Given a bunch of sets of people (similar to):
[p1,p2,p3]
[p2,p3]
[p1]
[p1]
Select 1 from each set, trying to minimize the maximum number of times any one person is selected.
For the sets above, the max number of times a given person MUST be selected is 2.
I'm struggling to get an algorithm for this. I don't think it can be done with a greedy algorithm, more thinking along the lines of a dynamic programming solution.
Any hints on how to go about this? Or do any of you know any good websites about this stuff that I could have a look at?
This is neither dynamic nor greedy. Let's look at a different problem first -- can it be done by selecting every person at most once?
You have P people and S sets. Create a graph with S+P vertices, representing sets and people. There is an edge between person pi and set si iff pi is an element of si. This is a bipartite graph and the decision version of your problem is then equivalent to testing whether the maximum cardinality matching in that graph has size S.
As detailed on that page, this problem can be solved by using a maximum flow algorithm (note: if you don't know what I'm talking about, then take your time to read it now, as you won't understand the rest otherwise): first create a super-source, add an edge linking it to all people with capacity 1 (representing that each person may only be used once), then create a super-sink and add edges linking every set to that sink with capacity 1 (representing that each set may only be used once) and run a suitable max-flow algorithm between source and sink.
Now, let's consider a slightly different problem: can it be done by selecting every person at most k times?
If you paid attention to the remarks in the last paragraph, you should know the answer: just change the capacity of the edges leaving the super-source to indicate that each person may be used more than once in this case.
Therefore, you now have an algorithm to solve the decision problem in which people are selected at most k times. It's easy to see that if you can do it with k, then you can also do it with any value greater than k, that is, it's a monotonic function. Therefore, you can run a binary search on the decision version of the problem, looking for the smallest k possible that still works.
Note: You could also get rid of the binary search by testing each value of k sequentially, and augmenting the residual network obtained in the last run instead of starting from scratch. However, I decided to explain the binary search version as it's conceptually simpler.
Related
I don't generally ask questions on SO, so if this question seems inappropriate for SO, just tell me (help would still be appreciated of course).
I'm still a student and I'm currently taking a class in Algorithms. We recently learned about the Branch-and-Bound paradigm and since I didn't fully understand it, I tried to do some exercises in our course book. I came across this particular instance of the Set Cover problem with a special twist:
Let U be a set of elements and S = {S1, S2, ..., Sn} a set of subsets of U, where the union of all sets Si equals U. Outline a Branch-and-Bound algorithm to find a minimal subset Q of S, so that for all elements u in U there are at least two sets in Q, which contain u. Specifically, elaborate how to split the problem up into subproblems and how to calculate upper and lower bounds.
My first thought was to sort all the sets Si in S in descending order, according to how many elements they contain which aren't yet covered at least twice by the currently chosen subsets of S, so our current instance of Q. I was then thinking of recursively solving this, where I choose the first set Si in the sorted order and make one recursive call, where I take this set Si and one where I don't (meaning from those recursive calls onwards the subset is no longer considered). If I choose it I would then go through each element in this chosen subset Si and increase a counter for all its elements (before the recursive call), so that I'll eventually know, when an element is already covered by two or more chosen subsets. Since I sort the not chosen sets Si for each recursive call, I would theoretically (in my mind at least) always be making the best possible choice for the moment. And since I basically create a binary tree of recursive calls, because I always make one call with the current best subset chosen and one where I don't I'll eventually cover all 2^n possibilities, meaning eventually I'll find the optimal solution.
My problem now is I don't know or rather understand how I would implement a heuristic for upper and lower bounds, so the algorithm can discard some of the paths in the binary tree, which will never be better than the current best Q. I would appreciate any help I could get.
Here's a simple lower bound heuristic: Find the set containing the largest number of not-yet-twice-covered elements. (It doesn't matter which set you pick if there are multiple sets with the same, largest possible number of these elements.) Suppose there are u of these elements in total, and this set contains k <= u of them. Then, you need to add at least u/k further sets before you have a solution. (Why? See if you can prove this.)
This lower bound works for the regular set cover problem too. As always with branch and bound, using it may or may not result in better overall performance on a given instance than simply using the "heuristic" that always returns 0.
First, some advice: don't re-sort S every time you recurse/loop. Sorting is an expensive operation (O(N log N)) so putting it in a loop or a recursion usually costs more than you gain from it. Generally you want to sort once at the beginning, and then leverage that sort throughout your algorithm.
The sort you've chosen, descending by the length of the S subsets is a good "greedy" ordering, so I'd say just do that upfront and don't re-sort after that. You don't get to skip over subsets that are not ideal within your recursion, but checking a redundant/non-ideal subset is still faster than re-sorting every time.
Now what upper/lower bounds can you use? Well generally, you want your bounds and bounds-checking to be as simple and efficient as possible because you are going to be checking them a lot.
With this in mind, an upper bounds is easy: use the shortest set-length solution that you've found so far. Initially set your upper-bounds as var bestQlength = int.MaxVal, some maximum value that is greater than n, the number of subsets in S. Then with every recursion you check if currentQ.length > bestQlength, if so then this branch is over the upper-bounds and you "prune" it. Obviously when you find a new solution, you also need to check if it is better (shorter) than your current bestQ and if so then update both bestQ and bestQlength at the same time.
