What is the difference between Form5!ProgressBar.Max and Form5.ProgressBar.Max? - vb6

I'm looking at a piece of very old VB6, and have come across usages such as
Form5!ProgressBar.Max = time_max
and
Form5!ProgressBar.Value = current_time
Perusing the answer to this question here and reading this page here, I deduce that these things mean the same as
Form5.ProgressBar.Max = time_max
Form5.ProgressBar.Value = current_time
but it isn't at all clear that this is the case. Can anyone confirm or deny this, and/or point me at an explanation in words of one syllable?

Yes, Form5!ProgressBar is almost exactly equivalent to Form5.ProgressBar
As far as I can remember there is one difference: the behaviour if the Form5 object does not have a ProgressBar member (i.e. the form does not have a control called ProgressBar). The dot-notation is checked at compile time but the exclamation-mark notation is checked at run time.
Form5.ProgressBar will not compile.
Form5!ProgressBar will compile but will give an error at runtime.
IMHO the dot notation is preferred in VB6, especially when accessing controls. The exclamation mark is only supported for backward-compatibility with very old versions of VB.

The default member of a Form is (indirectly) the Controls collection.
The bang (!) syntax is used for collection access in VB, and in many cases the compiler makes use of it to early bind things that otherwise would be accessed more slowly through late binding.
Far from deprecated, it is often preferable.
However in this case since the default member of Form objects is [_Default] As Object containing a reference to a Controls As Object instance, there is no particular advantage or disadvantage to this syntax over:
Form5("ProgressBar").Value
I agree that in this case however it is better to more directly access the control as a member of the Form as in:
Form5.ProgressBar.Value
Knowing the difference between these is a matter of actually knowing VB. It isn't simply syntactic though, the two "paths" do different things that get to the same result.
Hopefully this answer offers an explanation rather merely invoking voodoo.

