Complexity of: One matrix is row/col permutation of another matrix - matrix

Given two m x n matrices A and B whose elements belong to a set S.
Problem: Can the rows and columns of A be permuted to give B?
What is the complexity of algorithms to solve this problem?
Determinants partially help (when m=n): a necessary condition is that det(A) = +/- det(B).
Also allow A to contain "don't cares" that match any element of B.
Also, if S is finite allow permutations of elements of A.
This is not homework - it is related to the solved 17x17 puzzle.

See below example of permuting rows and columns of a matrix:
Observe the start matrix and end matrix. All elements in a row or column are retained its just that their order has changed. Also the change in relative positions is uniform across rows and columns
eg. see 1 in start matrix and end matrix. Its row has elements 12, 3 and 14 along with it. Also its column has 5, 9 and 2 along with it. This is maintained across the transformations.
Based on this fact I am putting forward this basic algo to find for a given matrix A, can its rows and columns of A be permuted to give matrix B.
1. For each row in A, sort all elements in the row. Do same for B.
2. Sort all rows of A (and B) based on its columns. ie. if row1 is {5,7,16,18} and row2 is {2,4,13,15}, then put row2 above row1
3. Compare resultant matrix A' and B'.
4. If both equal, then do (1) and (2) but for columns on ORIGINAL matrix A & B instead of rows.
5. Now compare resultant matrix A'' and B''

Related

Arranging diagonal matrix in ascending order

I have a diagonal matrix and a matrix of same dimensions. How do I arrange the diagonal matrix in ascending order and then do the same steps on the other matrix ? For example if my matrix is 3 x 3, and I have to swap the 1st and 2nd column entries in diagonal to make it ascending, how do I apply this same set of steps to the other matrix but here I swap the whole 1st and 2nd column?
I thought about using some kind of merge sort but then it will not arrange the values on the diagonals. How do I do that ?
To sort a set of values, you usually have to reorder them. You can do so by sorting the directly, but you can also sort them indirectly, by first computing a sequence of indices which tells you how you would reorder the sequence. In Python, this sequence can be obtained by the numpy.argsort method. Once you have the sequence, you can apply it to sort your set of numbers, but you can also use it to rearrange any array of values in the same way. Here is an example:
import numpy as np
# construct example matrices
n = 4
D = np.diag(np.random.rand(n))
A = np.random.rand(n,n)
# obtain a sequence of indices that would sort the array.
idx = np.argsort(np.diag(D))
# order the diagonal entries according to the sequence
Dp = np.diag(np.diag(D)[idx])
# order the columns according to the sequence
Ap = A[:,idx]
print('idx')
print(idx)
print('D:')
print(D)
print('Dp:')
print(Dp)
print('A:')
print(A)
print('Ap:')
print(Ap)
Note, in Matlab the index sequence that sorts a sequence is given in the second return value of the sort function.