A good lower bounds is a bit trickier, the simplest I can think of for this problem is: Before you add a new subset Si into your currentQ, check to see if Si has any elements that are not already in currentQ two or more times, if it does not, then this Si cannot contribute in any way to the currentQ solution that you are trying to build, so just skip it and move on to the next subset in S.
I'm working with a problem that is similar to the box stacking problem that can be solved with a dynamic programming algorithm. I read posts here on SO about it but I have a difficult time understanding the DP approach, and would like some explanation as to how it works. Here's the problem at hand:
Given X objects, each with its own weight 'w' and strength 's', how
many can you stack on top of each other? An object can carry its own
weight and the sum of all weights on top of it as long as it does not
exceed its strength.
I understand that it has an optimal substructure, but its the overlapping subproblem part that confuses me. I'm trying to create a recursion tree to see where it would calculate the same thing several times, but I can't figure out if the function would take one or two parameters for example.
The first step to solving this problem is proving that you can find an optimal stack with boxes ordered from highest to lowest strength.
Then you just have to sort the boxes by strength and figure out which ones are included in the optimal stack.
The recursive subproblem has two parameters: find the best stack you can put on top of a stack with X remaining strength, using boxes at positions >= Y in the list.
If good DP solution exists, it takes 2 params:
number of visited objects or number of unvisited objects
total weight of unvisited objects you can currently afford (weight of visited objects does not matter)
To make it work you have to find ordering, where placing object on top of next objects is useless. That is, for any solution with violation of this ordering there is another solution that follows this ordering and is better or equal.
You have to proof that selected ordering exists and define it clearly. I don't think simple sorting by strength, suggested by Matt Timmermans, is enough, since weight has some meaning. But it's the proofing part...
Please forgive me if I'm not using the correct terms or have overlooked an existing solution. I'm not experienced in search algorithms and the theories behind it. I just would like to solve a problem.
I've previously used what I was told to be the A* algorithm to solve a different problem. But reading up on it I've realized that what I learned is not quite what wikipedia tells me.
What I learned was:
Start at your origin node
Open a new solution for each path you can take
Recursively create a new subsolution for each path you can take from there
When you arrive at the same place with multiple solutions, drop those who took longer than the fastest
Now if I understand wikipedia correctly, this is what I was supposed to do:
Start at your origin node
Open a new solution for each path you can take
Order the solutions by "cost of path taken" + "estimated cost to target"
Take cheapest solution and create subsolutions for each possible path
order those solutions into the others then rinse repeat
I can see how this would help with not calculating quite as many solutions but my problem is that I see no possiblity to create an "optimistic" estimate.
I'm not searching for a path on a geographical map. I'm trying to find the best sequence of actions. There's a minimum sequence of - say - ABCDEFGH. You cannot do F before E but repeating previous actions in particilar ordering might make later actions more efficient.
Do I need a different search algorithm? Do I do what I originally learned and just live with the fact that doing more work is the price for not having a good heuristic function?
I believe my teacher recognized this problem. And what I learned was simply A* with a heuristic function of f(n) = 0.
I'm not searching for a path on a geographical map. I'm trying to find
the best sequence of actions. There's a minimum sequence of - say -
ABCDEFGH. You cannot do F before E but repeating previous actions in
particular ordering might make later actions more efficient.
It is not clear to me whether you can repeat one action, i.e., a solution is ABCDEFGH, but would ABBBBCDEFGH be possible?
If not, then you might be able to have A* algorithm, implemented like this:
1. At some stage (say the first, "empty"), you have one of several actions
available.
2. The cost of going from Empty City to A City is the cost of action A.
3. The cost of going from Empty City to B city is the cost of action B.
When you've reached B, the cost of doing C is constant (if it is not, then you can't use A* as is) and you insert the cost of going from B City to C City as the cost of C.
So you can handle the case in which an action has different costs, provided that this difference is completely described by the previous state. For example, if you can only do C if you have done A or B, and the cost of C is 5 and 8, you enter the "distance" between A and C as 5, and B to C as 8.
If the cost of, say, D depends on the two previous states, you can still use a more complicated A* implementation where you define the virtual "cities" BC, AB and AC, and the distance from BC to D is "the cost of D having done B and C", and so on. The cost of reaching BC from A is "the cost of B given A, and the cost of C given A and B". So if these costs depend on the previous states, things get even more complicated.
In the end, the complexity of this revised A* will grow until it becomes your algorithm, where every state depends potentially on the sequence of all preceding states. The more this is true, the more your algorithm is convenient; the more every state is a cost unto itself, the more A* is convenient.
And of course the possibility of closed loops (visiting the same state/action twice, making this a cyclic graph) blows A* straight out of the water.
I posted this on computer science section but no one replied :(. Any help would be greatly appreciated :).