Related

How to Work with Ruby Duck Typing

I am learning Ruby and I'm having a major conceptual problem concerning typing. Allow me to detail why I don't understand with paradigm.
Say I am method chaining for concise code as you do in Ruby. I have to precisely know what the return type of each method call in the chain, otherwise I can't know what methods are available on the next link. Do I have to check the method documentation every time?? I'm running into this constantly running tutorial exercises. It seems I'm stuck with a process of reference, infer, run, fail, fix, repeat to get code running rather then knowing precisely what I'm working with during coding. This flies in the face of Ruby's promise of intuitiveness.
Say I am using a third party library, once again I need to know what types are allow to pass on the parameters otherwise I get a failure. I can look at the code but there may or may not be any comments or declaration of what type the method is expecting. I understand you code based on methods are available on an object, not the type. But then I have to be sure whatever I pass as a parameter has all the methods the library is expect, so I still have to do type checking. Do I have to hope and pray everything is documented properly on an interface so I know if I'm expected to give a string, a hash, a class, etc.
If I look at the source of a method I can get a list of methods being called and infer the type expected, but I have to perform analysis.
Ruby and duck typing: design by contract impossible?
The discussions in the preceding stackoverflow question don't really answer anything other than "there are processes you have to follow" and those processes don't seem to be standard, everyone has a different opinion on what process to follow, and the language has zero enforcement. Method Validation? Test-Driven Design? Documented API? Strict Method Naming Conventions? What's the standard and who dictates it? What do I follow? Would these guidelines solve this concern https://stackoverflow.com/questions/616037/ruby-coding-style-guidelines? Is there editors that help?
Conceptually I don't get the advantage either. You need to know what methods are needed for any method called, so regardless you are typing when you code anything. You just aren't informing the language or anyone else explicitly, unless you decide to document it. Then you are stuck doing all type checking at runtime instead of during coding. I've done PHP and Python programming and I don't understand it there either.
What am I missing or not understanding? Please help me understand this paradigm.
This is not a Ruby specific problem, it's the same for all dynamically typed languages.
Usually there are no guidelines for how to document this either (and most of the time not really possible). See for instance map in the ruby documentation
map { |item| block } → new_ary
map → Enumerator
What is item, block and new_ary here and how are they related? There's no way to tell unless you know the implementation or can infer it from the name of the function somehow. Specifying the type is also hard since new_ary depends on what block returns, which in turn depends on the type of item, which could be different for each element in the Array.
A lot of times you also stumble across documentation that says that an argument is of type Object, Which again tells you nothing since everything is an Object.
OCaml has a solution for this, it supports structural typing so a function that needs an object with a property foo that's a String will be inferred to be { foo : String } instead of a concrete type. But OCaml is still statically typed.
Worth noting is that this can be a problem in statically typed lanugages too. Scala has very generic methods on collections which leads to type signatures like ++[B >: A, That](that: GenTraversableOnce[B])(implicit bf: CanBuildFrom[Array[T], B, That]): That for appending two collections.
So most of the time, you will just have to learn this by heart in dynamically typed languages, and perhaps help improve the documentation of libraries you are using.
And this is why I prefer static typing ;)
Edit One thing that might make sense is to do what Scala also does. It doesn't actually show you that type signature for ++ by default, instead it shows ++[B](that: GenTraversableOnce[B]): Array[B] which is not as generic, but probably covers most of the use cases. So for Ruby's map it could have a monomorphic type signature like Array<a> -> (a -> b) -> Array<b>. It's only correct for the cases where the list only contains values of one type and the block only returns elements of one other type, but it's much easier to understand and gives a good overview of what the function does.
Yes, you seem to misunderstand the concept. It's not a replacement for static type checking. It's just different. For example, if you convert objects to json (for rendering them to client), you don't care about actual type of the object, as long as it has #to_json method. In Java, you'd have to create IJsonable interface. In ruby no overhead is needed.
As for knowing what to pass where and what returns what: memorize this or consult docs each time. We all do that.
Just another day, I've seen rails programmer with 6+ years of experience complain on twitter that he can't memorize order of parameters to alias_method: does new name go first or last?
This flies in the face of Ruby's promise of intuitiveness.
Not really. Maybe it's just badly written library. In core ruby everything is quite intuitive, I dare say.
Statically typed languages with their powerful IDEs have a small advantage here, because they can show you documentation right here, very quickly. This is still accessing documentation, though. Only quicker.
Consider that the design choices of strongly typed languages (C++,Java,C#,et al) enforce strict declarations of type passed to methods, and type returned by methods. This is because these languages were designed to validate that arguments are correct (and since these languages are compiled, this work can be done at compile time). But some questions can only be answered at run time, and C++ for example has the RTTI (Run Time Type Interpreter) to examine and enforce type guarantees. But as the developer, you are guided by syntax, semantics and the compiler to produce code that follows these type constraints.
Ruby gives you flexibility to take dynamic argument types, and return dynamic types. This freedom enables you to write more generic code (read Stepanov on the STL and generic programming), and gives you a rich set of introspection methods (is_a?, instance_of?, respond_to?, kind_of?, is_array?, et al) which you can use dynamically. Ruby enables you to write generic methods, but you can also explicity enforce design by contract, and process failure of contract by means chosen.
Yes, you will need to use care when chaining methods together, but learning Ruby is not just a few new keywords. Ruby supports multiple paradigms; you can write procedural, object oriend, generic, and functional programs. The cycle you are in right now will improve quickly as you learn about Ruby.
Perhaps your concern stems from a bias towards strongly typed languages (C++, Java, C#, et al). Duck typing is a different approach. You think differently. Duck typing means that if an object looks like a , behaves like a , then it is a . Everything (almost) is an Object in Ruby, so everything is polymorphic.
Consider templates (C++ has them, C# has them, Java is getting them, C has macros). You build an algorithm, and then have the compiler generate instances for your chosen types. You aren't doing design by contract with generics, but when you recognize their power, you write less code, and produce more.
Some of your other concerns,
third party libraries (gems) are not as hard to use as you fear
Documented API? See Rdoc and http://www.ruby-doc.org/
Rdoc documentation is (usually) provided for libraries
coding guidelines - look at the source for a couple of simple gems for starters
naming conventions - snake case and camel case are both popular
Suggestion - approach an online tutorial with an open mind, do the tutorial (http://rubymonk.com/learning/books/ is good), and you will have more focused questions.