A greedy solution for a matrix rearrangment

I am working on something which I feel an NP-hard problem. So, I am not looking for the optimal solution but I am looking for a better heuristics. An integer input matrix (matrix A in the following example) is given as input and I have to produce an integer output matrix (matrix B in the following example) whose number of rows are smaller than the input matrix and should obey the following two conditions:
1) Each column of the output matrix should contain integers in the same order as they appear in the input matrix. (In the example below, first column of the matrix A and matrix B have the same integers 1,3 in the same order.)
2) Same integers must not appear in the same row (In the example below, first row of the matrix B contains the integers 1,3 and 2 which are different from each other.)
Note that the input matrix always obey the 2nd condition.
What a greedy algorithm looks like to solve this problem?
Example:
In this example the output matrix 'Matrix B' contains all the integers as they appear in the input matrix 'Matrix A" but the output matrix has 5 rows and the input matrix has 6 rows. So, the output 'Matrix B' is a valid solution of the input 'Matrix A'.
I would produce the output one row at a time. When working out what to put in the row I would consider the next number from each input column, starting from the input column which has the most numbers yet to be placed, and considering the columns in decreasing order of numbers yet to be placed. Where a column can put a number in the current output row when its turn comes up it should do so.
You could extend this to a branch and bound solution to find the exact best answer. Recursively try all possible rows at each stage, except when you can see that the current row cannot possibly improve on the best answer so far. You know that if you have a column with k entries yet to be placed, in the best possible case you will need at least k more rows.
In practice I would expect that this will be too expensive to be practical, so you will need to ignore some possible rows which you cannot rule out, and so cannot guarantee to find the best answer. You could try using a heuristic search such as Limited Discrepancy search.
Another non-exact speedup is to multiply the estimate for the number of rows that the best possible answer derived from a partial solution will require by some factor F > 1. This will allow you to rule out some solutions earlier than branch and bound. The answer you find can be no more than F times more expensive than the best possible answer, because you only discard possibilities that cannot improve on the current answer by more than a factor of F.
A greedy solution to this problem would involve placing the numbers column by column, top down, as they appear.
Pseudocode:
For each column c in A:
r = 0 // row index of next element in A
nextRow = 0 // row index of next element to be placed in B
while r < A.NumRows()
while r < A.NumRows() && A[r, c] is null:
r++ // increment row to check in A
if r < A.NumRows() // we found a non-null entry in A
while nextRow < A.NumRows() && ~CheckConstraints(A[r,c], B[nextRow, c]):
nextRow++ // increment output row in B
if 'nextRow' >= A.NumRows()
return unsolvable // couldn't find valid position in B
B[nextRow, c] = v // successfully found position in B
++nextRow // increment output row in B
If there are no conflicts you end up "packing" B as tightly as possible. Otherwise you greedily search for the next non-conflicting row position in B. If none can be found, the problem is unsolvable.
The helper function CheckConstraints checks backwards in columns for the same row value in B to ensure the same value hasn't already been placed in a row.
If the problem statement is relaxed such that the output row count in B is <= the row count in A, then if we are unable to pack B any tighter, then we can return A as a solution.

Matrix reordering to block diagonal form

Give a sparse matrix, how to reorder the rows and columns such that it is in block diagonal like form via row and column permutation?
Row and column permutation are not necessarily coupled like reverse Cuthill-McKee ordering:
http://www.mathworks.com/help/matlab/ref/symrcm.html?refresh=true In short, you can independently perform any row or column permutation.
The overall goal is to cluster all the non zero elements towards diagonal line.
Here is one approach.
First make a graph whose vertices are rows and columns. Every non-zero value is a edge between that row and that column.
You can then use a standard graph theory algorithm to detect the connected components of this graph. The single element ones represent all zero rows and columns. Number the others. Those components may have unequal numbers of rows and columns. You can distribute some zero rows and columns to them to make them square.
Your square components will be your blocks, and from the numbering of those components you know what order to put them in. Now just reorder rows and columns to achieve this structure and, voila! (The remaining zero rows/columns will result in a bunch of 0 blocks at the bottom right of the diagonal.)
Just an idea, but if you make a new matrix Ab from the original block-matrix A that contains the block-sparsity structure of A. E.g.:
A = [B 0 0; 0 0 C; 0 D 0]; % with matrices 0 (zero elements), B,C and D
Ab = [1 0 0; 0 0 2; 0 3 0]; % with identifiers 1, 2 and 3 (1-->B, 2-->C, 3-->D)
Then Ab is a simple sparse matrix (size 3x3 in the example). You can then use the reverse Cuthill-McKee ordering to get the permutations you want, and apply these permutations to Ab.
p = symrcm(Ab);
Abperm = Ab(p,p);
Then use the identifiers to create the ordered block matrix Aperm from Abperm and you'll have the desired result, I believe.
You'll need to be clever in assigning the identifiers to the individual blocks and so on, but this should be possible.

