What is the Makefile Target `.c.o` for? - makefile

Someone recently mentioned the target .c.o in Makefiles for cross compatability, but I fail to understand its purpose. Can anyone clarify?

It's an old-fashioned suffix rule. The more up-to-date way to do it is to use a pattern rule:
%.o : %.c

It's a canned rule for translating .c files, i.e. C modules, to .o object files. It exists so you don't have to write this rule yourself and is parameterized by Make variables such as CC (the C compiler to use), CFLAGS (compiler flags), etc.
So, if you use this implicit rule to compile C modules and don't tinker with any Make variables, then the person building your code can specify a compiler and flags on the command line without editing the Makefile.

Related

Missing dependency in Makefile

I have these recipes in my Makefile. They generate cross-compiled objects for ARM architecture and link them into an elf binary:
%.ao: %.c
$(ARM_CC) $(ARM_CPPFLAGS) $(ARM_FLAGS) $(CFLAGS) -c -o $# $<
%.elf: %.ao startup_stm32f0xx.ao system_stm32f0xx.ao
$(ARM_CC) $(ARM_FLAGS) $other_arguments -o $# $^
This works fine from a clean build.
Contrary to my expectation, if I then say touch foo.c; make foo.elf, gmake responds with
make: 'foo.elf' is up to date.
If I try to make foo.ao, gmake says that it, too , is up to date.
What am I missing?
Edit after reading the comments:
TLDR: I did have multiple rules matching the same target, as John Bollinger alluded and HardcoreHenry said specifically.
In addition to the rules above, there's a rule for assembly sources so I can use those vendor files:
%.ao: %.s
$(ARM_CC) $(ARM_CPPFLAGS) $(ARM_FLAGS) $(CFLAGS) -c -o $# $<
I had been debugging some macros, and used -save-temps to look at preprocessor output. This option also writes .s files. So after I'd run make foo.elf, I'd have the following in my directory:
foo.c
foo.i
foo.s
foo.ao
foo.elf
I can touch foo.c, but make sees that there's a foo.s which is older than foo.ao, and produces the output that it does. On a clean build, there is no foo.s, so make finds the %.c:%.ao rule and the build proceeds from foo.c.
(BTW, .ao stands for ARM object. In addition to cross-compiling for AMR, I compile many of the sources to run unit tests on the host, using the built-in .o:.c rule)
I'm not a fan of pattern rules.
Make can make very strange decisions on which rules apply depending on whatever is lying around on your hard disks.
It's all a bit arbitrary.
Much better IMHO to tell make exactly what files you need for a target.
It's pretty easy too.
Just prefix your pattern rule with the list of targets you actually want it to apply to.
This makes it a Static Pattern Rule.
objects := main.ao tools.ao devices.ao# etc
${objects}: %.ao: %.c
$(ARM_CC) $(ARM_CPPFLAGS) $(ARM_FLAGS) $(CFLAGS) -c -o $# $<
%.elf: ${objects} startup_stm32f0xx.ao system_stm32f0xx.ao
$(ARM_CC) $(ARM_FLAGS) $other_arguments -o $# $^
As an added bonus, make now won't try to create the pre-existing startup_stm32f0xx.ao and system_stm32f0xx.ao.
Usually I find it nicer to list the source files, but YMMV:
sources := main.c tools.c devices.c
objects := $(patsubst $.c,%.ao,${sources})
(P.S. Using a Static Pattern Rule doesn't really give you any advantage over a normal rule in this noddy case. I just wanted to show a small tweak that would make your makefiles much more consistent in their behaviour.)
I know it's bad form to use an answer to respond to another answer, but I ran out of space in a comment to #bobbogo's answer.
Sorry but I can't agree with your assessment of pattern rules. It's not true that you will get "strange decisions" based on "whatever is lying around on your harddisks", and it's certainly not arbitrary.
There is one advantage of static pattern rules over pattern rules, and that is also its downside: a static pattern rule is a shorthand for creating an explicit rule, so that rule will always be used to build that target. A pattern rule, on the other hand, is just one possible way to build a target: if the prerequisites of a pattern rule don't exist and can't be made, then make keeps going and looks for other pattern rules that might be able to build that target.
So if you have multiple possible ways you can build a target then an explicit rule cannot be used for that.
The problem with pattern rules is that if NO pattern rule applies then make just assumes there is no rule to build that target. If the target exists then make simply says "up to date" (as we see in the question) since there's no rule to build it. That can be confusing to users.
If you use an explicit rule (including a static pattern rule) and some prerequisite doesn't exist and can't be created, then make will exit with an error, which can make it easier to figure out what went wrong.