GCC hidden/little-known features

This is my attempt to start a collection of GCC special features which usually do not encounter. this comes after #jlebedev in the another question mentioned "Effective C++" option for g++,
-Weffc++
This option warns about C++ code which breaks some of the programming guidelines given in the books "Effective C++" and "More Effective C++" by Scott Meyers. For example, a warning will be given if a class which uses dynamically allocated memory does not define a copy constructor and an assignment operator. Note that the standard library header files do not follow these guidelines, so you may wish to use this option as an occasional test for possible problems in your own code rather than compiling with it all the time.
What other cool features are there?
From time to time I go through the current GCC/G++ command line parameter documentation and update my compiler script to be even more paranoid about any kind of coding error. Here it is if you are interested.
Unfortunately I didn't document them so I forgot most, but -pedantic, -Wall, -Wextra, -Weffc++, -Wshadow, -Wnon-virtual-dtor, -Wold-style-cast, -Woverloaded-virtual, and a few others are always useful, warning me of potentially dangerous situations. I like this aspect of customizability, it forces me to write clean, correct code. It served me well.
However they are not without headaches, especially -Weffc++. Just a few examples:
It requires me to provide a custom copy constructor and assignment operator if there are pointer members in my class, which are useless since I use garbage collection. So I need to declare empty private versions of them.
My NonInstantiable class (which prevents instantiation of any subclass) had to implement a dummy private friend class so G++ didn't whine about "only private constructors and no friends"
My Final<T> class (which prevents subclassing of T if T derived from it virtually) had to wrap T in a private wrapper class to declare it as friend, since the standard flat out forbids befriending a template parameter.
G++ recognizes functions that never return a return value, and throw an exception instead, and whines about them not being declared with the noreturn attribute. Hiding behind always true instructions didn't work, G++ was too clever and recognized them. Took me a while to come up with declaring a variable volatile and comparing it against its value to be able to throw that exception unmolested.
Floating point comparison warnings. Oh god. I have to work around them by writing x <= y and x >= y instead of x == y where it is acceptable.
Shadowing virtuals. Okay, this is clearly useful to prevent stupid shadowing/overloading problems in subclasses but still annoying.
No previous declaration for functions. Kinda lost its importance as soon as I started copypasting the function declaration right above it.
It might sound a bit masochist, but as a whole, these are very cool features that increased my understanding of C++ and general programming.
What other cool features G++ has? Well, it's free, open, it's one of the most widely used and modern compilers, consistently outperforms its competitors, can eat almost anything people throw at it, available on virtually every platform, customizable to hell, continuously improved, has a wide community - what's not to like?
A function that returns a value (for example an int) will return a random value if a code path is followed that ends the function without a 'return value' statement. Not paying attention to this can result in exceptions and out of range memory writes or reads.
For example if a function is used to obtain the index into an array, and the faulty code path is used (the one that doesn't end with a return 'value' statement) then a random value will be returned which might be too big as an index into the array, resulting in all sorts of headaches as you wrongly mess up the stack or heap.

Should a method parameter name specify its unit in its name?

