Find specific shapes in an image - image

I have the following problem, I'm working with gel electrophoresis images [A][B] which show DNA fragments (appear as white bands). I want to extract them and analyze them (on the right site is a standard of known size and concentration, which can be extrapolate to the other three samples). Each sample is loaded into a lane. One task is to find the lanes (in this case 4) and the other to extract at which position in the picture a DNA band is present.
I have some problems with finding the bands. I tried already several things, e.g. pixel comparison, edge detection, corner detection, template matching, binary image, but all of them give insufficient results especially if the pictures are bad (might be a bad ran, kind of smearing[C]) or if the bands are to close tot each other.
Since I'm not an image expert, could someone drop some keywords what is usually used in such cases? Actually I'm even not sure whether the problem is about image segmentation or pattern recognition?!
Any hints would be highly appreciated (also books for beginners).
Thanks in advance!
[A] http://en.wikipedia.org/wiki/Gel_electrophoresis
[B]
[C]

In this case, profile extraction will probably do the trick: take a vertical slice of the image across a lane (assuming you have a rough idea of the position), and average the pixel values on every row of the slice. This will give you a 1D signal where the bands appear as distinct peaks of varying heights.
You can detect the peak locations by looking for local maxima (not so robust here), or better by finding sufficiently long increasing and decreasing signal value sequences.
I would more call this a segmentation problem.
Final hint: the lanes might also be located by analysing the profile obtained by averaging on the columns.

Related

Recognize recurring images into a larger one

Edit: this is not a duplicate of Determine if an image exists within a larger image, and if so, find it, using Python since I do not know the pattern beforehand
Suppose I have a big image (usually a picture taken with a camera so it might be a bit noisy, but let's assume it's not for now) made up of multiple smaller images all equal among themselves, something like
I need to find the contour of each one of those. The first step is recognizing that there's a recurring image (or unknown pattern) in the 2D image. How can I achieve this first step?
I did read around that I might use a FFT of the original image and search for duplicate frequencies, would that be a feasible approach?
To build a bit on the problem: I do not know the image beforehand, nor its size or how many will there be on the big image. The images can be shot from camera so they might be noisy. The images won't overlap.
You can try to use described keypoints (Sift/SURF/ORB/etc.) to find features in the image and try to detect the same features in the image.
You can see such a result in How to find euclidean distance between keypoints of a single image in opencv where 3x the same image is present and features are detected and linked between those subimages automatically.
In your image the result looks like
so you can see that the different occurances of the same pattern is indeed automatically detected and linked.
Next steps would be to group features to objects, so that the "whole" pattern can be extracted. Once you have a candidate for a pattern, you can extract a homography for each occurance of the pattern (with one reference candidate pattern) to verify that it is a pattern. One open problem is how to find such candidates. Maybe it is worth trying to find "parallel features", so keypoint matches that have parallel lines and/or same length lines (see image). Or maybe there is some graph theory approach.
All in all, this whole approach will have some advantages and disadvantes:
Advantages:
real world applicability - Sift and other keypoints are working quite well even with noise and some perspective effects, so chances are increased to find such patterns.
Disadvantages
slow
parametric (define what it means that two features are successfully
matched)
not suitable for all kind of patterns - your pattern must have some extractable keypoints
Those are some thoughts and probably not complete ;)
Unfortunately no full code yet for your concrete task, but I hope the idea is clear.
For such a clean image, it suffices to segment the patterns by blob analysis and to compare the segments or ROI that contain them. The size is a first matching criterion. The SAD, SSD or correlation similarity scores can do finer comparison.
In practice you will face more difficulties such as
not possible to segment the patterns
geometric variations in size/orientation
partial occlusion
...
Handling these is out of the scope of this answer; it makes things much harder than in the "toy" case.
The goal is to find several equal or very similar patterns which are not known before in a picture. As it is this problem is still a bit ill posed.
Are the patterns exactly equal or only similar (added noise maybe)?
Do you want to have the largest possible patterns or are smaller subpatterns okay too or are all possible patterns needed? Reason is that of course each pattern could consist of equal patterns too.
Is the background always that simple (completely white) or can it be much more difficult? What do we know about it?
Are the patterns always equally oriented, equally scaled, non-overlapping?
For the simple case of non-overlapping patterns with simple background, the answer of Yves Daoust using segmentation is well performing but fails if patterns are very close or overlapping.