Not able to understand the use of .suffixes rule in makefile ubuntu

I have seen various makefiles where they use the .SUFFIXES rule. As per my understanding which means, taking a simple example
step1:
.SUFFIXES: .o .c .cpp .cc .cxx .C
#where $< indicates the source file and $# represents the target file.
.cpp.o:
$(CXX) -c $(INCPATH) -o "$#" "$<"
it will compile the target file to a .o file using the source with CXX compiler.
But after this i also see some other commands like
step2:
all: Makefile $(TARGET)
Step3:
someobjectfile.o: dependencies
So, if we can use .SUFFIXES rule to compile my target then why to use Step3.
i apologies if it is a silly question.
I'll start off by pointing out that suffix rules are obsolete in GNU make
Suffix rules are the old-fashioned way of defining implicit rules for make. Suffix rules are obsolete because pattern rules are more general and clearer. They are supported in GNU make for compatibility with old makefiles.
(Although for legacy reasons .SUFFIXES still controls which built-in rules will be available.)
That said, just because you've told make that .o files can be compiled from sources with certain suffixes does not mean that there aren't any other dependencies beyond the individual source file, the following is extremely common for example
someobjectfile.o: someheader.h someotherheader.h
.SUFFIXES controls suffix rules:
Suffix rules are the old-fashioned way of defining implicit rules for make. Suffix rules are obsolete because pattern rules are more general and clearer. They are supported in GNU make for compatibility with old makefiles.
In other words, you can ignore .SUFFIXES and write your pattern rule as:
%.o : %.cpp
someobjectfile.o: dependencies
The above adds dependencies of someobjectfile.o regardless of how .o are made.

Why does my GNU make skip making an object file (%.o) when building an %.s (assembler) program?

I am using implicit rules only - removing the makefile altogether for a minimal test case. I have an empty (no problem for GNU assembler) program.s file. Executing:
make program
Gives me following output from make:
cc program.s -o program
(and of course the expected errors, which here is of no importance for the question: since my assembler source file is empty, there is no "_start" and all kinds of linking fails.)
I wonder, why does make choose to attempt to build the program in one go? As opposed to first using as program.s ... and then ld program.o ...? Is this because it considers the object file unnecessary in my scenario here?
If I do make program.o, then as program.as ... is invoked, producing my program.o as expected.
Make will always choose one-step implicit rules in preference to multi-step implicit rules, to get the same result. In this case, make contains built-in rules that create an executable both from an object file, but also directly from various source files including assembly:
%: %.s
# recipe to execute (built-in):
$(LINK.s) $^ $(LOADLIBES) $(LDLIBS) -o $#
Since this is shorter than first building the .o then building the executable from the .o, and since your makefile doesn't say you want the .o, make uses the shortest set of steps.

How to deal with autoconf warning "'%'-style pattern rules are a GNU make extension"

In a Makefile with
%.o: %.c
#echo Compiling $< ...
I'm getting the warning '%'-style pattern rules are a GNU make extension when I run autoreconf --install (of autoconf version 2.69). The warning is not very clear, but makes me think that there's something to be added to configure.ac.
I conducted searches on google.com, duckduckgo.com and yahoo.com, but they all don't seem to be able to differentiate between the large number of build logs they index (why should they...) which makes the search painful. I figured that:
I can silence the warning by adding AM_INIT_AUTOMAKE([-Wno-portability]) to configure.ac (found in a post of the openais mailing list) which seems not great because simply silencing a warning is generally not a good idea in a technical environment - please tell me if GNU autotools is an exception.
Replace
%.o: %.c
with
.c.o:
That's a suffix rule doing the same thing, and it's more portable. If your rule involves a suffix that is not known to make, list it in the prerequisites for the special .SUFFIXES target:
.SUFFIXES: .hack .win
.hack.win:
# build a .win file from a .hack file.
More on how this works in detail here. They recommend to use pattern rules instead of suffix rules because they're clearer and more general, which is true, but as autoconf notes, they are indeed less portable. So if that is a worry (if you want to build on BSD/Mac OS and not install GNU make, basically), fall back on the "old-fashioned suffix rules."
If you have a pattern rule that cannot be replaced by a suffix rule, another possible replacement that automake doesn't complain about is a static pattern rule. This is similar to a pattern rule but requires a list of targets it applies to. Instead of saying
%.o: %.c
You would have to say
OBJS = foo.o bar.o baz.o # list all .o files here
$(OBJS): %.o: %.c
Or more generally,
target-pattern: prerequisite-pattern
is replaced by
target-list: target-pattern: prerequisite-pattern
Winteermute covered almost all aspects of the issue. I will add one of my own frustrations here. In my make file, I have been using a pattern rule to install shell scripts without their .sh suffix. Automake does not like pattern rules and give you warning. You can simply ignore the warning for now. My configure.ac file:
AM_INIT_AUTOMAKE([-Wall -Wportability])
In my Makefile.am
dist_bin_SCRIPTS = foobar
# pattern rule
% : %.sh
cp $< $#
chmod +x $#
In my script directory I have the foobar.sh file.
I have not been able to figure out a better way to specify a suffix rule to cover the case where the target does not have an extension although I really tried hard to search on the internet and read the manuals backward a few times.
The reason I am distributing the *.sh file is that the user does not have to know the implementation details. They just need to remember the name of the executable. Furthermore, asking the user to type the extra .sh is really a waste of life.