Of the following two options for method parameter names that have a unit as well as a value, which do you prefer and why? (I've used Java syntax, but my question would apply to most languages.)
public void move(int length)
or
public void move(int lengthInMetres)
Option (1) would seem to be sufficient, but I find that when I'm coding/typing, my IDE can indicate to me I need a length value, but I typically have to break stride and look up the method's doco to determine the units, so that I pass in the correct value (and not kilometres instead of metres for example). This can be an annoying interruption to a thought process. Option (2) alleviates this problem, but can be verbose, particularly if your unit is metresPerSecondSquared or some such. Which do you think is the best?
I would recommend making your parameter (and method) names as clear as possible, even if they become wordy. You'll be glad when you look at or use the code in 6 months time, or when someone else has to look at your code.
If you think the names are becoming too long, consider rewording them. In your example you could use parameter name int Metres that would probably be clear enough. Consider changing the method name, eg public void moveMetres(int length).
In Visual Studio, the XML comments generated when you enter 3 comment symbols above a method definition will appear in Intellisense hints when you use the method in other locations. Other IDEs may have similar functionality.
Abbreviations should be used sparingly. If absolutely necessary only use commonly known and/or relevant industry-standard abbreviations and be consistent, ie use the same abbreviation everywhere.
Take a step back. Write the code then move on to something else. Come back the next day and check to see if the names are still clear.
Peer reviews can help too. Ask someone who knows the programming language (or just thinks logically), but not the specific functionality, if your naming scheme is clear enough or to help brainstorm alternatives. They might be the poor sap who has to maintain your code in the future!
I would prefer the second approach (i.e. lengthInMeters) as it describes the input needed for the method accurately. The fact that you find it confusing to figure out the units when you are just writing the code would imply it would be much more confusing when you (or some one) looks at the same piece of code later. As regard to issue of the variable name being longer you can find ways to abbreviate it (say "mtrsPerSecondSquared").
Also in defence second approach, the book Code Complete mentions a research that indicates, effort required to debug a program was minimized when variables had names averaged to 10 to 16 characters.

What are your language "hangups"? [closed]