For other cases the idea of the keypoints by Micka will help but might not perform well if there is noise or might be slow.
I have one alternative: look at correlations of subblocks of the image.
In pseudocode:
Divide the image in overlapping areas of size MxN for a suitable M,N (pixel width and height chosen to be approximately the size of the desired pattern)
Correlate each subblock with the whole image. Look for local maxima in the correlation. The position of these maxima denotes the position of similar regions.
Choose a global threshold on all correlations (smartly somehow) and find sets of equal patterns.
Determine the fine structure of these patterns by shanging the shape from rectangular (bounding box) to a more sophisticaed shape (maybe by looking at the shape of the peaks in the correlation)
In case the approximate size of the desired patterns is not known before, try with large values of M, N and go down to smaller ones.
To speed up the whole process start on a coarse scale (downscaled version of the image) and then process finer scales only where needed. Needs balancing of zooming in and performing correlations.
Sorry, I cannot make this a full Matlab project right now, but I hope this helps you.

How to count the number of spots in this image?

I am trying to count the number of hairs transplanted in the following image. So practically, I have to count the number of spots I can find in the center of image.
(I've uploaded the inverted image of a bald scalp on which new hairs have been transplanted because the original image is bloody and absolutely disgusting! To see the original non-inverted image click here. To see the larger version of the inverted image just click on it). Is there any known image processing algorithm to detect these spots? I've found out that the Circle Hough Transform algorithm can be used to find circles in an image, I'm not sure if it's the best algorithm that can be applied to find the small spots in the following image though.
P.S. According to one of the answers, I tried to extract the spots using ImageJ, but the outcome was not satisfactory enough:
I opened the original non-inverted image (Warning! it's bloody and disgusting to see!).
Splited the channels (Image > Color > Split Channels). And selected the blue channel to continue with.
Applied Closing filter (Plugins > Fast Morphology > Morphological Filters) with these values: Operation: Closing, Element: Square, Radius: 2px
Applied White Top Hat filter (Plugins > Fast Morphology > Morphological Filters) with these values: Operation: White Top Hat, Element: Square, Radius: 17px
However I don't know what to do exactly after this step to count the transplanted spots as accurately as possible. I tried to use (Process > Find Maxima), but the result does not seem accurate enough to me (with these settings: Noise tolerance: 10, Output: Single Points, Excluding Edge Maxima, Light Background):
As you can see, some white spots have been ignored and some white areas which are not actually hair transplant spots, have been marked.
What set of filters do you advise to accurately find the spots? Using ImageJ seems a good option since it provides most of the filters we need. Feel free however, to advise what to do using other tools, libraries (like OpenCV), etc. Any help would be highly appreciated!
I do think you are trying to solve the problem in a bit wrong way. It might sound groundless, so I'd better show my results first.
Below I have a crop of you image on the left and discovered transplants on the right. Green color is used to highlight areas with more than one transplant.
The overall approach is very basic (will describe it later), but still it provides close to be accurate results. Please note, it was a first try, so there is a lot of room for enhancements.
Anyway, let's get back to the initial statement saying you approach is wrong. There are several major issues:
the quality of your image is awful
you say you want to find spots, but actually you are looking for hair transplant objects
you completely ignores the fact average head is far from being flat
it does look like you think filters will add some important details to your initial image
you expect algorithms to do magic for you
Let's review all these items one by one.
1. Image quality
It might be very obvious statement, but before the actual processing you need to make sure you have best possible initial data. You might spend weeks trying to find a way to process photos you have without any significant achievements. Here are some problematic areas:
I bet it is hard for you to "read" those crops, despite the fact you have the most advanced object recognition algorithms in your brain.
Also, your time is expensive and you still need best possible accuracy and stability. So, for any reasonable price try to get: proper contrast, sharp edges, better colors and color separation.
2. Better understanding of the objects to be identified
Generally speaking, you have a 3D objects to be identified. So you can analyze shadows in order to improve accuracy. BTW, it is almost like a Mars surface analysis :)
3. The form of the head should not be ignored
Because of the form of the head you have distortions. Again, in order to get proper accuracy those distortions should be corrected before the actual analysis. Basically, you need to flatten analyzed area.
3D model source
4. Filters might not help
Filters do not add information, but they can easily remove some important details. You've mentioned Hough transform, so here is interesting question: Find lines in shape
I will use this question as an example. Basically, you need to extract a geometry from a given picture. Lines in shape looks a bit complex, so you might decide to use skeletonization
All of a sadden, you have more complex geometry to deal with and virtually no chances to understand what actually was on the original picture.