How do you compile without linking in Automake?

I am new to Automake and I am attempting to compile without linking. My goal is to generate a simple Makefile as shown below using Automake.
CFLAG = -Wall
build: Thread.o
Thread.o: Thread.cc Thread.h
g++ $(CFLAG) -c Thread.cc
clean:
rm -f *.o
My attempt so far has brought me to the following Makefile.ac.
noinst_PROGRAMS = thread
thread_SOURCES = Thread.cc
EXTRA_DIST= Thread.h
How can I simulate my original Makefile?
One way is to do this is to fool Automake by providing link command that does not link:
thread_LINK = true
Other than that, I wouldn't be suprised if Automake did not have such feature.
For your example, you can just ask Automake to build your .o file directly, e.g.:
$ make Thread.o
I believe this is an implicit rule, so you won't see it in the output Makefile.
In general, Automake generates variables containing all the objects required for each executable or library target. It's pretty straightforward to use them in your Makefile, since it just generates their names by appending _OBJECTS to the target name. You could make your own target in Makefile.am like this:
build-thread: $(thread_OBJECTS)
Then you could build just Thread.o (and any other objects needed for thread) like this:
$ make build-thread
Or if you had multiple targets foo, bar, and baz, you could make your compile-only target in Makefile.am like this:
build: $(foo_OBJECTS) $(bar_OBJECTS) $(baz_OBJECTS)
The only pain here is that you'll need to maintain this list yourself based on the targets in your Makefile.am. You can invoke it at the command line like this:
$ make build
Automake is not designed to produce object. It will build either programs or libraries.
It's hard to answer your question without knowing why you'd want to compile a single object file and not something else. Maybe there is a cleaner answer to your "real" problem.
A Makefile.am you could write is
noinst_LIBRARIES = libThread.a
libThread_a_SOURCES = Thread.cc Thread.h # No need to put headers in EXTRA_DIST
The resulting Makefile would build a library libThread.a containing only libThread.o, ans because *.a libraries are just a collection of object files there is no linking involved.
The above Makefile.am also causes the emitted Makefile to contain rules to compile libThread.o, so you can add a build: rule if you like.
If you really want Automake to emit this compile rule, but not build the library, you could go with
EXTRA_LIBRARIES = libThread.a # EXTRA here means "output build rules but don't
# build unless something depends on it".
libThread_a_SOURCES = Thread.cc Thread.h
build: Thread.$(OBJEXT)
Now you are explicitely requiring the file Thread.$(OBJEXT) to be built only when you type make build, as in your original Makefile.
(Automake uses .$(OBJEXT) rather than .o to support extensions like .obj in DOS variants.)
First off, automake is a tool to auto make making Makefiles; make in and of itself is a whole different beast (and I'm pretty sure that what you were looking for was a make solution).
Here's the easiest GNU based Makefile to accomplish what you want:
all: Thread.o
This fills in something (by default) like the following (please change 4-space whitespace to hard tabs):
all: Thread.o
Thread.o: Thread.cc
$(COMPILE.cpp) $(OUTPUT_OPTION) $<
The COMPILE.cpp and OUTPUT_OPTION macros of course expand by default to GNU make specified values and aren't portable; $< is AT&T Make standard syntax though according to pmake(1)'s manpage though.
GNU make has a concept of implicit vs explicit rules, patterns, suffixes, etc that you could use, but that's not portable to all versions of make, and hence that's why all of the Makefile is plainly spelled out in terms of targets and variables as POSIX doesn't describe many of the desired scenarios for how one should write a Makefile.
Run gmake -p for more details and take a look at the texinfo manual for gmake in the topic of implicit, explicit rules, patterns, suffixes, etc.

Resources