As it currently stands, this question is not a good fit for our Q&A format. We expect answers to be supported by facts, references, or expertise, but this question will likely solicit debate, arguments, polling, or extended discussion. If you feel that this question can be improved and possibly reopened, visit the help center for guidance.
Closed 11 years ago.
Locked. This question and its answers are locked because the question is off-topic but has historical significance. It is not currently accepting new answers or interactions.
I've read some of the recent language vs. language questions with interest... Perl vs. Python, Python vs. Java, Can one language be better than another?
One thing I've noticed is that a lot of us have very superficial reasons for disliking languages. We notice these things at first glance and they turn us off. We shun what are probably perfectly good languages as a result of features that we'd probably learn to love or ignore in 2 seconds if we bothered.
Well, I'm as guilty as the next guy, if not more. Here goes:
Ruby: All the Ruby example code I see uses the puts command, and that's a sort of childish Yiddish anatomical term. So as a result, I can't take Ruby code seriously even though I should.
Python: The first time I saw it, I smirked at the whole significant whitespace thing. I avoided it for the next several years. Now I hardly use anything else.
Java: I don't like identifiersThatLookLikeThis. I'm not sure why exactly.
Lisp: I have trouble with all the parentheses. Things of different importance and purpose (function declarations, variable assignments, etc.) are not syntactically differentiated and I'm too lazy to learn what's what.
Fortran: uppercase everything hurts my eyes. I know modern code doesn't have to be written like that, but most example code is...
Visual Basic: it bugs me that Dim is used to declare variables, since I remember the good ol' days of GW-BASIC when it was only used to dimension arrays.
What languages did look right to me at first glance? Perl, C, QBasic, JavaScript, assembly language, BASH shell, FORTH.
Okay, now that I've aired my dirty laundry... I want to hear yours. What are your language hangups? What superficial features bother you? How have you gotten over them?
I hate Hate HATE "End Function" and "End IF" and "If... Then" parts of VB. I would much rather see a curly bracket instead.
PHP's function name inconsistencies.
// common parameters back-to-front
in_array(needle, haystack);
strpos(haystack, needle);
// _ to separate words, or not?
filesize();
file_exists;
// super globals prefix?
$GLOBALS;
$_POST;
I never really liked the keywords spelled backwards in some scripting shells
if-then-fi is bad enough, but case-in-esac is just getting silly
I just thought of another... I hate the mostly-meaningless URLs used in XML to define namespaces, e.g. xmlns="http://purl.org/rss/1.0/"
Pascal's Begin and End. Too verbose, not subject to bracket matching, and worse, there isn't a Begin for every End, eg.
Type foo = Record
// ...
end;
Although I'm mainly a PHP developer, I dislike languages that don't let me do enough things inline. E.g.:
$x = returnsArray();
$x[1];
instead of
returnsArray()[1];
or
function sort($a, $b) {
return $a < $b;
}
usort($array, 'sort');
instead of
usort($array, function($a, $b) { return $a < $b; });
I like object-oriented style. So it bugs me in Python to see len(str) to get the length of a string, or splitting strings like split(str, "|") in another language. That is fine in C; it doesn't have objects. But Python, D, etc. do have objects and use obj.method() other places. (I still think Python is a great language.)
Inconsistency is another big one for me. I do not like inconsistent naming in the same library: length(), size(), getLength(), getlength(), toUTFindex() (why not toUtfIndex?), Constant, CONSTANT, etc.
The long names in .NET bother me sometimes. Can't they shorten DataGridViewCellContextMenuStripNeededEventArgs somehow? What about ListViewVirtualItemsSelectionRangeChangedEventArgs?
And I hate deep directory trees. If a library/project has a 5 level deep directory tree, I'm going to have trouble with it.
C and C++'s syntax is a bit quirky. They reuse operators for different things. You're probably so used to it that you don't think about it (nor do I), but consider how many meanings parentheses have:
int main() // function declaration / definition
printf("hello") // function call
(int)x // type cast
2*(7+8) // override precedence
int (*)(int) // function pointer
int x(3) // initializer
if (condition) // special part of syntax of if, while, for, switch
And if in C++ you saw
foo<bar>(baz(),baaz)
you couldn't know the meaning without the definition of foo and bar.
the < and > might be a template instantiation, or might be less-than and greater-than (unusual but legal)
the () might be a function call, or might be just surrounding the comma operator (ie. perform baz() for size-effects, then return baaz).
The silly thing is that other languages have copied some of these characteristics!
Java, and its checked exceptions. I left Java for a while, dwelling in the .NET world, then recently came back.
It feels like, sometimes, my throws clause is more voluminous than my method content.
There's nothing in the world I hate more than php.
Variables with $, that's one extra odd character for every variable.
Members are accessed with -> for no apparent reason, one extra character for every member access.
A freakshow of language really.
No namespaces.
Strings are concatenated with ..
A freakshow of language.
All the []s and #s in Objective C. Their use is so different from the underlying C's native syntax that the first time I saw them it gave the impression that all the object-orientation had been clumsily bolted on as an afterthought.
I abhor the boiler plate verbosity of Java.
writing getters and setters for properties
