success#1" feature, since you're going to get 0/1 or 1/1 as your two options.
I am looking for a method to find the best parameters for a simulation. It's about break-shots in billiards / pool. A shot is defined by 7 parameters, I can simulate the shot and then rate the outcome and I would like to compute the best parameters.
I have found the following link here:
Multiple parameter optimization with lots of local minima
suggesting 4 kinds of algorithms. In the pool simulator I am using, the shots are altered by a little random value each time it is simulated. If I simulate the same shot twice, the outcome will be different. So I am looking for an algorithm like the ones in the link above, only with the addition of a stochastical element, optimizing for the 7 parameters that will on average yield the best parameters, i.e. a break shot that most likely will be a success. My initial idea was simulating the shot 100 or 1000 times and just take the average as rating for the algorithms above, but I still feel like there is a better way. Does anyone have an idea?
The 7 parameters are continuous but within different ranges (one from 0 to 10, another from 0.0 to 0.028575 and so on).
Thank you
At least for some of the algorithms, simulating the same shot repeatedly might not be neccessary. As long as your alternatives have some form of momentum, like in the swarm simulation approach, you can let that be affected by the outcome of each individual simulation. In that case, a single unlucky simulation would slow the movement in parameter space only slightly, whereas a serious loss of quality should be enough to stop and reverse the movement. Thos algorithms which don't use momentum might be tweaked to have momentum. If not, then repeated simulation seems the best approach. Unless you can get your hands on the internals of the simulator, and rate the shot as a whole without having to simulate it over and over again.
You can use the algorithms you mentioned in your non-deterministic scenario with independent stochastic runs. Your idea with repeated simulations is good, you can read more about how many repeats you might have to consider for your simulations (unfortunately, there is no trivial answer). If you are not so much into maths, and the runs go fast, do 1.000 repeats, then 10.000 repeats, and see if the results differ largely. If yes, you have to collect more samples, if not, you are probably on the safe side (the central limit theorem states that the results converge).
Further, do not just consider the average! Make sure to look into the standard deviation for each algorithm's results; you might want to use box plots to compare their quartiles. If you rely on the average only, you could pick an algorithm that produces very varying results, sometimes excellent, sometimes terrible in performance.
I don't know what language you are using, but if you use Java, I am maintaining a tool that could simplify your "monte carlo" style experiments.
When measuring application performance (response time for example) it's so easy to come across averages (mean). ab, httpref and bunch of other utilities are reporting mean and standard deviation. But from theoretical point of view it doesn't make a lot of sense to me. And there is why.
Mean value is good at describing symmetrical distributed population, because in case of symmetrical distribution mean is equal to population mode and expected value. But response times are not distributed symmetrical. They are more like exponential. In this case average tells us nothing.
It's more convenient to work with percentile values, which tells us what response time we could afford in what percentage of responses.
Am I missing something or mean is popular just because it's very simple to calculate?
All kinds of tools get their features not necessarily from what makes sense, but from users' expectations.
You're absolutely right that the distributions are non-negative and heavily skewed, and that percentiles would be more informative.
Alternatively, a distribution more like lognormal or chi-square would be a little better.
Yes, you are missing something.
The whole point of descriptive statistics is to present a few numbers to describe (or represent or model or ...) a large number of numbers. They aid the comprehension of large datasets, the extraction of information from data, the approximate comparison of datasets whose exact comparison is large and bewildering to the limitations of the human mind.
But no single descriptive statistic is always fit for all purposes, and no one is dictating to you that you must or should or ought to use the mean. If it doesn't suit your purposes, use something else.
As it happens you are quite wrong to write They are more like exponential. In this case average tells us nothing. For an exponential distribution with rate parameter lambda the mean is simply 1/lambda so the mean tells you everything about an exponential distribution.
I'm not an expert in statistics but i believe the average values are used so much because those are the values that help to measure the scalability of a system.
You need to consider first your average values to know how your system needs to bahevae under certains workloads and those needs to be predictable, you usually are not very interested in outliers at least not at first.
Of course you need to look into your min values and the peak values to know the moment your system its going to have a bottleneck but the average values show you as i said a correct and predictable behavior.
Lets say I am going to run process X and see how long it takes.
I am going to save into a database a date I ran this process, and the time it took. I want to know what to put into the DB.
Process X almost always runs under 1500ms, so this is a short process. It usually runs between 500 and 1500ms, quite a range (3x difference).
My question is, how many "runs" should be saved into the DB as a single run?
Every run saved into the DB as its
own row?
5 Runs, averaged, then save that
time?
10 Runs averaged?
20 Runs, remove anything more than 2
std deviations away, and save
everything inside that range?
Does anyone have any good info backing them up on this?
Save the data for every run into its own row. Then later you can use and analyze the data however you like... ie, all you the other options you listed can be performed after the fact. It's not really possible for someone else to draw meaningful conclusions about how to average/analyze the data without knowing more about what's going on.
The fastest run is the one that most accurately times only your code.
All slower runs are slower because of noise introduced by the operating system scheduler.
The variance you experience is going to differ from machine to machine, and even on identical machines, the set of runnable processes will introduce noise.