5. Sorry, no magic here
Please be aware of the following:
You must try to get better data in order to achieve better accuracy and stability. The model itself is also very important.
Results explained
As I said, my approach is very simple: image was posterized and then I used very basic algorithm to identify areas with a specific color.
Posterization can be done in a more clever way, areas detection can be improved, etc. For this PoC I just have a simple rule to highlight areas with more than one implant. Having areas identified a bit more advanced analysis can be performed.
Anyway, better image quality will let you use even simple method and get proper results.
Finally
How did the clinic manage to get Yondu as client? :)
Update (tools and techniques)
Posterization - GIMP (default settings,min colors)
Transplant identification and visualization - Java program, no libraries or other dependencies
Having areas identified it is easy to find average size, then compare to other areas and mark significantly bigger areas as multiple transplants.
Basically, everything is done "by hand". Horizontal and vertical scan, intersections give areas. Vertical lines are sorted and used to restore the actual shape. Solution is homegrown, code is a bit ugly, so do not want to share it, sorry.
The idea is pretty obvious and well explained (at least I think so). Here is an additional example with different scan step used:
Yet another update
A small piece of code, developed to verify a very basic idea, evolved a bit, so now it can handle 4K video segmentation in real-time. The idea is the same: horizontal and vertical scans, areas defined by intersected lines, etc. Still no external libraries, just a lot of fun and a bit more optimized code.
Additional examples can be found on YouTube: RobotsCanSee
or follow the progress in Telegram: RobotsCanSee
I've just tested this solution using ImageJ, and it gave good preliminary result:
On the original image, for each channel
Small (radius 1 or 2) closing in order to get rid of the hairs (black part in the middle of the white one)
White top-hat of radius 5 in order to detect the white part around each black hair.
Small closing/opening in order to clean a little bit the image (you can also use a median filter)
Ultimate erode in order to count the number of white blob remaining. You can also certainly use a LoG (Laplacian of Gaussian) or a distance map.
[EDIT]
You don't detect all the white spots using the maxima function, because after the closing, some zones are flat, so the maxima is not a point, but a zone. At this point, I think that an ultimate opening or an ultimate eroded would give you the center or each white spot. But I am not sure that there is a function/pluggin doing it in ImageJ. You can take a look to Mamba or SMIL.
A H-maxima (after white top-hat) may also clean a little bit more your results and improve the contrast between the white spots.
As Renat mentioned, you should not expect algorithms to do magic for you, however I'm hopeful to come up with a reasonable estimate of the number of spots. Here, I'm going to give you some hints and resources, check them out and call me back if you need more information.
First, I'm kind of hopeful to morphological operations, but I think a perfect pre-processing step may push the accuracy yielded by them dramatically. I want you put my finger on the pre-processing step. Thus I'm going ti work with this image:
That's the idea:
Collect and concentrate the mass around the spot locations. What do I mean my concentrating the masses? Let's open the book from the other side: As you see, the provided image contains some salient spots surrounded by some noisy gray-level dots.
By dots, I mean the pixels that are not part of a spot, but their gray-value are larger than zero (pure black) - which are available around the spots. It is clear that if you clear these noisy dots, you surely will come up with a good estimate of spots using other processing tools such as morphological operations.
Now, how to make the image more sharp? What if we could make the dots to move forward to their nearest spots? This is what I mean by concentrating the masses over the spots. Doing so, only the prominent spots will be present in the image and hence we have made a significant step toward counting the prominent spots.
How to do the concentrating thing? Well, the idea that I just explained is available in this paper, which its code is luckily available. See the section 2.2. The main idea is to use a random walker to walk on the image for ever. The formulations is stated such that the walker will visit the prominent spots far more times and that can lead to identifying the prominent spots. The algorithm is modeled Markov chain and The equilibrium hitting times of the ergodic Markov chain holds the key for identifying the most salient spots.
What I described above is just a hint and you should read that short paper to get the detailed version of the idea. Let me know if you need more info or resources.
That is a pleasure to think on such interesting problems. Hope it helps.
You could do the following:
Threshold the image using cv::threshold
Find connected components using cv::findcontour
Reject the connected components of size larger than a certain size as you seem to be concerned about small circular regions only.
Count all the valid connected components.
Hopefully, you have a descent approximation of the actual number of spots.
