I started learning about approximation algorithms,
I'm reading a book about that and I don't understand the analysis for the set cover algorithm.
Can someone please explain lemma 2.3 ?
it's short but I don't understand it...
http://view.samurajdata.se/psview.php?id=0482e9ff&page=13
The algorithm is assigning a "price" price(e) to each element of the universe U where that price is the cost of the set S used to cover e divided by the number of elements newly covered by the set S (any elements already covered must have been assigned a lower price by a previous set due to the definition of the algorithm).
There exists an optimal solution which chooses a set of sets with total cost OPT. As that solution covers all elements, it certainly covers whatever elements have not yet been covered. Covering the rest of the elements (the set CBar in the notation of the proof) at cost OPT would mean covering each element at cost-effectiveness OPT/|CBar| by the definition of cost-effectiveness (aka price). As the optimal solution contains a set which covers all remaining elements, suppose we pick a set S from the optimal solution which covers at least one remaining element (e_k in lemma 2.3). Note that we are choosing the set with the best cost-effectiveness, so its cost-effectiveness must be at least as good as the average cost-effectiveness of the sets in the optimal solution of OPT/|CBar|.
The last part is that due to the definitions, |CBar|=n-(k-1)=n-k+1 as k-1 elements have already been covered and we are looking at covering element k. Therefore, the cost-effectiveness of S and therefore price(e_k) is bounded by OPT/(n-k+1).
Related
I don't generally ask questions on SO, so if this question seems inappropriate for SO, just tell me (help would still be appreciated of course).
I'm still a student and I'm currently taking a class in Algorithms. We recently learned about the Branch-and-Bound paradigm and since I didn't fully understand it, I tried to do some exercises in our course book. I came across this particular instance of the Set Cover problem with a special twist:
Let U be a set of elements and S = {S1, S2, ..., Sn} a set of subsets of U, where the union of all sets Si equals U. Outline a Branch-and-Bound algorithm to find a minimal subset Q of S, so that for all elements u in U there are at least two sets in Q, which contain u. Specifically, elaborate how to split the problem up into subproblems and how to calculate upper and lower bounds.
My first thought was to sort all the sets Si in S in descending order, according to how many elements they contain which aren't yet covered at least twice by the currently chosen subsets of S, so our current instance of Q. I was then thinking of recursively solving this, where I choose the first set Si in the sorted order and make one recursive call, where I take this set Si and one where I don't (meaning from those recursive calls onwards the subset is no longer considered). If I choose it I would then go through each element in this chosen subset Si and increase a counter for all its elements (before the recursive call), so that I'll eventually know, when an element is already covered by two or more chosen subsets. Since I sort the not chosen sets Si for each recursive call, I would theoretically (in my mind at least) always be making the best possible choice for the moment. And since I basically create a binary tree of recursive calls, because I always make one call with the current best subset chosen and one where I don't I'll eventually cover all 2^n possibilities, meaning eventually I'll find the optimal solution.
My problem now is I don't know or rather understand how I would implement a heuristic for upper and lower bounds, so the algorithm can discard some of the paths in the binary tree, which will never be better than the current best Q. I would appreciate any help I could get.
Here's a simple lower bound heuristic: Find the set containing the largest number of not-yet-twice-covered elements. (It doesn't matter which set you pick if there are multiple sets with the same, largest possible number of these elements.) Suppose there are u of these elements in total, and this set contains k <= u of them. Then, you need to add at least u/k further sets before you have a solution. (Why? See if you can prove this.)
This lower bound works for the regular set cover problem too. As always with branch and bound, using it may or may not result in better overall performance on a given instance than simply using the "heuristic" that always returns 0.
First, some advice: don't re-sort S every time you recurse/loop. Sorting is an expensive operation (O(N log N)) so putting it in a loop or a recursion usually costs more than you gain from it. Generally you want to sort once at the beginning, and then leverage that sort throughout your algorithm.
The sort you've chosen, descending by the length of the S subsets is a good "greedy" ordering, so I'd say just do that upfront and don't re-sort after that. You don't get to skip over subsets that are not ideal within your recursion, but checking a redundant/non-ideal subset is still faster than re-sorting every time.
Now what upper/lower bounds can you use? Well generally, you want your bounds and bounds-checking to be as simple and efficient as possible because you are going to be checking them a lot.
With this in mind, an upper bounds is easy: use the shortest set-length solution that you've found so far. Initially set your upper-bounds as var bestQlength = int.MaxVal, some maximum value that is greater than n, the number of subsets in S. Then with every recursion you check if currentQ.length > bestQlength, if so then this branch is over the upper-bounds and you "prune" it. Obviously when you find a new solution, you also need to check if it is better (shorter) than your current bestQ and if so then update both bestQ and bestQlength at the same time.
A good lower bounds is a bit trickier, the simplest I can think of for this problem is: Before you add a new subset Si into your currentQ, check to see if Si has any elements that are not already in currentQ two or more times, if it does not, then this Si cannot contribute in any way to the currentQ solution that you are trying to build, so just skip it and move on to the next subset in S.
I have a list L of lists l[i] of elements e. I am looking for an algorithm that finds a minimum set S_min of elements such that at least one member of S_min occurs in each l.