None of the above. Bran is close though. You should save every measurment. But don't average them. The average (arithmetic mean) can be very misleading in this type of analysis. The reason is that some of your measurments will be much longer than the others. This will happen becuse things can interfere with your process - even on 'clean' test systems. It can also happen becuse your process may not be as deterministic as you might thing.
Some people think that simply taking more samples (running more iterations) and averaging the measurmetns will give them better data. It doesn't. The more you run, the more likelty it is that you will encounter a perturbing event, thus making the average overly high.
A better way to do this is to run as many measurments as you can (time permitting). 100 is not a bad number, but 30-ish can be enough.
Then, sort these by magnitude and graph them. Note that this is not a standard distribution. Compute compute some simple statistics: mean, median, min, max, lower quaertile, upper quartile.
Contrary to some guidance, do not 'throw away' outside vaulues or 'outliers'. These are often the most intersting measurments. For example, you may establish a nice baseline, then look for departures. Understanding these departures will help you fully understand how your process works, how the sytsem affecdts your process, and what can interfere with your process. It will often readily expose bugs.
Depends what kind of data you want. I'd say one line per run initially, then analyze the data, go from there. Maybe store a min/max/average of X runs if you want to consolidate it.
http://en.wikipedia.org/wiki/Sample_size
Bryan is right - you need to investigate more. if your code has that much variance even "most" of the time then you might have a lot of fluctuation in your test environment because of other processes, os paging or other factors. If not it seems that you have code paths doing wildly varying amount of work and coming up with a single number/run data to describe the performance of such a multi-modal system is not going to tell you much. So i'd say isolate your setup as much as possible, run at least 30 trials and get a feel for what your performance curve looks like. Once you have that, you can use that wikipedia page to come up with a number that will tell you how many trials you need to run per code-change to see if the performance has increased/decreased with some level of statistical significance.
While saying, "Save every run," is nice, it might not be practical in your case. However, I do think that storing only the average eliminates too much data. I like storing the average of ten runs, but instead of storing just the average, I'd also store the max and min values, so that I can get a feel for the spread of the data in addition to its center.
The max and min information in particular will tell you how often corner cases arise. Is the 1500ms case a one-in-1000 outlier? Or is it something that recurs on a regular basis?
This question is about a whole class of similar problems, but I'll ask it as a concrete example.
I have a server with a file system whose contents fluctuate. I need to monitor the available space on this file system to ensure that it doesn't fill up. For the sake of argument, let's suppose that if it fills up, the server goes down.
It doesn't really matter what it is -- it might, for example, be a queue of "work".
During "normal" operation, the available space varies within "normal" limits, but there may be pathologies:
Some other (possibly external)
component that adds work may run out
of control
Some component that removes work seizes up, but remains undetected
The statistical characteristics of the process are basically unknown.
What I'm looking for is an algorithm that takes, as input, timed periodic measurements of the available space (alternative suggestions for input are welcome), and produces as output, an alarm when things are "abnormal" and the file system is "likely to fill up". It is obviously important to avoid false negatives, but almost as important to avoid false positives, to avoid numbing the brain of the sysadmin who gets the alarm.
I appreciate that there are alternative solutions like throwing more storage space at the underlying problem, but I have actually experienced instances where 1000 times wasn't enough.
Algorithms which consider stored historical measurements are fine, although on-the-fly algorithms which minimise the amount of historic data are preferred.
I have accepted Frank's answer, and am now going back to the drawing-board to study his references in depth.
There are three cases, I think, of interest, not in order:
The "Harrods' Sale has just started" scenario: a peak of activity that at one-second resolution is "off the dial", but doesn't represent a real danger of resource depletion;
The "Global Warming" scenario: needing to plan for (relatively) stable growth; and
The "Google is sending me an unsolicited copy of The Index" scenario: this will deplete all my resources in relatively short order unless I do something to stop it.
It's the last one that's (I think) most interesting, and challenging, from a sysadmin's point of view..
If it is actually related to a queue of work, then queueing theory may be the best route to an answer.
For the general case you could perhaps attempt a (multiple?) linear regression on the historical data, to detect if there is a statistically significant rising trend in the resource usage that is likely to lead to problems if it continues (you may also be able to predict how long it must continue to lead to problems with this technique - just set a threshold for 'problem' and use the slope of the trend to determine how long it will take). You would have to play around with this and with the variables you collect though, to see if there is any statistically significant relationship that you can discover in the first place.
Although it covers a completely different topic (global warming), I've found tamino's blog (tamino.wordpress.com) to be a very good resource on statistical analysis of data that is full of knowns and unknowns. For example, see this post.
edit: as per my comment I think the problem is somewhat analogous to the GW problem. You have short term bursts of activity which average out to zero, and long term trends superimposed that you are interested in. Also there is probably more than one long term trend, and it changes from time to time. Tamino describes a technique which may be suitable for this, but unfortunately I cannot find the post I'm thinking of. It involves sliding regressions along the data (imagine multiple lines fitted to noisy data), and letting the data pick the inflection points. If you could do this then you could perhaps identify a significant change in the trend. Unfortunately it may only be identifiable after the fact, as you may need to accumulate a lot of data to get significance. But it might still be in time to head off resource depletion. At least it may give you a robust way to determine what kind of safety margin and resources in reserve you need in future.