checked exception handling and all the verbiage that implies
long lists of imports
Those, in connection with the Java convention of using veryLongVariableNames, sometimes have me thinking I'm back in the 80's, writing IDENTIFICATION DIVISION. at the top of my programs.
Hint: If you can automate the generation of part of your code in your IDE, that's a good hint that you're producing boilerplate code. With automated tools, it's not a problem to write, but it's a hindrance every time someone has to read that code - which is more often.
While I think it goes a bit overboard on type bureaucracy, Scala has successfully addressed some of these concerns.
Coding Style inconsistencies in team projects.
I'm working on a large team project where some contributors have used 4 spaces instead of the tab character.
Working with their code can be very annoying - I like to keep my code clean and with a consistent style.
It's bad enough when you use different standards for different languages, but in a web project with HTML, CSS, Javascript, PHP and MySQL, that's 5 languages, 5 different styles, and multiplied by the number of people working on the project.
I'd love to re-format my co-workers code when I need to fix something, but then the repository would think I changed every line of their code.
It irritates me sometimes how people expect there to be one language for all jobs. Depending on the task you are doing, each language has its advantages and disadvantages. I like the C-based syntax languages because it's what I'm most used to and I like the flexibility they tend to bestow on the developer. Of course, with great power comes great responsibility, and having the power to write 150 line LINQ statements doesn't mean you should.
I love the inline XML in the latest version of VB.NET although I don't like working with VB mainly because I find the IDE less helpful than the IDE for C#.
If Microsoft had to invent yet another C++-like language in C# why didn't they correct Java's mistake and implement support for RAII?
Case sensitivity.
What kinda hangover do you need to think that differentiating two identifiers solely by caSE is a great idea?
I hate semi-colons. I find they add a lot of noise and you rarely need to put two statements on a line. I prefer the style of Python and other languages... end of line is end of a statement.
Any language that can't fully decide if Arrays/Loop/string character indexes are zero based or one based.
I personally prefer zero based, but any language that mixes the two, or lets you "configure" which is used can drive you bonkers. (Apache Velocity - I'm looking in your direction!)
snip from the VTL reference (default is 1, but you can set it to 0):
# Default starting value of the loop
# counter variable reference.
directive.foreach.counter.initial.value = 1
(try merging 2 projects that used different counter schemes - ugh!)
In no particular order...
OCaml
Tuples definitions use * to separate items rather than ,. So, ("Juliet", 23, true) has the type (string * int * bool).
For being such an awesome language, the documentation has this haunting comment on threads: "The threads library is implemented by time-sharing on a single processor. It will not take advantage of multi-processor machines. Using this library will therefore never make programs run faster." JoCaml doesn't fix this problem.
^^^ I've heard the Jane Street guys were working to add concurrent GC and multi-core threads to OCaml, but I don't know how successful they've been. I can't imagine a language without multi-core threads and GC surviving very long.
No easy way to explore modules in the toplevel. Sure, you can write module q = List;; and the toplevel will happily print out the module definition, but that just seems hacky.
C#
Lousy type inference. Beyond the most trivial expressions, I have to give types to generic functions.
All the LINQ code I ever read uses method syntax, x.Where(item => ...).OrderBy(item => ...). No one ever uses expression syntax, from item in x where ... orderby ... select. Between you and me, I think expression syntax is silly, if for no other reason than that it looks "foreign" against the backdrop of all other C# and VB.NET code.
LINQ
Every other language uses the industry standard names are Map, Fold/Reduce/Inject, and Filter. LINQ has to be different and uses Select, Aggregate, and Where.
Functional Programming
Monads are mystifying. Having seen the Parser monad, Maybe monad, State, and List monads, I can understand perfectly how the code works; however, as a general design pattern, I can't seem to look at problems and say "hey, I bet a monad would fit perfect here".
Ruby
GRRRRAAAAAAAH!!!!! I mean... seriously.
VB
Module Hangups
Dim _juliet as String = "Too Wordy!"
Public Property Juliet() as String
Get
Return _juliet
End Get
Set (ByVal value as String)
_juliet = value
End Set
End Property
End Module
And setter declarations are the bane of my existence. Alright, so I change the data type of my property -- now I need to change the data type in my setter too? Why doesn't VB borrow from C# and simply incorporate an implicit variable called value?
.NET Framework
I personally like Java casing convention: classes are PascalCase, methods and properties are camelCase.
In C/C++, it annoys me how there are different ways of writing the same code.
e.g.
if (condition)
{
callSomeConditionalMethod();
}
callSomeOtherMethod();
vs.
if (condition)
callSomeConditionalMethod();
callSomeOtherMethod();
equate to the same thing, but different people have different styles. I wish the original standard was more strict about making a decision about this, so we wouldn't have this ambiguity. It leads to arguments and disagreements in code reviews!
I found Perl's use of "defined" and "undefined" values to be so useful that I have trouble using scripting languages without it.
Perl:
($lastname, $firstname, $rest) = split(' ', $fullname);