I am not only curious to find a simple algorithm that does this for me, but also to learn what problems of this sort are actually called. I am sure there is something out there
I have implemented brute force algorithms that start with adding all those elements to S_min which occur in sets of len(l[i])=1. The rest is simple trial and error.
The problem you describe ist the vertex cover problem in hypergraphs, an optimization problem which is NP-hard in the general case but admits approximation algorithms for suitably bounded instances.
I'm working with a problem that is similar to the box stacking problem that can be solved with a dynamic programming algorithm. I read posts here on SO about it but I have a difficult time understanding the DP approach, and would like some explanation as to how it works. Here's the problem at hand:
Given X objects, each with its own weight 'w' and strength 's', how
many can you stack on top of each other? An object can carry its own
weight and the sum of all weights on top of it as long as it does not
exceed its strength.
I understand that it has an optimal substructure, but its the overlapping subproblem part that confuses me. I'm trying to create a recursion tree to see where it would calculate the same thing several times, but I can't figure out if the function would take one or two parameters for example.
The first step to solving this problem is proving that you can find an optimal stack with boxes ordered from highest to lowest strength.
Then you just have to sort the boxes by strength and figure out which ones are included in the optimal stack.
The recursive subproblem has two parameters: find the best stack you can put on top of a stack with X remaining strength, using boxes at positions >= Y in the list.
If good DP solution exists, it takes 2 params:
number of visited objects or number of unvisited objects
total weight of unvisited objects you can currently afford (weight of visited objects does not matter)
To make it work you have to find ordering, where placing object on top of next objects is useless. That is, for any solution with violation of this ordering there is another solution that follows this ordering and is better or equal.
You have to proof that selected ordering exists and define it clearly. I don't think simple sorting by strength, suggested by Matt Timmermans, is enough, since weight has some meaning. But it's the proofing part...
Given a bunch of sets of people (similar to):
[p1,p2,p3]
[p2,p3]
[p1]
[p1]
Select 1 from each set, trying to minimize the maximum number of times any one person is selected.
For the sets above, the max number of times a given person MUST be selected is 2.
I'm struggling to get an algorithm for this. I don't think it can be done with a greedy algorithm, more thinking along the lines of a dynamic programming solution.
Any hints on how to go about this? Or do any of you know any good websites about this stuff that I could have a look at?
This is neither dynamic nor greedy. Let's look at a different problem first -- can it be done by selecting every person at most once?
You have P people and S sets. Create a graph with S+P vertices, representing sets and people. There is an edge between person pi and set si iff pi is an element of si. This is a bipartite graph and the decision version of your problem is then equivalent to testing whether the maximum cardinality matching in that graph has size S.
As detailed on that page, this problem can be solved by using a maximum flow algorithm (note: if you don't know what I'm talking about, then take your time to read it now, as you won't understand the rest otherwise): first create a super-source, add an edge linking it to all people with capacity 1 (representing that each person may only be used once), then create a super-sink and add edges linking every set to that sink with capacity 1 (representing that each set may only be used once) and run a suitable max-flow algorithm between source and sink.
Now, let's consider a slightly different problem: can it be done by selecting every person at most k times?
If you paid attention to the remarks in the last paragraph, you should know the answer: just change the capacity of the edges leaving the super-source to indicate that each person may be used more than once in this case.
Therefore, you now have an algorithm to solve the decision problem in which people are selected at most k times. It's easy to see that if you can do it with k, then you can also do it with any value greater than k, that is, it's a monotonic function. Therefore, you can run a binary search on the decision version of the problem, looking for the smallest k possible that still works.
Note: You could also get rid of the binary search by testing each value of k sequentially, and augmenting the residual network obtained in the last run instead of starting from scratch. However, I decided to explain the binary search version as it's conceptually simpler.
Can someone provide me with a backtracking algorithm to solve the "set cover" problem to find the minimum number of sets that cover all the elements in the universe?
The greedy approach almost always selects more sets than the optimal number of sets.
This paper uses Linear Programming Relaxation to solve covering problems.
Basically, the LP relaxation yields good bounds, and can be used to identify solutions that are optimum in many cases. Incidentally, when I last looked at open source LP solvers (~2003) I wasn't impressed (some gave incorrect results), but there seem to be some decent open source LP solvers now.
Your problem needs a little more clarification - it seems that you are given a family of subsets $$S_1,\ldots,S_n$$ of a set A, such that the union of the subsets equals A, and you want a minimum number of subsets whose union is still A.
The basic approach is branch and bound with some heuristics. E.g., if a particular element of A is in only one subset $$S_i$$, then you must select $$S_i$$. Similarly, if $$S_k$$ is a subset of $$S_j$$, then there's no reason to consider $$S_k$$; if element $$a_i$$ is in every subset that $$a_j$$ is in, then you can not bother considering $$a_i$$.
For branch and bound you need good bounding heuristics. Lower bounds can come from independent sets (if there are k elements $$i_1,\ldots,i_L$$ in A such that each if $$i_p$$ is contained in $$A_p$$ and $$i_q$$ is contained in $$A_q$$ then $$A_p$$ and $$A_q$$ are disjoint). Better lower bounds come from the LP relaxation described above.
The Espresso logic minimization system from Berkeley has a very high quality set covering engine.