To be statistically more accurate, you could repeat 1-4 for a range of thresholds and take the average.
This is what you get after applying unsharpen radius 22, amount 5, threshold 2 to your image.
This increases the contrast between the dots and the surrounding areas. I used the ballpark assumption that the dots are somewhere between 18 and 25 pixels in diameter.
Now you can take the local maxima of white as a "dot" and fill it in with a black circle until the circular neighborhood of the dot (a circle of radius 10-12) erases the dot. This should let you "pick off" the dots joined to each other in clusters more than 2. Then look for local maxima again. Rinse and repeat.
The actual "dot" areas are in stark contrast to the surrounding areas, so this should let you pick them off as well as you would by eyeballing it.

Counting object on image algorithm

I got school task again. This time, my teacher gave me task to create algorithm to count how many ducks on picture.
The picture is similar to this one:
I think I should use pattern recognition for searching how many ducks on it. But I don't know which pattern match for each duck.
I think that you can solve this problem by segmenting the ducks' beaks and counting the number of connected components in the binary image.
To segment the ducks' beaks, first convert the image to HSV color space and then perform a binarization using the hue component. Note that the ducks' beaks hue are different from other parts of the image.
Here's one way:
Hough transform for circles:
Initialize an accumulator array indexed by (x,y,radius)
For each pixel:
calculate an edge (e.g. Sobel operator will provide both magnitude and direction), if magnitude exceeds some threshold then:
increment every accumulator for which this edge could possibly lend evidence (only the (x,y) in the direction of the edge, only radii between min_duck_radius and max_duck_radius)
Now smooth and threshold the accumulator array, and the coordinates of highest accumulators show you where the heads are. The threshold may leap out at you if you histogram the values in the accumulators (there may be a clear difference between "lots of evidence" and "noise").
So that's very terse, but it can get you started.
It might be just because I'm working with SIFT right now, but to me it looks like it could be good for your problem.
It is an algorithm that matches the same object on two different pictures, where the objects can have different orientations, scales and be viewed from different perspectives on the two pictures. It can also work when an object is partially hidden (as your ducks are) by another object.
I'd suggest finding a good clear picture of a rubber ducky ( :D ) and then use some SIFT implementation (VLFeat - C library with SIFT but no visualization, SIFT++ - based on VLFeat, but in C++ , Rob Hess in C with OpenCV...).
You should bear in mind that matching with SIFT (and anything else) is not perfect - so you might not get the exact number of rubber duckies in the picture.

How do I efficiently segment 2D images into regions/blobs of similar values?

How do I segment a 2D image into blobs of similar values efficiently? The given input is a n array of integer, which includes hue for non-gray pixels and brightness of gray pixels.
I am writing a virtual mobile robot using Java, and I am using segmentation to analyze the map and also the image from the camera. This is a well-known problem in Computer Vision, but when it's on a robot performance does matter so I wanted some inputs. Algorithm is what matters, so you can post code in any language.
Wikipedia article: Segmentation (image processing)
[PPT] Stanford CS-223-B Lecture 11 Segmentation and Grouping (which says Mean Shift is perhaps the best technique to date)
Mean Shift Pictures (paper is also available from Dorin Comaniciu)
I would downsample,in colourspace and in number of pixels, use a vision method(probably meanshift) and upscale the result.
This is good because downsampling also increases the robustness to noise, and makes it more likely that you get meaningful segments.
You could use floodfill to smooth edges afterwards if you need smoothness.
Some more thoughts (in response to your comment).
1) Did you blend as you downsampled? y[i]=(x[2i]+x[2i+1])/2 This should eliminate noise.
2)How fast do you want it to be?
3)Have you tried dynamic meanshift?(also google for dynamic x for all algorithms x)
Not sure if it is too efficient, but you could try using a Kohonen neural network (or, self-organizing map; SOM) to group the similar values, where each pixel contains the original color and position and only the color is used for the Kohohen grouping.
You should read up before you implement this though, as my knowledge of the Kohonen network goes as far as that it is used for grouping data - so I don't know what the performance/viability options are for your scenario.
There are also Hopfield Networks. They can be mangled into grouping from what I read.
What I have now:
Make a buffer of the same size as the input image, initialized to UNSEGMENTED.
For each pixel in the image where the corresponding buffer value is not UNSEGMENTED, flood the buffer using the pixel value.
a. The border checking of the flooding is done by checking if pixel is within EPSILON (currently set to 10) of the originating pixel's value.
b. Flood filling algorithm.