Construct a full rank matrix by adding vectors from the standard basis

I have a nxn singular matrix. I want to add k rows (which must be from the standard basis e1, e2, ..., en) to this matrix such that the new (n+k)xn matrix is full column rank. The number of added rows k must be minimum and they can be added in any order (not just e1, e2 ,..., it can be e4, e10, e1, ...) as long as k is minimum.
Does anybody know a simple way to do this? Any help is appreciated.
You can achieve this by doing a QR decomposition with column pivoting, then taking the transpose of the last n-rank(A) columns of the permutation matrix.
In matlab, this is achieved by the qr function(See the matlab documentation here):
r=rank(A);
[Q,R,E]=qr(A);
newA=[A;transpose(E(:,end-r+1:end))];
Each row of transpose(E(:,end-r+1:end)) will be a member of standard basis, rank of newA will be n, and this is also the minimal number of standard basis you will need to do so.
Here is how this works:
QR decomposition with column pivoting is a standard procedure to decompose a matrix A into products:
A*E==Q*R
where Q is an orthogonal matrix if A is real, or an unitary matrix if A is complex; R is upper triangular matrix, and E is a permutation matrix.
In short, the permutations are chosen so that the diagonal elements are larger than the off-diagonals in the same row, and that size of the diagonal elements are non-increasing. More detailed description can be found on the netlib QR factorization page.
Since Q and E are both orthogonal (or unitary) matrices, the rank of R is the same as the rank of A. To bring up the rank of A, we just need to find ways to increase the rank of R; and this is much more straight forward thanks to the structure of R as the result of pivoting and the fact that it is upper-triangular.
Now, with the requirement placed on pivoting procedure, if any diagonal element of R is 0, the entire row has to be 0. The n-rank(A) rows of 0s in the bottom if R is responsible for the nullity. If we replace the lower right corner with an identity matrix, the that new matrix would be full rank. Well, we cannot really do the replacement, but we can append the rows matrix to the bottom of R and form a new matrix that has the same rank:
B==[ 0 I ] => newR=[ R ; B ]
Here the dimensionality of I is the nullity of A and that of R.
It is readily seen that rank(newR)=n. Then we can also define a new unitary Q matrix by expanding its dimensionality in a trivial manner:
newQ=[Q 0 ; 0 I]
With that, our new rank n matrix can be obtained as
newA=newQ*newR.transpose(E)=[Q*R ; B ]*transpose(E) =[A ; B*transpose(E)]
Note that B is [0 I] and E is a permutation matrix, so B*transpose(E) is simply the transpose
of the last n-rank(A) columns of E, and thus a set of rows made of standard basis, and that's just what you wanted!
Is n very large? The simplest solution without using any math would be to try adding e_i and seeing if the rank increases. If it does, keep e_i. proceed until finished.
I like #Xiaolei Zhu's solution because it's elegant, but another way to go (that's even more computationally efficient is):
Determine if any rows, indexed by i, of your matrix A are all zero. If so, then the corresponding e_i must be concatenated.
After that process, you can simply concatenate any subset of the n - rank(A) columns of the identity matrix that you didn't add in step 1.
rows/cols from Identity matrix can be added in any order. it does not need to be added in usual order as e1,e2,... in general situation for making matrix full rank.