There is a grid of size MxN. M~20000 and N~10. So M is very huge. So one way is to look at this is N grid blocks of size M placed side by side. Next assume that there are K number of users who each have a utility matrix of MxN, where each element provides the utility that the user will obtain if that user is assigned that grid element. The allocation needs to be done in a way such for each assigned user total utility must exceed a certain threshold utility U in every grid block. Assume only one user can be assigned one grid element. What is the maximum number of users that can be assigned?. (So its okay if some users are not assigned ).
Level 2: Now assume for each user at least n out N blocks must exceed utility threshold U. For this problem, whats the maximum number of users that can be assigned.
Of course brute force search is of no use here due to K^(MN) complexity. I am guessing that some kind of dynamic programming approach maybe possible.
To my understanding, the problem can be modelled as a Maximum Bipartite Matching problem, which can be solved efficiently with the Hungarian algorithm. In the left partition L, create K nodes, one for each user. In the right partition R, create L*M*N nodes, one for each cell in the grid. As edges create edges for each l in L and r in R with cost equal to the cost of the assignment of user l to the grid cell r.
Using a different interpretation of your question than Codor, I am going to claim that (at least in theory, in the worst case) it is a hard problem.
Suppose that we can solve it in the special case when there is one block which must be shared between two users, who each have the same utility for each cell, and the threshold utility U is (half of the total utility for all the cells in the block), minus one.
This means that in order to solve the problem we must take a list of numbers and divide them up into two sets such that the sum of the numbers in each set is the same, and is exactly half of the total sum of the numbers available.
This is http://en.wikipedia.org/wiki/Partition_problem, which is NP complete, so if you could solve your problem as I have described it you could solve a problem known to be hard.
(However the Wikipedia entry does say that this is known as "the easiest hard problem" so even if I have described it correctly, there may be solutions that work well in practice).
I'm looking for leads on algorithms to deduce the timeline/chronology of a series of novels. I've split the texts into days and created a database of relationships between them, e.g.: X is a month before Y, Y and Z are consecutive, date of Z is known, X is on a Tuesday, etc. There is uncertainty ('month' really only means roughly 30 days) and also contradictions. I can mark some relationships as more reliable than others to help resolve ambiguity and contradictions.
What kind of algorithms exist to deduce a best-fit chronology from this kind of data, assigning a highest-probability date to each day? At least time is 1-dimensional but dealing with a complex relationship graph with inconsistencies seems non-trivial. I have a CS background so I can code something up but some idea about the names of applicable algorithms would be helpful. I guess what I have is a graph with days as nodes as relationships as edges.
A simple, crude first approximation to your problem would be to store information like "A happened before B" in a directed graph with edges like "A -> B". Test the graph to see whether it is a Directed Acyclic Graph (DAG). If it is, the information is consistent in the sense that there is a consistent chronology of what happened before what else. You can get a sample linear chronology by printing a "topological sort" (topsort) of the DAG. If events C and D happened simultaneously or there is no information to say which came before the other, they might appear in the topsort as ABCD or ABDC. You can even get the topsort algorithm to print all possibilities (so both ABCD and ABDC) for further analysis using more detailed information.
If the graph you obtain is not a DAG, you can use an algorithm like Tarjan's algorithm to quickly identify "strongly connected components", which are areas of the graph which contain chronological contradictions in the form of cycles. You could then analyze them more closely to determine which less reliable edges might be removed to resolve contradictions. Another way to identify edges to remove to eliminate cycles is to search for "minimum feedback arc sets". That's NP-hard in general but if your strongly connected components are small the search could be feasible.
Constraint programming is what you need. In propagation-based CP, you alternate between (a) making a decision at the current choice point in the search tree and (b) propagating the consequences of that decision as far as you can. Notionally you do this by maintaining a domain D of possible values for each problem variable x such that D(x) is the set of values for x which have not yet been ruled out along the current search path. In your problem, you might be able to reduce it to a large set of Boolean variables, x_ij, where x_ij is true iff event i precedes event j. Initially D(x) = {true, false} for all variables. A decision is simply reducing the domain of an undecided variable (for a Boolean variable this means reducing its domain to a single value, true or false, which is the same as an assignment). If at any point along a search path D(x) becomes empty for any x, you have reached a dead-end and have to backtrack.
If you're smart, you will try to learn from each failure and also retreat as far back up the search tree as required to avoid redundant search (this is called backjumping -- for example, if you identify that the dead-end you reached at level 7 was caused by the choice you made at level 3, there's no point in backtracking just to level 6 because no solution exists in this subtree given the choice you made at level 3!).
Now, given you have different degrees of confidence in your data, you actually have an optimisation problem. That is, you're not just looking for a solution that satisfies all the constraints that must be true, but one which also best satisfies the other "soft" constraints according to the degree of trust you have in them. What you need to do here is decide on an objective function assigning a score to a given set of satisfied/violated partial constraints. You then want to prune your search whenever you find the current search path cannot improve on the best previously found solution.
If you do decide to go for the Boolean approach, you could profitably look into SAT solvers, which tear through these kinds of problems. But the first place I'd look is at MiniZinc, a CP language which maps on to a whole variety of state of the art constraint solvers.
Best of luck!