Possible issue:
The 2.a.'s border checking is called many times in the flood filling algorithm. I could turn it into a lookup if I could precalculate the border using edge detection, but that may add more time than current check.
private boolean isValuesCloseEnough(int a_lhs, int a_rhs) {
return Math.abs(a_lhs - a_rhs) <= EPSILON;
}
Possible Enhancement:
Instead of checking every single pixel for UNSEGMENTED, I could randomly pick a few points. If you are expecting around 10 blobs, picking random points in that order may suffice. Drawback is that you might miss a useful but small blob.
Check out Eyepatch (eyepatch.stanford.edu). It should help you during the investigation phase by providing a variety of possible filters for segmentation.
An alternative to flood-fill is the connnected-components algorithm. So,
Cheaply classify your pixels. e.g. divide pixels in colour space.
Run the cc to find the blobs
Retain the blobs of significant size
This approach is widely used in early vision approaches. For example in the seminal paper "Blobworld: A System for Region-Based Image Indexing and Retrieval".

Algorithm to compare two images

Given two different image files (in whatever format I choose), I need to write a program to predict the chance if one being the illegal copy of another. The author of the copy may do stuff like rotating, making negative, or adding trivial details (as well as changing the dimension of the image).
Do you know any algorithm to do this kind of job?
These are simply ideas I've had thinking about the problem, never tried it but I like thinking about problems like this!
Before you begin
Consider normalising the pictures, if one is a higher resolution than the other, consider the option that one of them is a compressed version of the other, therefore scaling the resolution down might provide more accurate results.
Consider scanning various prospective areas of the image that could represent zoomed portions of the image and various positions and rotations. It starts getting tricky if one of the images are a skewed version of another, these are the sort of limitations you should identify and compromise on.
Matlab is an excellent tool for testing and evaluating images.
Testing the algorithms
You should test (at the minimum) a large human analysed set of test data where matches are known beforehand. If for example in your test data you have 1,000 images where 5% of them match, you now have a reasonably reliable benchmark. An algorithm that finds 10% positives is not as good as one that finds 4% of positives in our test data. However, one algorithm may find all the matches, but also have a large 20% false positive rate, so there are several ways to rate your algorithms.
The test data should attempt to be designed to cover as many types of dynamics as possible that you would expect to find in the real world.
It is important to note that each algorithm to be useful must perform better than random guessing, otherwise it is useless to us!
You can then apply your software into the real world in a controlled way and start to analyse the results it produces. This is the sort of software project which can go on for infinitum, there are always tweaks and improvements you can make, it is important to bear that in mind when designing it as it is easy to fall into the trap of the never ending project.
Colour Buckets
With two pictures, scan each pixel and count the colours. For example you might have the 'buckets':
white
red
blue
green
black
(Obviously you would have a higher resolution of counters). Every time you find a 'red' pixel, you increment the red counter. Each bucket can be representative of spectrum of colours, the higher resolution the more accurate but you should experiment with an acceptable difference rate.
Once you have your totals, compare it to the totals for a second image. You might find that each image has a fairly unique footprint, enough to identify matches.
Edge detection
How about using Edge Detection.
(source: wikimedia.org)
With two similar pictures edge detection should provide you with a usable and fairly reliable unique footprint.
Take both pictures, and apply edge detection. Maybe measure the average thickness of the edges and then calculate the probability the image could be scaled, and rescale if necessary. Below is an example of an applied Gabor Filter (a type of edge detection) in various rotations.
Compare the pictures pixel for pixel, count the matches and the non matches. If they are within a certain threshold of error, you have a match. Otherwise, you could try reducing the resolution up to a certain point and see if the probability of a match improves.
Regions of Interest
Some images may have distinctive segments/regions of interest. These regions probably contrast highly with the rest of the image, and are a good item to search for in your other images to find matches. Take this image for example:
(source: meetthegimp.org)
The construction worker in blue is a region of interest and can be used as a search object. There are probably several ways you could extract properties/data from this region of interest and use them to search your data set.
If you have more than 2 regions of interest, you can measure the distances between them. Take this simplified example:
(source: per2000.eu)
We have 3 clear regions of interest. The distance between region 1 and 2 may be 200 pixels, between 1 and 3 400 pixels, and 2 and 3 200 pixels.