This statement performs well no matter how many words are in $fullname. Try it in Python, and it explodes if $fullname doesn't contain exactly three words.
SQL, they say you should not use cursors and when you do, you really understand why...
its so heavy going!
DECLARE mycurse CURSOR LOCAL FAST_FORWARD READ_ONLY
FOR
SELECT field1, field2, fieldN FROM atable
OPEN mycurse
FETCH NEXT FROM mycurse INTO #Var1, #Var2, #VarN
WHILE ##fetch_status = 0
BEGIN
-- do something really clever...
FETCH NEXT FROM mycurse INTO #Var1, #Var2, #VarN
END
CLOSE mycurse
DEALLOCATE mycurse
Although I program primarily in python, It irks me endlessly that lambda body's must be expressions.
I'm still wrapping my brain around JavaScript, and as a whole, Its mostly acceptable. Why is it so hard to create a namespace. In TCL they're just ugly, but in JavaScript, it's actually a rigmarole AND completely unreadable.
In SQL how come everything is just one, huge freekin SELECT statement.
In Ruby, I very strongly dislike how methods do not require self. to be called on current instance, but properties do (otherwise they will clash with locals); i.e.:
def foo()
123
end
def foo=(x)
end
def bar()
x = foo() # okay, same as self.foo()
x = foo # not okay, reads unassigned local variable foo
foo = 123 # not okay, assigns local variable foo
end
To my mind, it's very inconsistent. I'd rather prefer to either always require self. in all cases, or to have a sigil for locals.
Java's packages. I find them complex, more so because I am not a corporation.
I vastly prefer namespaces. I'll get over it, of course - I'm playing with the Android SDK, and Eclipse removes a lot of the pain. I've never had a machine that could run it interactively before, and now I do I'm very impressed.
Prolog's if-then-else syntax.
x -> y ; z
The problem is that ";" is the "or" operator, so the above looks like "x implies y or z".
Java
Generics (Java version of templates) are limited. I can not call methods of the class and I can not create instances of the class. Generics are used by containers, but I can use containers of instances of Object.
No multiple inheritance. If a multiple inheritance use does not lead to diamond problem, it should be allowed. It should allow to write a default implementation of interface methods, a example of problem: the interface MouseListener has 5 methods, one for each event. If I want to handle just one of them, I have to implement the 4 other methods as an empty method.
It does not allow to choose to manually manage memory of some objects.
Java API uses complex combination of classes to do simple tasks. Example, if I want to read from a file, I have to use many classes (FileReader, FileInputStream).
Python
Indentation is part of syntax, I prefer to use the word "end" to indicate end of block and the word "pass" would not be needed.
In classes, the word "self" should not be needed as argument of functions.
C++
Headers are the worst problem. I have to list the functions in a header file and implement them in a cpp file. It can not hide dependencies of a class. If a class A uses the class B privately as a field, if I include the header of A, the header of B will be included too.
Strings and arrays came from C, they do not provide a length field. It is difficult to control if std::string and std::vector will use stack or heap. I have to use pointers with std::string and std::vector if I want to use assignment, pass as argument to a function or return it, because its "=" operator will copy entire structure.
I can not control the constructor and destructor. It is difficult to create an array of objects without a default constructor or choose what constructor to use with if and switch statements.
In most languages, file access. VB.NET is the only language so far where file access makes any sense to me. I do not understand why if I want to check if a file exists, I should use File.exists("") or something similar instead of creating a file object (actually FileInfo in VB.NET) and asking if it exists. And then if I want to open it, I ask it to open: (assuming a FileInfo object called fi) fi.OpenRead, for example. Returns a stream. Nice. Exactly what I wanted. If I want to move a file, fi.MoveTo. I can also do fi.CopyTo. What is this nonsense about not making files full-fledged objects in most languages? Also, if I want to iterate through the files in a directory, I can just create the directory object and call .GetFiles. Or I can do .GetDirectories, and I get a whole new set of DirectoryInfo objects to play with.
Admittedly, Java has some of this file stuff, but this nonsense of having to have a whole object to tell it how to list files is just silly.
Also, I hate ::, ->, => and all other multi-character operators except for <= and >= (and maybe -- and ++).
[Disclaimer: i only have a passing familiarity with VB, so take my comments with a grain of salt]
I Hate How Every Keyword In VB Is Capitalized Like This. I saw a blog post the other week (month?) about someone who tried writing VB code without any capital letters (they did something to a compiler that would let them compile VB code like that), and the language looked much nicer!
My big hangup is MATLAB's syntax. I use it, and there are things I like about it, but it has so many annoying quirks. Let's see.
Matrices are indexed with parentheses. So if you see something like Image(350,260), you have no clue from that whether we're getting an element from the Image matrix, or if we're calling some function called Image and passing arguments to it.
Scope is insane. I seem to recall that for loop index variables stay in scope after the loop ends.
If you forget to stick a semicolon after an assignment, the value will be dumped to standard output.
You may have one function per file. This proves to be very annoying for organizing one's work.
I'm sure I could come up with more if I thought about it.