Algorithm/Data Structure for finding combinations of minimum values easily

I have a symmetric matrix like shown in the image attached below.
I've made up the notation A.B which represents the value at grid point (A, B). Furthermore, writing A.B.C gives me the minimum grid point value like so: MIN((A,B), (A,C), (B,C)).
As another example A.B.D gives me MIN((A,B), (A,D), (B,D)).
My goal is to find the minimum values for ALL combinations of letters (not repeating) for one row at a time e.g for this example I need to find min values with respect to row A which are given by the calculations:
A.B = 6
A.C = 8
A.D = 4
A.B.C = MIN(6,8,6) = 6
A.B.D = MIN(6, 4, 4) = 4
A.C.D = MIN(8, 4, 2) = 2
A.B.C.D = MIN(6, 8, 4, 6, 4, 2) = 2
I realize that certain calculations can be reused which becomes increasingly important as the matrix size increases, but the problem is finding the most efficient way to implement this reuse.
Can point me in the right direction to finding an efficient algorithm/data structure I can use for this problem?
You'll want to think about the lattice of subsets of the letters, ordered by inclusion. Essentially, you have a value f(S) given for every subset S of size 2 (that is, every off-diagonal element of the matrix - the diagonal elements don't seem to occur in your problem), and the problem is to find, for each subset T of size greater than two, the minimum f(S) over all S of size 2 contained in T. (And then you're interested only in sets T that contain a certain element "A" - but we'll disregard that for the moment.)
First of all, note that if you have n letters, that this amounts to asking Omega(2^n) questions, roughly one for each subset. (Excluding the zero- and one-element subsets and those that don't include "A" saves you n + 1 sets and a factor of two, respectively, which is allowed for big Omega.) So if you want to store all these answers for even moderately large n, you'll need a lot of memory. If n is large in your applications, it might be best to store some collection of pre-computed data and do some computation whenever you need a particular data point; I haven't thought about what would work best, but for example computing data only for a binary tree contained in the lattice would not necessarily help you anything beyond precomputing nothing at all.
With these things out of the way, let's assume you actually want all the answers computed and stored in memory. You'll want to compute these "layer by layer", that is, starting with the three-element subsets (since the two-element subsets are already given by your matrix), then four-element, then five-element, etc. This way, for a given subset S, when we're computing f(S) we will already have computed all f(T) for T strictly contained in S. There are several ways that you can make use of this, but I think the easiest might be to use two such subset S: let t1 and t2 be two different elements of T that you may select however you like; let S be the subset of T that you get when you remove t1 and t2. Write S1 for S plus t1 and write S2 for S plus t2. Now every pair of letters contained in T is either fully contained in S1, or it is fully contained in S2, or it is {t1, t2}. Look up f(S1) and f(S2) in your previously computed values, then look up f({t1, t2}) directly in the matrix, and store f(T) = the minimum of these 3 numbers.
If you never select "A" for t1 or t2, then indeed you can compute everything you're interested in while not computing f for any sets T that don't contain "A". (This is possible because the steps outlined above are only interesting whenever T contains at least three elements.) Good! This leaves just one question - how to store the computed values f(T). What I would do is use a 2^(n-1)-sized array; represent each subset-of-your-alphabet-that-includes-"A" by the (n-1) bit number where the ith bit is 1 whenever the (i+1)th letter is in that set (so 0010110, which has bits 2, 4, and 5 set, represents the subset {"A", "C", "D", "F"} out of the alphabet "A" .. "H" - note I'm counting bits starting at 0 from the right, and letters starting at "A" = 0). This way, you can actually iterate through the sets in numerical order and don't need to think about how to iterate through all k-element subsets of an n-element set. (You do need to include a special case for when the set under consideration has 0 or 1 element, in which case you'll want to do nothing, or 2 elements, in which case you just copy the value from the matrix.)
Well, it looks simple to me, but perhaps I misunderstand the problem. I would do it like this:
let P be a pattern string in your notation X1.X2. ... .Xn, where Xi is a column in your matrix
first compute the array CS = [ (X1, X2), (X1, X3), ... (X1, Xn) ], which contains all combinations of X1 with every other element in the pattern; CS has n-1 elements, and you can easily build it in O(n)
now you must compute min (CS), i.e. finding the minimum value of the matrix elements corresponding to the combinations in CS; again you can easily find the minimum value in O(n)
done.
Note: since your matrix is symmetric, given P you just need to compute CS by combining the first element of P with all other elements: (X1, Xi) is equal to (Xi, X1)
If your matrix is very large, and you want to do some optimization, you may consider prefixes of P: let me explain with an example
when you have solved the problem for P = X1.X2.X3, store the result in an associative map, where X1.X2.X3 is the key
later on, when you solve a problem P' = X1.X2.X3.X7.X9.X10.X11 you search for the longest prefix of P' in your map: you can do this by starting with P' and removing one component (Xi) at a time from the end until you find a match in your map or you end up with an empty string
if you find a prefix of P' in you map then you already know the solution for that problem, so you just have to find the solution for the problem resulting from combining the first element of the prefix with the suffix, and then compare the two results: in our example the prefix is X1.X2.X3, and so you just have to solve the problem for
X1.X7.X9.X10.X11, and then compare the two values and choose the min (don't forget to update your map with the new pattern P')
if you don't find any prefix, then you must solve the entire problem for P' (and again don't forget to update the map with the result, so that you can reuse it in the future)
This technique is essentially a form of memoization.

Resources