Search other images for similar regions of interest, normalise the distance values and see if you have potential matches. This technique could work well for rotated and scaled images. The more regions of interest you have, the probability of a match increases as each distance measurement matches.
It is important to think about the context of your data set. If for example your data set is modern art, then regions of interest would work quite well, as regions of interest were probably designed to be a fundamental part of the final image. If however you are dealing with images of construction sites, regions of interest may be interpreted by the illegal copier as ugly and may be cropped/edited out liberally. Keep in mind common features of your dataset, and attempt to exploit that knowledge.
Morphing
Morphing two images is the process of turning one image into the other through a set of steps:
Note, this is different to fading one image into another!
There are many software packages that can morph images. It's traditionaly used as a transitional effect, two images don't morph into something halfway usually, one extreme morphs into the other extreme as the final result.
Why could this be useful? Dependant on the morphing algorithm you use, there may be a relationship between similarity of images, and some parameters of the morphing algorithm.
In a grossly over simplified example, one algorithm might execute faster when there are less changes to be made. We then know there is a higher probability that these two images share properties with each other.
This technique could work well for rotated, distorted, skewed, zoomed, all types of copied images. Again this is just an idea I have had, it's not based on any researched academia as far as I am aware (I haven't look hard though), so it may be a lot of work for you with limited/no results.
Zipping
Ow's answer in this question is excellent, I remember reading about these sort of techniques studying AI. It is quite effective at comparing corpus lexicons.
One interesting optimisation when comparing corpuses is that you can remove words considered to be too common, for example 'The', 'A', 'And' etc. These words dilute our result, we want to work out how different the two corpus are so these can be removed before processing. Perhaps there are similar common signals in images that could be stripped before compression? It might be worth looking into.
Compression ratio is a very quick and reasonably effective way of determining how similar two sets of data are. Reading up about how compression works will give you a good idea why this could be so effective. For a fast to release algorithm this would probably be a good starting point.
Transparency
Again I am unsure how transparency data is stored for certain image types, gif png etc, but this will be extractable and would serve as an effective simplified cut out to compare with your data sets transparency.
Inverting Signals
An image is just a signal. If you play a noise from a speaker, and you play the opposite noise in another speaker in perfect sync at the exact same volume, they cancel each other out.
(source: themotorreport.com.au)
Invert on of the images, and add it onto your other image. Scale it/loop positions repetitively until you find a resulting image where enough of the pixels are white (or black? I'll refer to it as a neutral canvas) to provide you with a positive match, or partial match.
However, consider two images that are equal, except one of them has a brighten effect applied to it:
(source: mcburrz.com)
Inverting one of them, then adding it to the other will not result in a neutral canvas which is what we are aiming for. However, when comparing the pixels from both original images, we can definatly see a clear relationship between the two.
I haven't studied colour for some years now, and am unsure if the colour spectrum is on a linear scale, but if you determined the average factor of colour difference between both pictures, you can use this value to normalise the data before processing with this technique.
Tree Data structures
At first these don't seem to fit for the problem, but I think they could work.
You could think about extracting certain properties of an image (for example colour bins) and generate a huffman tree or similar data structure. You might be able to compare two trees for similarity. This wouldn't work well for photographic data for example with a large spectrum of colour, but cartoons or other reduced colour set images this might work.
This probably wouldn't work, but it's an idea. The trie datastructure is great at storing lexicons, for example a dictionarty. It's a prefix tree. Perhaps it's possible to build an image equivalent of a lexicon, (again I can only think of colours) to construct a trie. If you reduced say a 300x300 image into 5x5 squares, then decompose each 5x5 square into a sequence of colours you could construct a trie from the resulting data. If a 2x2 square contains:
FFFFFF|000000|FDFD44|FFFFFF
We have a fairly unique trie code that extends 24 levels, increasing/decreasing the levels (IE reducing/increasing the size of our sub square) may yield more accurate results.
Comparing trie trees should be reasonably easy, and could possible provide effective results.
More ideas
I stumbled accross an interesting paper breif about classification of satellite imagery, it outlines:
Texture measures considered are: cooccurrence matrices, gray-level differences, texture-tone analysis, features derived from the Fourier spectrum, and Gabor filters. Some Fourier features and some Gabor filters were found to be good choices, in particular when a single frequency band was used for classification.
It may be worth investigating those measurements in more detail, although some of them may not be relevant to your data set.