Is there any downside to redundant qualifiers? Any benefit?

For example, referencing something as System.Data.Datagrid as opposed to just Datagrid. Please provide examples and explanation. Thanks.
The benefit is that you don't need to add an import for everything you use, especially if it's the only thing you use from a particular namespace, it also prevents collisions.
The downside, of course, is that the code balloons out in size and gets harder to read the more you use specific qualifiers.
Personally I tend to use imports for most things unless I know for sure I will only be using something from a particular namespace once or twice, so it won't impact the readability of my code.
You're being very explicit about the type you're referencing, and that is a benefit. Although, in the very same process you're giving up code clarity, which clearly is a downside in my case, as I want code to be readable and understandable. I go for the short version unless I have a conflict in different namespaces which can only be solved with the explicit referencing to classes.. Unless I make an alias for it with the keyword using:
using Datagrid = System.Data.Datagrid;
Actually the full path is global::System.Data.DataGrid. The point of using a more qualified path is to avoid having to use additional using statements, especially if the introduction of another using will cause problems with type resolution. More fully qualified identifiers exist so that you can be explicit when you need to be explicit, but if the class's namespace is clear, then the DataGrid version is clearer to many.
I generally use the shortest form available in order to keep the code as clean and readable as possible. That's what using directives are for, after all, and tooltips in the VS editor give you instant detail on the provenance of a type.
I also tend to use a namespace tag for RCWs in a COM interop layer, to call out those variables explicitly in the code (they may need special attention on lifecycle and collection), eg
using _Interop = Some.Interop.Namespace;
In terms of performance there is no upside/downside. Everything is resolved at compile time and the generated MSIL is identical whether you use fully-qualified names or not.
The reason why its use is prevalent in the .NET world is because of auto-generated code, such as designer markup. In that case it would be better to fully-qualify names like class names because of possible conflicts with other classes you may have in your code.
If you have a tool like ReSharper, it will actually tell you what fully-qualified references you have are unnecessary (e.g. by graying them out) so you can lop them off. If you frequently cut-paste code across your various code bases, it would be a must to fully qualify them. (then again, why would you want to do cut-paste all the time; it's a bad form of code reuse!)
I don't think there is really a downside, just readability vs actual time spent coding. In general if you don't have namespaces with ambiguous object I don't think it's really needed. Another thing to consider is level of use. If you have one method that uses reflection and you are alright with typeing System.Reflection 10 times, then it's not a big deal but if you plan on using a namespace alot then I would recommend an include.
Depending on your situation, extra qualifiers will generate a warning (if this is what you mean by redundant). If you then treat warnings as errors, that's a pretty serious downside.
I've run into this with GCC for example.
struct A {
int A::b; // warning!
}

Resources