Other things to consider
There are probably a lot of papers on this sort of thing, so reading some of them should help although they can be very technical. It is an extremely difficult area in computing, with many fruitless hours of work spent by many people attempting to do similar things. Keeping it simple and building upon those ideas would be the best way to go. It should be a reasonably difficult challenge to create an algorithm with a better than random match rate, and to start improving on that really does start to get quite hard to achieve.
Each method would probably need to be tested and tweaked thoroughly, if you have any information about the type of picture you will be checking as well, this would be useful. For example advertisements, many of them would have text in them, so doing text recognition would be an easy and probably very reliable way of finding matches especially when combined with other solutions. As mentioned earlier, attempt to exploit common properties of your data set.
Combining alternative measurements and techniques each that can have a weighted vote (dependant on their effectiveness) would be one way you could create a system that generates more accurate results.
If employing multiple algorithms, as mentioned at the begining of this answer, one may find all the positives but have a false positive rate of 20%, it would be of interest to study the properties/strengths/weaknesses of other algorithms as another algorithm may be effective in eliminating false positives returned from another.
Be careful to not fall into attempting to complete the never ending project, good luck!
Read the paper: Porikli, Fatih, Oncel Tuzel, and Peter Meer. “Covariance Tracking Using Model Update Based
on Means on Riemannian Manifolds”. (2006) IEEE Computer Vision and Pattern Recognition.
I was successfully able to detect overlapping regions in images captured from adjacent webcams using the technique presented in this paper. My covariance matrix was composed of Sobel, canny and SUSAN aspect/edge detection outputs, as well as the original greyscale pixels.
An idea:
use keypoint detectors to find scale- and transform- invariant descriptors of some points in the image (e.g. SIFT, SURF, GLOH, or LESH).
try to align keypoints with similar descriptors from both images (like in panorama stitching), allow for some image transforms if necessary (e.g. scale & rotate, or elastic stretching).
if many keypoints align well (exists such a transform, that keypoint alignment error is low; or transformation "energy" is low, etc.), you likely have similar images.
Step 2 is not trivial. In particular, you may need to use a smart algorithm to find the most similar keypoint on the other image. Point descriptors are usually very high-dimensional (like a hundred parameters), and there are many points to look through. kd-trees may be useful here, hash lookups don't work well.
Variants:
Detect edges or other features instead of points.
It is indeed much less simple than it seems :-) Nick's suggestion is a good one.
To get started, keep in mind that any worthwhile comparison method will essentially work by converting the images into a different form -- a form which makes it easier to pick similar features out. Usually, this stuff doesn't make for very light reading ...
One of the simplest examples I can think of is simply using the color space of each image. If two images have highly similar color distributions, then you can be reasonably sure that they show the same thing. At least, you can have enough certainty to flag it, or do more testing. Comparing images in color space will also resist things such as rotation, scaling, and some cropping. It won't, of course, resist heavy modification of the image or heavy recoloring (and even a simple hue shift will be somewhat tricky).
http://en.wikipedia.org/wiki/RGB_color_space
http://upvector.com/index.php?section=tutorials&subsection=tutorials/colorspace
Another example involves something called the Hough Transform. This transform essentially decomposes an image into a set of lines. You can then take some of the 'strongest' lines in each image and see if they line up. You can do some extra work to try and compensate for rotation and scaling too -- and in this case, since comparing a few lines is MUCH less computational work than doing the same to entire images -- it won't be so bad.
http://homepages.inf.ed.ac.uk/amos/hough.html
http://rkb.home.cern.ch/rkb/AN16pp/node122.html
http://en.wikipedia.org/wiki/Hough_transform
In the form described by you, the problem is tough. Do you consider copy, paste of part of the image into another larger image as a copy ? etc.
What we loosely refer to as duplicates can be difficult for algorithms to discern.
Your duplicates can be either:
Exact Duplicates
Near-exact Duplicates. (minor edits of image etc)
perceptual Duplicates (same content, but different view, camera etc)
No1 & 2 are easier to solve. No 3. is very subjective and still a research topic.
I can offer a solution for No1 & 2.
Both solutions use the excellent image hash- hashing library: https://github.com/JohannesBuchner/imagehash
Exact duplicates
Exact duplicates can be found using a perceptual hashing measure.
The phash library is quite good at this. I routinely use it to clean
training data.
Usage (from github site) is as simple as:
from PIL import Image
import imagehash
# image_fns : List of training image files
img_hashes = {}
for img_fn in sorted(image_fns):
hash = imagehash.average_hash(Image.open(image_fn))
if hash in img_hashes:
print( '{} duplicate of {}'.format(image_fn, img_hashes[hash]) )
else:
img_hashes[hash] = image_fn
Near-Exact Duplicates
In this case you will have to set a threshold and compare the hash values for their distance from each
other. This has to be done by trial-and-error for your image content.
from PIL import Image
import imagehash
# image_fns : List of training image files
img_hashes = {}
epsilon = 50
for img_fn1, img_fn2 in zip(image_fns, image_fns[::-1]):
if image_fn1 == image_fn2:
continue
hash1 = imagehash.average_hash(Image.open(image_fn1))
hash2 = imagehash.average_hash(Image.open(image_fn2))
if hash1 - hash2 < epsilon:
print( '{} is near duplicate of {}'.format(image_fn1, image_fn2) )
If you take a step-back, this is easier to solve if you watermark the master images.
You will need to use a watermarking scheme to embed a code into the image. To take a step back, as opposed to some of the low-level approaches (edge detection etc) suggested by some folks, a watermarking method is superior because:
It is resistant to Signal processing attacks
► Signal enhancement – sharpening, contrast, etc.
► Filtering – median, low pass, high pass, etc.
► Additive noise – Gaussian, uniform, etc.
► Lossy compression – JPEG, MPEG, etc.
It is resistant to Geometric attacks
► Affine transforms
► Data reduction – cropping, clipping, etc.
► Random local distortions
► Warping
Do some research on watermarking algorithms and you will be on the right path to solving your problem. (
Note: You can benchmark you method using the STIRMARK dataset. It is an accepted standard for this type of application.
This is just a suggestion, it might not work and I'm prepared to be called on this.
This will generate false positives, but hopefully not false negatives.
Resize both of the images so that they are the same size (I assume that the ratios of widths to lengths are the same in both images).
Compress a bitmap of both images with a lossless compression algorithm (e.g. gzip).
Find pairs of files that have similar file sizes. For instance, you could just sort every pair of files you have by how similar the file sizes are and retrieve the top X.
As I said, this will definitely generate false positives, but hopefully not false negatives. You can implement this in five minutes, whereas the Porikil et. al. would probably require extensive work.
I believe if you're willing to apply the approach to every possible orientation and to negative versions, a good start to image recognition (with good reliability) is to use eigenfaces: http://en.wikipedia.org/wiki/Eigenface
Another idea would be to transform both images into vectors of their components. A good way to do this is to create a vector that operates in x*y dimensions (x being the width of your image and y being the height), with the value for each dimension applying to the (x,y) pixel value. Then run a variant of K-Nearest Neighbours with two categories: match and no match. If it's sufficiently close to the original image it will fit in the match category, if not then it won't.
K Nearest Neighbours(KNN) can be found here, there are other good explanations of it on the web too: http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm
The benefits of KNN is that the more variants you're comparing to the original image, the more accurate the algorithm becomes. The downside is you need a catalogue of images to train the system first.
If you're willing to consider a different approach altogether to detecting illegal copies of your images, you could consider watermarking. (from 1.4)
...inserts copyright information into the digital object without the loss of quality. Whenever the copyright of a digital object is in question, this information is extracted to identify the rightful owner. It is also possible to encode the identity of the original buyer along with the identity of the copyright holder, which allows tracing of any unauthorized copies.
While it's also a complex field, there are techniques that allow the watermark information to persist through gross image alteration: (from 1.9)
... any signal transform of reasonable strength cannot remove the watermark. Hence a pirate willing to remove the watermark will not succeed unless they debase the document too much to be of commercial interest.
of course, the faq calls implementing this approach: "...very challenging" but if you succeed with it, you get a high confidence of whether the image is a copy or not, rather than a percentage likelihood.
If you're running Linux I would suggest two tools:
align_image_stack from package hugin-tools - is a commandline program that can automatically correct rotation, scaling, and other distortions (it's mostly intended for compositing HDR photography, but works for video frames and other documents too). More information: http://hugin.sourceforge.net/docs/manual/Align_image_stack.html
compare from package imagemagick - a program that can find and count the amount of different pixels in two images. Here's a neat tutorial: http://www.imagemagick.org/Usage/compare/ uising the -fuzz N% you can increase the error tolerance. The higher the N the higher the error tolerance to still count two pixels as the same.
align_image_stack should correct any offset so the compare command will actually have a chance of detecting same pixels.

Resources